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LINEAR INTEGRAL EQUATIONS OF
VOLTERRA CONCERNING HENSTOCK

INTEGRALS

Abstract

We establish conditions for the existence of solutions of the linear
integral equation of Volterra

x (t) +∗
Z

[a,t]

α(s)x(s) ds = f(t), t ∈ [a, b], (V∗)

where the functions are Banach space-valued and ∗ R
denotes either the

Bochner-Lebesgue or the Henstock integral. In some cases it is possible
to calculate the solution of (V )∗ explicitly. We give several examples.

1 Introduction

In the literature, the study of Integral Equations deals mainly with the inte-
grals of Riemann, Lebesgue or Dushnik, (the latter is also called the interior
integral - see [9] or [10]). However these integrals have some deficiencies.
The Riemann integral is weak, the classical definition of the Lebesgue inte-
gral may be difficult to deal with, and the vector integral of Dushnik, though
more general than the Riemann-Stieltjes integral, may not coincide with the
Kurzweil-Henstock vector integral which, in turn, is more general than both
the Riemann-Stieltjes and the Lebesgue-Stieltjes integrals. On the other hand,
when we consider integral equations in the sense of the Kurzweil-Henstock inte-
grals, we benefit from its easy to handle Riemannian definition and well-known
good properties.

The aim of this paper is to give conditions for the existence of a solution
of the linear integral equation of Volterra

x(t) +∗
∫

[a,t]

α(s)x(s) ds = f(t), t ∈ [a, b], (V∗)
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in the sense of the variational integral of Henstock which coincides with the
integral of Kurzweil in the real-valued case. We also obtain special results for
the equation (V )∗ when the integral is that of Bochner-Lebesgue.

We work in a general Banach space-valued context. Let [a, b] be a compact
interval of R, X be a Banach space and L(X) = L(X,X) be the space of linear
continuous functions from X to X. Let x and f be functions from [a, b] to X
and let α be a function from [a, b] to L(X). As we intend that the kernel α of
(V )∗ is weak enough so that discontinuities, singularities, infinite variation or
nonabsolute integrability can be taken into account, we consider α Henstock
integrable. We consider the functions x, f : [a, b] → X where X is a Banach
space in order to use fixed point theorems and we prove that if either x is
a continuous function or x is of bounded variation, then αx : [a, b] → X is
Henstock integrable (see Theorem 2.5 and [6]).

It is a well-known result that if α is Henstock integrable, then there exists
a sequence of closed sets {Xn}n∈N such that Xn ↑ [a, b], (i.e., Xn ⊂ Xn+1 ⊂
[a, b], for every n ∈ N and ∪Xn = [a, b]), and the restriction of α to Xn,
(we write α |Xn ), is Bochner-Lebesgue integrable for every n ∈ N, (see, for
instance, [16], Th. 2.10). However, it is a recent result, (see [7]), that

lim
n→◦

L

∫
Xn∩[a,t]

α = K

∫
[a,t]

α (1.1)

uniformly for every t ∈ [a, b], where L
∫

and K
∫

denote respectively the inte-
grals of Bochner-Lebesgue and of Henstock, (we use K for Kurzweil). From
the Contraction Principle we can deduce the existence and uniqueness of
a solution of (V )∗ in the sense of the Bochner-Lebesgue integral, provided
L
∫

[a,b]
‖α ( )‖ < 1. Then we obtain conclusions about the existence of a so-

lution of (V )∗ in the sense of the Henstock integral by applying a fixed point
theorem for sequences of mappings corresponding to the sequence of equations
(V )∗ in the sense of the Bochner-Lebesgue integral obtained through (1.1) and
such that L

∫
Xn∩[a,t]

‖α( )‖ < 1, for every n ∈ N.

Since the space of Bochner-Lebesgue integrable functions is a subspace of
the space of Henstock integrable ones, then we obtain similar but stronger
results when we suppose that α is Bochner-Lebesgue integrable.

