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ON EXTENDABLE DERIVATIONS

Sometimes it’s as easy to prove a stronger result . . .
Kenneth R. Kellum

Abstract

There are derivations f : R→ R which are almost continuous in the
sense of Stallings but not extendable. Every derivation f : R→ R can be
expressed as the sum of two extendable derivations, as the discrete limit
of a sequence of extendable derivations and as the limit of a transfinite
sequence of extendable derivations. Analogous results hold for additive
functions.

Let us establish some terminology to be used. By R and Q we denote
the fields of all reals and rationals, respectively. Let F be a subfield of R.
An element a ∈ R is called algebraic over F , if p(a) = 0 for some polynomial
p ∈ F [x], p 6= 0. For A ⊂ R, Q(A) denotes the extension of Q by the set A, i.e.,
the smallest subfield of R containing Q∪A. The algebraic closure of A ⊂ R is
the set algcl (A) of all algebraic elements over Q(A). Notice that |algcl (A)| < c
whenever |A| < c. A set A ⊂ R is algebraically independent over Q if for all
n < ω, p ∈ Q[x1, . . . xn], p 6= 0, and a1, . . . an ∈ A, we have p(a1, . . . , an) 6= 0.
A set A ⊂ R is an algebraic base of R over Q if A is algebraically independent
and algcl (A) = R. (An algebraic base is often called transcendental.) Recall
that every algebraically independent over Q set A ⊂ R can be extended to an
algebraic base of R [9, Theorem 4.10.1, p. 102].

A function f : R→ R is:

• additive (f ∈ Add) if f(x+ y) = f(x) + f(y) for all x, y ∈ R;

• a derivation (f ∈ Der) if f is additive and f(xy) = xf(y) + yf(x) for all
x, y ∈ R ([9], p. 346);
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• almost continuous in the sense of Stallings (f ∈ ACS), if every open
neighbourhood of f in R2 contains also a continuous function g : R→ R;

• extendable (f ∈ Ext) if there is a connectivity function F : R× [0, 1]→ R
such that F (x, 0) = f(x) when x ∈ R ([14], see also [4]).

Recall also that a function f : X → Y , where X and Y are topological
spaces, is connectivity, if the restriction f�C : C → Y is a connected subset
of X × Y whenever C is a connected subset of X (see [4]). Remark that
if g ∈ Der then g�Q = 0 [9, Lemma. 14.1.3, p. 347], thus Der is a proper
subclass of Add. Similarly, it is well-known that Ext is a proper subclass
of ACS (see [4]). The Jones’ example of an additive function with the big
graph (see [9, Theorem 12.4.5, p. 290]) is ACS but not Ext [12]. Thus Add ∩
ACS \ Add ∩ Ext 6= ∅. In the first part of this note we remark that an easy
modification of Jones’ construction gives an example of derivation which is
ACS and non Ext. In the second part we will consider algebraic properties
of the classes Der ∩ Ext and Add ∩ Ext. Recall that algebraic properties of
the class Add ∩ ACS have been investigated by Z. Grande [6]. He proved
that: • every additive function f : R → R is the sum of two additive almost
continuous functions; • every f ∈ Add is the pointwise limit of a sequence
(fn)n ⊂ Add ∩ ACS; • every f ∈ Add is the limit of a transfinite sequence of
Add∩ACS functions. (Recall that f : R→ R is a limit of transfinite sequence
fα : R→ R, α < ω1, if for each x ∈ R there is α < ω1 such that fβ(x) = f(x)
for all β ≥ α [13].) E. Strońska proved recently analogous results for almost
continuous derivations [15]. We will show that almost continuity in [6] and in
[15] can be replaced by extendability.

1 Almost Continuous Derivation which is not Extend-
able.

Notice that f�algcl (Q) = 0 for every f ∈ Der [9, Lemma 14.1.4, p. 347].
Following [15], our constructions of derivations will be based on the following
facts (see [9, Theorem 14.2.1, p. 352]).

Fact 1. Let A be an algebraic base of R over Q. Then for any g : A → R
there exists a unique derivation h : R→ R such that h�A = g.

