
Real Analysis Exchange
Vol. (), , pp. 421–428

T. H. Steele, Department of Mathematics, Weber State University, Ogden,
UT, 84408-1702. e-mail: thsteele@weber.edu

CONTINUITY STRUCTURE OF
f 7−→ ∪x∈Iω(x, f) AND f 7−→ {ω(x, f) : x ∈ I}

Abstract

Let the maps Λ and Ω be defined on C(I, I) so that f 7−→ Λ(f) =
∪x∈Iω(x, f) and f 7−→ Ω(f) = {ω(x, f) : x ∈ I}. We characterize those
functions at which Λ is continuous, as well as those functions at which Ω
is continuous when its domain is restricted to those elements of C(I, I)
possessing zero topological entropy.

1 Introduction

At the Twentieth Summer Symposium in Real Analysis, A. M. Bruckner posed
several questions regarding the iterative stability of continuous functions as
they experience small perturbations, as well as why these questions are of
general interest [3]. In particular, how are the set of ω -limit points and
the collection of ω-limit sets of a function affected by slight changes in that
function? As Bruckner discusses in [3], we may also want to ask these questions
when restricting our attention to particular subsets of C(I, I), such as those
functions that are in some way nonchaotic, or those functions that satisfy a
particular smoothness condition. As one sees from various examples found
in [3] and [10], in general, both the set of ω-limit points and the collection
of ω-limit sets of a typical function are affected dramatically by arbitrarily
small perturbations. We found in [10], however, that by restricting ourselves
to certain classes of functions and certain types of ω-limit sets, one gets more
positive results.

Theorem 1. Suppose {fn} ⊂ C(I, I), fn → f uniformly, ωn is an ω-limit set
of fn for each n, and ωn converges to ω with respect to the Hausdorff metric.

1. As in the statement of Theorem 5, p.3, if ω is a finite set, then ω is an
ω-limit set of f.
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2. If the topological entropy of fn is zero for each n, and ω is infinite, then
the maximal perfect subset of ω is an ω -limit set of f.

Theorem 2. Suppose f ∈ C(I, I), f has only a finite number of ω-limit sets,
and each ω-limit set of f is stable. Then the map Ω taking g to Ω(g) =
{ω(x, g) : x ∈ I} is continuous at f .

In this paper we build upon the results of [10] in a couple of ways. First, we
describe those continuous functions for which slight perturbations have only a
minimal impact upon the set of ω-limit points. In particular, we characterize
the points of continuity of the map Λ taking f to Λ(f) = ∪x∈Iω(x, f). We then
restrict our attention to those functions possessing zero topological entropy,
and characterize the points of continuity of the map Ω with that restriction.

We proceed through several sections. In section 2 we present the notation
and definitions we will use throughout the balance of the paper. Section
3 is dedicated to characterizing those functions at which Λ is continuous,
and section 4 deals with the continuity of Ω restricted to functions with zero
topological entropy. In section 5 we conclude with some open problems and a
few observations.

2 Preliminaries

We shall be concerned with the class C(I, I) of continuous functions mapping
the unit interval I = [0, 1] into itself, and the iterative properties this class
of functions possesses. For f in C(I, I) and any integer n ≥ 1, fn denotes
the nth iterate of f . Let P (f) represent those points x ∈ I that are periodic
under f , and if x is a periodic point of period n for which fn(x) − x is not
unisigned in any deleted neighborhood of x, then x is called a stable periodic
point; we let S(f) represent the stable periodic points of f , and let Pn(f) =
{x ∈ I : fn(x) = x, fm(x) 6= x whenever m | n} represent the f -periodic
points of period n. For each x in I, we call the set of all subsequential limits
of the sequence {fn(x)}∞n=0 the ω -limit set of f generated by x, and write
ω(x, f). Let Λ(f) = ∪x∈Iω(x, f) represent the ω-limit points of f , while
Ω(f) = {ω(x, f) : x ∈ I} denotes the set composed of the ω-limit sets of f .
Now, let ε > 0 be given, and take x and y to be any points in [0, 1]. An ε-chain
from x to y with respect to a function f is a finite set of points {x0, x1, ..., xn}
in [0, 1] with x = x0, y = xn and | f(xk−1) − xk |< ε for k = 0, 1, ..., n − 1.
We call x a chain recurrent point of f if there is an ε-chain from x to itself
for any ε > 0, and write x ∈ CR(f). We note that for every f in C(I, I),
Λ(f) ⊆ CR(f).
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In addition to the usual, Euclidean metric d on I = [0, 1], we will be working
in three metric spaces. Within C(I, I) we will use the supremum metric given
by ‖f − g‖ = sup{| f(x) − g(x) |: x ∈ I}. Our second metric space (K,H)
is composed of the class of nonempty closed sets K in I endowed with the
Hausdorff metric H given by H(E,F ) = inf{δ > 0 : E ⊂ Bδ(F ), F ⊂ Bδ(E)},
where Bδ(F ) = {x ∈ I : d(x, y) < δ, y ∈ F}. This space is compact [4].
Our final metric space (K∗,H∗) consists of the nonempty closed subsets of K.
Thus, K ∈ K∗ if K is a nonempty family of nonempty closed sets in I such
that K is closed in K with respect to H. We endow K∗ with the metric H∗
so that K1 and K2 are close with respect to H∗ if each member of K1 is close
to some member of K2 with respect to H, and vice versa. This metric space
is also compact [3]. Our interest in, and the utility of, the spaces (K,H) and
(K∗,H∗) stem from the following two theorems from [1] and [2], respectively.