In Section 1 we give the basic definitions and the introductory results. The
main theorems lie on Section 2. Sections 3 and 4 consist of consequences and
applications of the main results.
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2 The Integrals of Kurzweil and Henstock

Let [a, b] be a compact interval of R. We say that d = (ξi, ti) is a tagged
division of [a, b] whenever (ti) is a division of [a, b] (i.e., a = t0 < t1 < . . . <
tn = b) and xi ∈ [ti−1, ti], for every i. We denote by TD[a,b] the set of all
tagged divisions of [a, b]. A gauge of [a, b] is a function δ : [a, b] → (0,∞)
and d = (ti) ∈ TD[a,b] is δ-fine if for every i, [ti−1, ti] ⊂ Bδ(ξi) (ξi) =
{t ∈ [a, b]; |t− ξi| < δ (ξi)}.

In what followsX and Y are Banach spaces, L (X,Y ) is the Banach space of
linear continuous functions from X to Y , L(X) = L(X,X) and X ′ = L(X,R).

Given functions f : [a, b] → X and α : [a, b] → L (X,Y ), we say that f
is Kurzweil α-integrable, (we write f ∈ Kα([a, b], X)), and that I ∈ Y is its
integral, (we write I = K

∫
[a,b]

dα f = K
∫

[a,b]
dα(t)f(t) ), if given ε > 0, there

is a gauge δ of [a, b] such that for every δ-fine d = (ti) ∈ TD[a,b],∥∥∥∑
i

[α (ti)− α (ti−1)]f (ξi)− I
∥∥∥ < ε.

We say that f is Henstock α-integrable or variational α-integrable, (we write
f ∈ Hα ([a, b], X)), if there is a function Fα : [a, b]→ Y , (called the associated
function of f with respect to α), such that for every ε > 0, there is a gauge δ
of [a, b] such that for every δ-fine d = (ti) ∈ TD[a,b],∑

i

‖[α(ti)− α(ti−1)]f(ξi)− [Fα(ti)− Fα(ti−1)]‖ < ε.

Clearly Hα([a, b], X) ⊂ Kα([a, b], X) and if X is of finite dimension, then
Hα([a, b], X) = Kα([a, b], X). We denote by f̃α the indefinite integral of
f ∈ Kα([a, b], X) that is, f̃α (t) = K

∫
[a,t]

dα f for every t ∈ [a, b]. When

α (t) = t, then we replace Kα([a, b], X), Hα([a, b], X) and f̃α respectively by
K([a, b], X), H([a, b], X) and f̃ .

Given A ⊂ [a, b], let χA denote the characteristic function of A and f |A
denote the restriction of f to A. Let α : [a, b] → L (X,Y ) be a function and
[c, d] ⊂ [a, b]. The following properties are not difficult to prove.

i) If f ∈ Kα([a, b], X) (resp. f ∈ Hα([a, b], X)), then f ∈ Kα ([c, b], X)
(resp. f ∈ Hα ([c, d], X)).

ii) If f ∈ Kα([a, b], X), then K
∫

[a,b]
dα (t)χ[c,d] (t) f (t) = K

∫
[c,d]

dα (t) f (t).

iii) Given f ∈ Kα ([c, d], X), let f̂ : [a, b]→ X be such that f̂
∣∣
[c,d] = f and

f̂ (t) = 0 otherwise. Then K
∫

[a,b]
dα (t) f̂ (t) = K

∫
[c,d]

dα (t) f (t).
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Let C([a, b], X) and G([a, b], X) be respectively the Banach spaces of contin-
uous and of regulated functions from [a, b] to X endowed with the supremum
norm which we denote by ‖‖∞. We denote respectively by f (ξ+) and by
f (ξ−) the right and left limits of f : [a, b] → X at ξ ∈ [a, b] when they
are defined and exist. Let Cσ ([a, b], L (X,Y )) be the set of all functions
α : [a, b] → L (X,Y ) that are weakly continuous, (i.e., for every x ∈ X, the
function t ∈ [a, b]→ α (t)x ∈ Y is continuous), and let and Gσ ([a, b], L (X,Y ))
be the set of all weakly regulated functions α : [a, b] → L (X,Y ) (i.e., for
every x ∈ X, the function t ∈ [a, b] → α (t)x ∈ Y is regulated). Given
x ∈ X, let α