Fact 2. If f, g ∈ Der, A ⊂ R is algebraically independent and f�A = g�A then
f agrees with g on algcl (A).

Lemma 3. There exists an algebraically independent set A ⊂ R that meets
each perfect set P ⊂ R on a set of size c.
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Proof. List all perfect sets in a sequence {Pα : α < c}. Let a0 ∈ P \ Q.
Fix α < c and suppose we have chosen aβ for β < α such that aβ ∈ Pβ
and the set Aα = {aβ : β < α} is algebraically independent over Q. Since
|algcl (Aα)| < c, we have Pα \ algcl (Aα) 6= ∅. Choose aα ∈ Pα \ algcl (Aα).
Set A = {aα : α < c}, then A is algebraically independent and it meets each
perfect set. Now, since each perfect set P can be decomposed onto c many
perfect sets, |A ∩ P | = c.

Theorem 4. There exists an almost continuous derivation f : R → R which
is not extendable.

Proof. Let {Kα : α < c} be a sequence of all closed subsets K ⊂ R2 with
dom(K) = c, where dom(K) denotes the x-projection of K. Then for each
α < c, dom(Kα) includes a perfect set. Let A be an algebraically independent
set with |P ∩ A| = c for each perfect set P . Fix f0 : A → R such that
f0 ∩ Kα 6= ∅, i.e., there is aα ∈ A with 〈aα, f0(aα)〉 ∈ Kα, for each α < c.
By Fact 1, there is a derivation f : R → R with f�A = f0. Since f0 meets
each blocking set in R2, f ∈ ACS ([8], see also [11]). Now, observe that f is
unbounded on each perfect set, thus f�P is continuous for no perfect set P .
Consequently, f is not extendable ([5], see also [4]).

2 Properties of the Classes Der ∩ Ext and Add ∩ Ext.

Notice that the classes Add and Der are closed under sums, pointwise limits
and transfinite limits. We will prove that each f ∈ Der can be represented as:

• the sum of two Ext ∩Der functions;

• the pointwise limit of a sequence of Ext ∩Der functions;

• the limit of a transfinite sequence of functions from the class Ext∩Der.

Similar results hold for the class Ext∩Add. In proofs we will use the method
of negligible sets. ([2], see also [4, Section 7.2]). Recall that if K is the class
of functions from R to R and k ∈ K, then the set M ⊂ R is k-negligible with
respect to K, provided f ∈ K for every function f : R→ R which agrees with k
on R \M . (This is the same as saying that every function f : R→ R obtained
by arbitrarily redefining k on M is still a member of K.)

Lemma 5. ([3, Proposition 4.3]) For every c-dense meager Fσ set M ⊂ R
there exists g ∈ Ext such that R \M is g-negligible with respect to Ext.

Lemma 6. ([7]) For every c-dense set M ⊂ R there exists g ∈ ACS such that
R \M is g-negligible with respect to ACS.
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Lemma 7. ([10, Theorem 1]) Let (In)n be a sequence of all open intervals
with rational endpoints. There exists a sequence of pairwise disjoint perfect
sets (Pn)n such that Pn ⊂ In and

⋃
n<ω Pn is algebraically independent.

In the proofs below, let (Pn)n be sequence of perfect sets as in Lemma 7
and A be an algebraic base of R over Q which includes all Pn’s.

Theorem 8. For every family F of derivations with |F| ≤ c there exists
g ∈ Der ∩ Ext such that f + g ∈ Ext for each f ∈ F .

Proof. We can assume that |F| = c and 0 ∈ F . Let F = {fα : α < c}.
Decompose each Pn onto c-many perfect sets Pn,α, α < c. For each α < c set
Fα =

⋃
n<ω Pn,α. Then Fα is a c-dense meager Fσ set, so by Lemma 5 there

is gα ∈ Ext such that R \ Fα is gα-negligible (with respect to Ext). Define
h : A→ R by

h(x) =
{
gα(x)− fα(x) for x ∈ Fα α < c,

0 for x ∈ A \
⋃
α<c Fα.