Theorem 3. For any f in C(I, I), the set Λ(f) is closed in I.

Theorem 4. For any f in C(I, I), the set Ω(f) is closed in (K,H).

To a large extent, our work investigates the iterative stability of f ∈ C(I, I)
under small perturbations by studying the continuity structure of the maps
Λ : (C(I, I), ‖ ◦ ‖) → (K,H) given by f 7−→ Λ(f), and Ω : (C(I, I), ‖ ◦ ‖) −→
(K∗,H∗) given by f 7−→ Ω(f).

In much of the sequel we will restrict our attention to a closed subset E of
C(I, I) composed of those functions f having zero topological entropy, denoted
by h(f) = 0. The reader is referred to Theorem A of [7] for an extensive list
of equivalent formulations of topological entropy zero. For our purposes, it
suffices to note that every periodic orbit of a continuous function with zero
topological entropy has cardinality of a power of two. The following theorem,
due to Smital [9], sheds considerable light on the structure of infinite ω-limit
sets for functions with zero topological entropy.

Theorem 5. If ω is an infinite ω-limit set of f ∈ C(I, I) possessing zero
topological entropy, then there exists a sequence of closed intervals {Jk}∞k=1 in
[0, 1] such that

1. for each k, {f i(Jk)}2k

i=1 are pairwise disjoint, and Jk = f2k

(Jk).

2. for each k, Jk+1 ∪ f2k

(Jk+1) ⊂ Jk.

3. for each k, ω ⊂ ∪2k

i=1f
i(Jk).

4. for each k and i, ω ∩ f i(Jk) 6= ∅.
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We make the following definitions with Smital’s Theorem in mind. Let
ω be an infinite compact subset of I, and let f map ω into itself. We call
f a simple map on ω if ω has a decomposition S ∪ T into compact portions
that f exchanges, and f2 is simple on each of these portions. From Smital’s
Theorem one sees that every map f with zero topological entropy is simple on
each of its infinite ω-limit sets. Let {Jk}∞k=1 be a nested sequence of compact
periodic intervals with respect to ω and f as described in Smital’s Theorem.
Every set of the form ω ∩ f i(Jk) is periodic of period 2k, and we call each
such set a periodic portion of rank k. This system of periodic portions of
ω, or of the corresponding periodic intervals, is called the simple system of
ω with respect to f . Now, let K = ∩∞n=1 ∪2n

i=1 f
i(Jn). We note that every

nondegenerate component of K is a wandering interval of f with a trajectory
that is contained in K.

3 The Continuity of Λ : C(I, I) −→ K

The main result of this section, Theorem 6, characterizes those functions f ∈
C(I, I) at which the map Λ : (C(I, I), ‖ ◦ ‖) −→ (K,H) is continuous.

Theorem 6. Λ is continuous at f if and only if S(f) = CR(f).

This result follows from Lemmas 8 and 9, as Lemma 8 characterizes those
continuous functions at which Λ is upper semicontinuous, and Lemma 9 char-
acterizes those continuous functions at which Λ is lower semicontinuous. In
the proof of Lemma 8, it is helpful to recall the following result from [1].

Lemma 7. If x ∈ CR(f), then any open neighborhood of f in C(I, I) contains
a function g for which x ∈ P (g).

Lemma 8. Let f ∈ C(I, I). Then for any ε > 0 there exists δ > 0 so that
Λ(g) ⊂ Bε(Λ(f)) whenever ‖f − g‖ < δ if and only if Λ(f) = CR(f).

Proof. Suppose Λ(f) = CR(f). Since CR : (C(I, I), ‖ ◦ ‖) −→ (K,H) given
by g 7→ CR(g) is upper semicontinuous, for any ε > 0 there is a δ > 0 so
that CR(g) ⊂ Bε(CR(f)) whenever ‖f − g‖ < δ [1]. By hypothesis, we have
that Λ(f) = CR(f), so that Λ(g) ⊂ CR(g) ⊂ Bε(Λ(f)), and our conclusion
follows.

