Jouni Luukkainen, Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland. e-mail: jouni.luukkainen@helsinki.fi

THE DENSITY TOPOLOGY IS MAXIMALLY RESOLVABLE

Abstract

We prove that the real line is the union of 2^{\aleph_0} disjoint sets each meeting each nonempty set open in the density topology in 2^{\aleph_0} points.

A topological space containing two disjoint dense sets is said to be resolvable [4]. For example, \mathbb{R} , the real line with the usual topology, is resolvable as \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense. Recently Dontchev, Ganster, and Rose [2] proved that \mathbb{R}_d , the real line equipped with the (Lebesgue) density topology, is resolvable. In fact, for a set $D \subset \mathbb{R}$ the sets D and $\mathbb{R} \setminus D$ are dense in \mathbb{R}_d if and only if m(A) = 0 for each measurable set A contained either in D or in $\mathbb{R} \setminus D$; such a set D exists and is nonmeasurable [3, 16.E].

Let X be a nonempty topological space with no isolated points, and let $\Delta(X) = \min\{\operatorname{card} U \mid U \text{ is a nonempty open set in } X\}$ be the dispersion character of X [4] (then $\Delta(X) \geq 2$). Ceder [1] calls X maximally resolvable if X is the union of $\Delta(X)$ disjoint dense sets each meeting each nonempty open set in at least $\Delta(X)$ points. Let $w(X) = \min\{\operatorname{card} \mathcal{B} \mid \mathcal{B} \text{ is a base for } X\}$ be the weight of X. In [1, Theorem 3] Ceder proved that if $\aleph_0 \leq w(X) \leq \Delta(X)$, then X is maximally resolvable. Thus, \mathbb{R} is maximally resolvable as $w(\mathbb{R}) = \aleph_0$ and $\Delta(\mathbb{R}) = 2^{\aleph_0}$. In [2] it is asked whether \mathbb{R}_d is maximally resolvable. We apply Ceder's theorem to prove that this is really the case.

We first recall the definition of the density topology on the set \mathbb{R} ; see [6], [7]. For a measurable set $A \subset \mathbb{R}$ let $\varphi(A)$ denote the set of all density points of A in \mathbb{R} , that is, of all points $x \in \mathbb{R}$ for which $\lim_{h\to 0+} (m(A\cap [x-h,x+h])/2h) = 1$. Then a set $A \subset \mathbb{R}$ is open in \mathbb{R}_d if and only if A is measurable and $A \subset \varphi(A)$. The density topology is finer than the usual topology. By [7, 2.7], for a set A in \mathbb{R}_d the following conditions are equivalent: (1) A is of measure zero; (2) A is nowhere dense; and (3) A is closed and discrete. It follows that \mathbb{R}_d is neither

Key Words: density topology, maximally resolvable Mathematical Reviews subject classification: Primary 54A25; Secondary 28A05 Received by the editors July 22, 1998 420 Jouni Luukkainen

first countable [7, 2.11] nor locally compact [7, 3.6(1)], and thus the maximal resolvability of \mathbb{R}_d is not covered by [1, Theorems 7 and 8].

The next lemma is known; see [7, 4.10] for $w(\mathbb{R}_d)$ and compare [5, footnote on p. 135] for $\Delta(\mathbb{R}_d)$. However, we present a proof for the benefit of the reader.

Lemma 1. We have $w(\mathbb{R}_d) = \Delta(\mathbb{R}_d) = 2^{\aleph_0}$.

PROOF. By the proof of [6, 22.9] the family $\mathcal{B}_0 = \{ \varphi(F) \mid F \text{ is closed in } \mathbb{R} \}$ is a base for \mathbb{R}_d . As here $\mathbb{R} \setminus F$ is the union of countably many open intervals, we conclude that card $\mathcal{B}_0 \leq 2^{\aleph_0}$. On the other hand, the standard Cantor set C has measure zero and is thus discrete in \mathbb{R}_d . Hence, if \mathcal{B} is a base for \mathbb{R}_d , then for each $x \in C$ there is $U_x \in \mathcal{B}$ with $U_x \cap C = \{x\}$, which implies that card $\mathcal{B} \geq \operatorname{card} C = 2^{\aleph_0}$. Consequently, $w(\mathbb{R}_d) = 2^{\aleph_0}$.

We have, of course, $\Delta(\mathbb{R}_d) \leq \operatorname{card} \mathbb{R} = 2^{\aleph_0}$. To show that $\Delta(\mathbb{R}_d) \geq 2^{\aleph_0}$, let $A \subset \mathbb{R}_d$ be open and nonempty. Then m(A) > 0. Hence, by [5, 10.30] there is a compact set $F \subset \mathbb{R}$ with $F \subset A$ and m(F) > 0. By [5, 6.66] there are a perfect set $P \subset \mathbb{R}$ and a countable set N with $F = P \cup N$; then m(P) = m(F) > 0 and thus $P \neq \emptyset$. Now card $P = 2^{\aleph_0}$ by [5, 6.65]. Hence, $\operatorname{card} A = 2^{\aleph_0}$. It follows that $\Delta(\mathbb{R}_d) = 2^{\aleph_0}$.

Our result follows immediately from Ceder's theorem and Lemma 1.

Theorem 2. The real line equipped with the density topology is the union of 2^{\aleph_0} disjoint dense sets each meeting each nonempty open set in 2^{\aleph_0} points.

References

- [1] J. G. Ceder, On maximally resolvable spaces, Fund. Math. 55(1964), 87–93.
- [2] J. Dontchev, M. Ganster, and D. Rose, *Ideal resolvability*, Topology Appl. **93**(1999), 1–16.
- [3] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, NJ, 1950.
- [4] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10(1943), 309–333.
- [5] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1969.
- [6] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
- [7] F. D. Tall, The density topology, Pacific J. Math. **62**(1976), 275–284.