(
ξ+̂
)
x = lim

ρ↓ 0
(αx) (ξ+), for every ξ ∈ [a, b), and let α

(
ξ−̂
)
x =

lim
ρ↓ 0

(αx) (ξ−), for every ξ ∈ (a, b]. By the Banach-Steinhauss Theorem, α
(
ξ+̂
)

and α
(
ξ−̂
)

exist and belong to L (X,Y ). Then by the Uniform Boundedness
Principle it follows that Gσ ([a, b], L (X,Y )) is a Banach space when equipped
with the supremum norm. Let SV ([a, b], L (X,Y )) be the space of all func-
tions α : [a, b]→ L (X,Y ) of bounded semivariation (also called of bounded B-
variation - see [19]) with semivariation denoted by SV (α) and let BV ([a, b], X)
be the space of all functions f : [a, b] → X of bounded variation with vari-
ation denoted by V (f). Then BV ([a, b], L (X,Y )) ⊂ SV ([a, b], L (X,Y ))
and SV ([a, b], L (X,R)) = BV ([a, b], X ′). Moreover, SV ([a, b], L (X)) =
BV ([a, b], L (X)) if X is of finite dimension. When endowed with the norm
given by the variation, the space BVa([a, b], X) = {f ∈ BV ([a, b], X); f (a) =
0} is complete. For more information about the above spaces see [8], [9] or
[10].

The following result is the analogous of Saks-Henstock Lemma for the
Stieltjes case. Its proof follows the standard steps (see, for instance, [19])

Lemma 2.1. (Saks-Henstock Lemma) Let α : [a, b] → L(X,Y ) and f ∈
Kα([a, b], X). If for ε > 0, the gauge δ of [a, b] is such that for every δ-fine
d = (ti) ∈ TD[a,b],

∥∥∥ |d|∑
i=1

[α (ti)− α (ti−1)]f (ξi)− K

∫
[a,b]

dα (t) f (t)
∥∥∥ < ε,

then for a ≤ c1 ≤ η1 ≤ d1 ≤ c2 ≤ η2 ≤ d2 ≤ . . . ≤ ck ≤ ηk ≤ dk ≤ b with
[cj , dj ] ⊂ (ηj − δ(ηj), ηj + δ(ηj)) for every j,

∥∥∥ k∑
j=1

{
[α (dj)− α (cj)]f (ηj)− K

∫
[cj ,dj ]

dα (t) f (t)

}∥∥∥ ≤ ε.
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Theorem 2.2. ([2], Th. 2.1.10) If α ∈ Gσ ([a, b], L(X,Y )) (respectively α ∈
Cσ ([a, b], L(X,Y ))) and f ∈ Kα([a, b], X), then f̃α ∈ G([a, b], X) (resp. f̃α ∈
C([a, b], X)).

Proof. In what follows we prove that

f̃α (ξ+)− f̃α (ξ) = [α
(
ξ+̂
)
− α (ξ)]f (ξ) ,

for every ξ ∈ [a, b). The proof that f̃α (ξ) − f̃α (ξ−) = [α (ξ) − α
(
ξ−̂
)
]f (ξ),

for every ξ ∈ (a, b], follows in an analogous way.
By hypothesis, f ∈ Kα([a, b], X). Hence, given ε > 0, there is a gauge δ of

[a, b] such that for every δ-fine d = (ti) ∈ TD[a,b],

‖
∑
i

[α(ti)− α(ti−1)]f(ξi)− K

∫
[a,b]

dαf‖ < ε

2
.

Let ξ ∈ [a, b). Since α ∈ Gσ ([a, b], L(X,Y )), there exists (αx) (ξ+), for every
x ∈ X. In particular, there exists µ > 0, such that for every 0 < ρ < µ,

‖[α(ξ + ρ)− α(ξ+̂)]f(ξ)‖ < ε

2
.

If δ(ξ) < µ and 0 < ρ < δ(ξ), then Lemma 2.1 implies that

‖[α(ξ + ρ)− α(ξ)]f(ξ)− K

∫
[ξ,ξ+ρ]

dα f‖ ≤ ε

2
.

Thus, ∥∥∥f̃α (ξ+)− f̃α (ξ)− [α
(
ξ+̂
)
− α (ξ)]f (ξ)

∥∥∥
=
∥∥∥K∫

[ξ,ξ+ρ]

dα f − [α
(
ξ+̂
)
− α (ξ)]f (ξ)

∥∥∥
≤
∥∥∥K∫

[ξ,ξ+ρ]

dα f − [α (ξ + ρ)− α (ξ)]f (ξ)
∥∥∥

+
∥∥[α (ξ + ρ)− α (ξ)]f (ξ)− [α

(
ξ+̂
)
− α (ξ)]f (ξ)

∥∥ < ε.