Now, let us suppose that x ∈ CR(f) − Λ(f). Then there exists {fn} ⊂
C(I, I) so that fn −→ f and x ∈ P (fn) for each n, so that x ∈ lim Λ(fn) −
Λ(f).

Lemma 9. Let f ∈ C(I, I). Then for any ε > 0 there exists δ > 0 so that
Λ(f) ⊂ Bε(Λ(g)) whenever ‖f − g‖ < δ if and only if S(f) = Λ(f).
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Proof. The sufficiency of our lemma follows immediately from the definition
of a stable periodic orbit, and the compactness of Λ(f). As for the necessity,
let us suppose S(f) is a proper subset of Λ(f), and let J be an open interval
in [0, 1] for which Λ(f) ∩ J 6= ∅, but S(f) ∩ J = ∅. If P (f) ∩ J 6= ∅, then
there exists K an open interval contained in J for which P (f) ∩K ⊆ Pn(f),
for some natural number n. If P (f) ∩ J = ∅, set K = J . In either case, then,
there exists {fn} ⊂ C(I, I) and an open interval K for which K ∩ Λ(f) 6= ∅,
but P (fn) ∩K = ∅ for all natural numbers n, and fn −→ f . Since we may
take fn to be piecewise monotonic on I, Λ(fn) = P (fn) for each n [1], so that
by taking a subsequence of {fn} if necessary, we have Λ(fn) = P (fn)→ F in
(K,H), with F ∩K = ∅. Thus, Λ(f) is not contained in lim Λ(fn).

4 The Continuity of Ω | E

In this section we characterize those functions with zero topological entropy at
which the map Ω | E is continuous. It is interesting to note that these functions
can be characterized in exactly the same way as those found in Theorem 6;
Lemma 14 sheds some light on why this should be the case. Our main result
is the following theorem.

Theorem 10. Ω | E is continuous at f if and only if S(f) = CR(f).

We begin our development of Theorem 10 with a couple rather technical
lemmas.

Lemma 11. Suppose each periodic orbit of f ∈ C(I, I) is of order 2m for
some m ≤ n. If each of the necessarily periodic ω-limit sets of f is stable,
then P (f) is nowhere dense in [0, 1].

Proof. Let F (f) = {x ∈ I : f(x) − x = 0}. Then F (f) is closed, and
since f(x)−x is not unisigned in any deleted neighborhood of x ∈ F (f), F (f)
must be nowhere dense. Similarly, F (f2) is closed, and since f2(x)− x is not
unisigned in any deleted neighborhood of x ∈ F (f2)−F (f), F (f2) is nowhere
dense. In general, then, F (f2k

) is nowhere dense for k = 0, 1, ..., n. But
F (f2n

) = P (f).

Lemma 12. Suppose f ∈ C(I, I) has points of period 2n for all natural num-
bers n , but no others. If S(f) = P (f), then P (f) is nowhere dense.

Proof. As in the proof of Lemma 11, F (f2n

) is nowhere dense for each n ∈ N.
Since P (f) = ∪∞n=1F (f2n

), it follows that P (f) is of the first category, so that
P (f) is in fact nowhere dense by Proposition 4.1 of [8].
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We now need to recall another result from [8], rewritten in terms of our
current notation. What this theorem allows us to do is ε -approximate every
ω-limit set of a function g with one of its 2k-cycles of length no more than
2N(ε) for some N(ε) in N, whenever g is sufficiently close to a particularly well
behaved function f .

Theorem 13. Suppose f ∈ C(I, I),h(f) = 0 and P (f) is nowhere dense
with intK = ∅ for any simple system of f . Then, for any ε > 0 , there exist
n(ε) ∈ N and δ(ε) > 0 so that the following condition holds: If ‖f −g‖ < δ(ε),
then for any ω ∈ Ω(g) there exists a 2k cycle p ∈ Ω(g) such that k ≤ n(ε) and
H(ω, p) < ε.

Once we have verified our next result, we will actually prove a bit more
than the sufficiency of Theorem 10 with Proposition 15.

Lemma 14. Suppose f ∈ C(I, I), and h(f) = 0. Then S(f) = P (f) and
intK = ∅ for all simple systems of f if and only if S(f) = CR(f).

Proof. Suppose S(f) = P (f), and intK = ∅ for all simple systems of f . Then
f is nonchaotic in the sense of Li and Yorke, so that P (f) is dense in Ω(f),
and S(f) = Λ(f) [5]. Moreover, since the chain recurrent set of any function
with zero topological entropy is the union of its ω-limit points together with
the wandering intervals found in its simple systems, one has Λ(f) = CR(f),
too.