Let g : R→ R be the derivation such that g�A = h. Then, for any α < c,
(g+fα)�Fα = gα�Fα, thus g+fα ∈ Ext. Since fα = 0 for some α, g ∈ Ext.

Notice that an analogous result concerning additive almost continuous
functions has been proved by D. Banaszewski [1].

Corollary 9. Every derivation is the sum of two extendable derivations.

Proof. Fix f ∈ Der. Applying Theorem 8 to the family {0, f} we obtain
g ∈ Ext ∩Der such that h = f + g ∈ Ext ∩Der. Then f = h− g.

Corollary 10. There are discontinuous extendable derivations.

Proof. Remark that if g ∈ Der is continuous then g = 0 [9, Theorem. 14.1.1,
p. 348]. Let f ∈ Der be discontinuous and let f0, f1 ∈ Der ∩ Ext be such
that f = f0 + f1. Then at least one of f0, f1 is not continuous (cf [15,
Remark 1]).

Theorem 11. Every derivation f : R → R is the limit of a sequence of
extendable derivations.

Proof. Fix f ∈ Der. For each n, let Pn,i, i < ω, be a decomposition of Pn
onto ω many perfects sets, and let Fi =

⋃
n<ω Pn,i. The sets Fi are c-dense,

meager and Fσ, so there exist gi ∈ Ext such that for each i the set R \ Fi is
gi-negligible. Set hi : A→ R,
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hi(x) =
{
gi(x) for x ∈ Fi,
f(x) for x ∈ A \ Fi.

Let fi : R→ R be the derivation such that fi�A = hi. Since fi�Fi = gi�Fi,
fi are extendable. Observe that limi→∞ fi = f . In fact, fix x ∈ R. There
exists a finite subset Ax of A such that x ∈ algcl (Ax). Fix n0 such that
Ax ⊂ (A \

⋃
n Pn) ∪

⋃
i<n0

Pi. Then fi�Ax = f�Ax for i ≥ n0. Thus Fact 2
yields fi(x) = f(x) for i ≥ n0, so limi fi(x) = f(x).

Notice that the sequence (fn)n constructed in the proof of Theorem 11 has
the following property: for each x ∈ R there is n < ω with fi(x) = f(x) for
all i ≥ n. Thus (fn)n converges discretely to f .

Theorem 12. Every derivation f : R→ R is the limit of a transfinite sequence
(fα)α<ω1 of extendable derivations.

Proof. Fix f ∈ Der. Decompose each Pn onto c-many perfect sets Pn,α,
α < c. For each α < ω1 set Fα =

⋃
n<ω Pn,α. Let gα be an extendable

function such that R \ Fα is gα-negligible. Define hα : A→ R by

hα(x) =
{
gα(x) for x ∈ Fα,
f(x) for x ∈ A \ Fα.

Let fα : R → R be the derivation such that fα�A = hα. Since fα�Fα =
gα�Fα, fα ∈ Ext. As in the proof of Theorem 11 we verify that limα fα =
f .

Theorem 13. Let f ∈ Add. Then

1. f is the sum of two Add ∩ Ext functions;

2. f is the discrete limit of a sequence of Add ∩ Ext functions;

3. f is a limit of a transfinite limit of Add ∩ Ext functions.

Proof. Proofs of all those statements are the same as proofs of Corollary 9
and Theorems 11, 12. We have to use Lemma 6 instead of Lemma 7.

Observe that for any a 6= 0 the function f : x 7→ ax belongs to the class
Ext ∩ (Add \Der).

Corollary 14. There exists discontinuous function f ∈ Ext ∩ (Add \Der).

Proof. Fix a discontinuous f ∈ Add \Der. Then f is the limit of a sequence
(fn)n ∈ Add ∩ Ext. We may assume that all fn are discontinuous. (In fact,
otherwise f is the limit of continuous additive, i.e., linear, functions, thus f is
continuous.) Since f 6∈ Der, there is n < ω such that fn 6∈ Der.
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