Given a division d = (ti) of [a, b], let ∆d = max
i
{ti − ti−1}. Then the

Riemann-Stieltjes integrals are given by∫
[a,b]

dα f =
∫

[a,b]

dα (t) f (t) = lim
∆d→0

∑
i

[α (ti)− α (ti−1) f (ξi)]
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and ∫
[a,b]

αdf =
∫

[a,b]

α (t) df (t) = lim
∆d→0

∑
i

α (ξi) [f (ti)− f (ti−1)].

The following assertion is well known.

Theorem 2.3. ([8], I.3.4 and I.4.5 or [9], I.4.6, I.4.12, I.4.19 and I.4.20)
i) If α ∈ SV ([a, b], L(X,Y )) and f ∈ C([a, b], X), then

∫
[a,b]

dα f exists

and
∥∥∥∫[a,b] dα f∥∥∥ ≤ SV (α) ‖f‖∞ .

ii) If α ∈ C ([a, b], L(X,Y )) and f ∈ BV ([a, b], X), then
∫

[a,b]
αdf exists

and
∥∥∥∫[a,b] αdf∥∥∥ ≤ ‖α‖∞ V (f).

Theorem 2.4. ([2], Th. 1.4.1)
∫

[a,b]
dα f exists if and only if

∫
[a,b]

αdf exists
and, in this case, the Integration by Parts Formula

∫
[a,b]

dα f = α (b) f (b) −
α (a) f (a)−

∫
[a,b]

αdf holds.

Proof. Suppose that the Riemann-Stieltjes integral,
∫

[a,b]
dα f , exists. Then,

for every ε > 0, there is a δ > 0 such that for every d = (ti) ∈ TD[a,b] with
∆d = max

i
{ti − ti−1} < δ,

∥∥∥∑
i

[α(ti)− α(ti−1)]f(ξi)−
∫

[a,b]

dα f
∥∥∥ < ε.

Hence,∥∥∥{α (b) f (b)− α (a) f (a)−
∫

[a,b]

dα f
}
−
∑
i

α (ξi) [f (ti)− f (ti−1)]
∥∥∥

=
∥∥∥∑

i

[α (ti) f (ti)− α (ti−1) f (ti−1)]−
∫

[a,b]

dα f −
∑
i

α (ξi) [f (ti)− f (ti−1)]
∥∥∥

=
∥∥∥∑

i

[α (ti)− α (ξi)]f (ti) +
∑
i

[α (ξi)− α (ti−1)]f (ti−1)

−
∫

[a,b]

dα f −
∑
i

α (ξi) [f (ti)− f (ti−1)]
∥∥∥ < ε.

Analogously, if
∫

[a,b]
αdf exists, then

∫
[a,b]

dα f exists with
∫

[a,b]
dα f =

α (b) f (b)− α (a) f (a)−
∫

[a,b]
αdf and the proof is complete.

The next assertion follows from Theorems 2.3 and 2.4.
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Theorem 2.5. The Riemann-Stieltjes integrals
∫

[a,b]
dα f and

∫
[a,b]

αdf exists
and the Integration by Parts Formula holds if one of the following conditions
is satisfied:

i) α ∈ SV ([a, b], L(X,Y )) and f ∈ C([a, b], X);

ii) α ∈ C ([a, b], L(X,Y )) and f ∈ BV ([a, b], X).

Theorem 2.6. ([19], Th. 15) If α ∈ SV ([a, b], L(X,Y ))∩Gσ ([a, b], L(X,Y ))
and f ∈ G([a, b], X), then f ∈ Kα([a, b], X).

The next result comes from the definitions.

Theorem 2.7. Let α ∈ H ([a, b], L(X,Y )) and f ∈ Keα([a, b], X) (respectively
f ∈ H eα([a, b], X)). If f is bounded, then α f ∈ K ([a, b], Y ) (resp. α f ∈
H ([a, b], Y )) and K

∫
[a,b]

α f = K
∫

[a,b]
dα̃ f , where α̃ denotes the indefinite

integral of α.