Now, let us suppose that S(f) = Λ(f) = CR(f). Since Λ(f) = CR(f), we
have intK = ∅ for all the simple systems of f . Since S(f) = Λ(f), we have
P (f) ⊂ S(f), so that P (f) = S(f).

Proposition 15. Suppose f ∈ C(I, I), h(f) = 0, S(f) = P (f) and intK = ∅
for all simple systems of f . Then Ω : (C(I, I), ‖◦‖) −→ (K∗,H∗) is continuous
at f .

Proof. Let ε > 0. With Theorem 13 in mind, choose n ∈ N and δ1 > 0 so
that the following condition holds: If ‖f − g‖ < δ1, then for any ω ∈ Ω(g)
there exists p ∈ Ω(g) a 2k cycle so that k ≤ n, and H(ω, p) < ε

2 . We now
take δ2 > 0 so that if ‖f − g‖ < δ2, then for any 2k cycle p ∈ Ω(g), with
k = 0, 1, ..., n, there exists q ∈ Ω(f) a 2m cycle, m ≤ k, such that H(q, p) < ε

2 .
Set δ = min{δ1, δ2}. If ‖f − g‖ < δ, then for any ω ∈ Ω(g) there exists a
2m cycle q ∈ Ω(f) so that H(ω, q) < ε. It follows from Theorem 4 that if
fn −→ f, ωn ∈ Ω(fn) for each n, and ωn −→ ω, then ω ∈ Ω(f). It remains
to show that if ω ∈ Ω(f) and {fn} ⊆ C(I, I) for which f = limn→∞ fn, then
there exists an appropriate sequence {ωn} ⊆ (K,H) where ωn ∈ Ω(fn) for
each n, so that ω = limn→∞ ωn. If ω ∈ Ω(f) is finite, then ω is stable, and
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our conclusion follows [10]. If ω is infinite, then ω can be approximated by 2n

cycles, each of which is stable, since intK = ∅ for the simple system containing
ω.

In order to prove the necessity of Theorem 10, we develop the construction
found in our next result.

Lemma 16. Λ | E is discontinuous at f whenever intK 6= ∅ for some simple
system of f .

Proof. Let ε > 0, and suppose there is some simple system of f for which
intK 6= ∅; let J be a wandering interval found in this simple system, with c the
midpoint of J . Since Λ(f)∩ intK = ∅, it follows that c is not an ω -limit point
of f . Now, choose n so that 1

2n < ε, and let Kn represent the 2n f -periodic
intervals, each with period 2n, found in the simple system containing J . From
our choice of n, Kn must contain an interval L such that the length of f(L)
is less than ε. Moreover, there exists m ≤ 2n − 1 so that fm(c) is contained
in L; say fm(c) = d. We now develop a function g in C(I, I) by perturbing f
on L to get a function that is monotonic there, and for which g2n−m(d) = c.
It follows, then, that h(g) = 0, ‖f − g‖ < ε and c ∈ P (g). We conclude that
Λ | E cannot be continuous at f .

We are now in a position to prove the section’s main result.
Proof of Theorem 10. The sufficiency of our theorem follows from Propo-
sition 15; if Ω is continuous at f , then Ω | E must necessarily be continuous
there, too, provided h(f) = 0. Now, suppose that intK 6= ∅ for a simple
system of f . Then Λ | E is not continuous at f by Lemma 16, so that Ω | E is
not continuous there, either. If P (f) 6= S(f), but intK = ∅ for all the simple
systems of f , then there exists a periodic ω ∈ Ω(f) such that ω ⊂ P (f)−S(f),
and the discontinuity of Λ | E follows [10].

5 Conclusions

While we have been able to answer a couple of Bruckner’s queries by charac-
terizing the points of continuity of Λ and Ω | E , obvious questions remain.
In particular, how can one characterize the points of continuity of the map
Ω : C(I, I) −→ K∗ without any domain restrictions? A partial answer is
provided by the following proposition, which we present without proof.

Proposition 17. Let f ∈ C(I, I) with positive topological entropy, and take
X ⊂ I so that fn(X) = X, and fn | X is semiconjugate to the shift operator
σ on two symbols, for some natural number n. If X possesses a component
with nonempty interior, then Ω is not continuous at f .
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The proof of this result rests on showing that Λ(f) 6= CR(f), so that
Λ, and therefore Ω, are not continuous there. But what about continuous
functions f for which h(f) > 0, S(f) = P (f), and S(f) = Λ(f) = CR(f)? An
example of such a function is the double hat map h : [−1, 1] −→ [−1, 1], where
h(−1) = h(0) = h(1) = 0, h( 1

2 ) = −h(− 1
2 ) = 1, and h is extended linearly to

all of [−1, 1]. It is currently unknown whether or not Ω is continuous at h,
and since Λ is continuous there, the proof techniques used in section 4 as well
as Proposition 17 are not applicable.
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