Corollary 2.8. Let α ∈ H ([a, b], L(X,Y )) with α̃ ∈ SV ([a, b], L(X,Y )) and
f ∈ G([a, b], X) (respectively f ∈ C([a, b], X)). Then α f ∈ K ([a, b], Y ) with
K
∫

[a,b]
α f = K

∫
[a,b]

dα̃ f (resp. K
∫

[a,b]
α f =

∫
[a,b]

dα̃ f ).

Proof. Suppose that f ∈ G([a, b], X). Then f is bounded. From Theorem
2.2, α̃ ∈ C ([a, b], L(X,Y )). Hence by Theorem 2.6, f ∈ Keα([a, b], X). Sup-
pose now that f ∈ C([a, b], X). By Theorems 2.2 and 2.5, f ∈ Reα([a, b], X).
But Reα([a, b], X) ⊂ Keα([a, b], X) (see the comments bellow) and the proof is
complete.

If we take constant gauges in the definition of Kα([a, b], X), then we obtain
Rα([a, b], X) and this fact that the Riemann-Stieltjes integrals are particular
cases of the Kurzweil vector integrals was essential in the previous proof. If X
is of finite dimension, then the Riemann-Stieltjes integrals are also Henstock
vector integrals, once in this case the spaces of vector integrable functions of
Kurzweil and of Henstock coincide. However, when the dimension of X is
infinite, then we may have f ∈ R([a, b], X) \H([a, b], X) as shown by the next
example.

Example 2.1. Let X = l2 ([a, b]) and f : [a, b] → X be defined by f (t) = et
(i.e., et (s) = 1 if s = t, and et (s) = 0 if s 6= t). Given ε > 0, there exists
δ > 0 with δ1/2 <

ε

(b− a)1/2
such that for every d = (ti) ∈ TD[a,b] with

∆d = max
i
{ti − ti−1} < δ,

∥∥∥∑
i

f (ξi) (ti − ti−1)− 0
∥∥∥

2
=
∥∥∥∑

i

eξi (ti − ti−1)
∥∥∥

2
=
[∑
i

(ti − ti−1)2
]1/2
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where we applied the Bessel’s equality. Hence,[∑
i

(ti − ti−1)2]1/2
< δ1/2

∑
i

(ti − ti−1)1/2 =
[
δ (b− a)

]1/2
< ε

and it follows that f ∈ R([a, b], X) with
∫

[a,b]
f = 0.

Now, suppose that f ∈ H([a, b], X) and let F be the associated function of
f . Then F (t)−F (r) =

∫
[r,t]

f (s) ds = f̃ (t)− f̃ (r) = 0, for every [r, t] ⊂ [a, b].
Hence F is constant and, therefore, for every d = (ti) ∈ TD[a,b],∑

i

‖F (ti)− F (ti−1)− f (ξi) (ti − ti−1)‖ =
∑
i

‖eξi (ti − ti−1)‖

=
∑
i

|ti − ti−1| = b− a

and we have a contradiction. Thus, f /∈ H([a, b], X).

Theorem 2.9. Let α ∈ H ([a, b], L(X,Y )) with α̃ ∈ BV ([a, b], L(X,Y )) and
f ∈ C([a, b], X). Then α f ∈ H ([a, b], Y ) with K

∫
[a,b]

α f =
∫

[a,b]
dα̃ f .

Proof. Since α ∈ H ([a, b], L(X,Y )) , for every ε > 0, there is a gauge δ of
[a, b] such that for every δ-fine d = (ti) ∈ TD[a,b],∑

i

∥∥∥α (ξi) (ti − ti−1)− K

∫
[ti−1,ti]

α
∥∥∥ < ε.

From the Corollary 2.8, α f ∈ K ([a, b], Y ) with K
∫

[a,b]
α f =

∫
[a,b]

dα̃ f .
Hence, ∑

i

∥∥∥α (ξi) f (ξi) (ti − ti−1)− K

∫
[ti−1,ti]

α f
∥∥∥

<
∑
i

∥∥∥α (ξi) f (ξi) (ti − ti−1)− K

∫
[ti−1,ti]

α (t) f (ξi) dt
∥∥∥

+
∑
i

∥∥∥K∫
[ti−1,ti]

α f − K

∫
[ti−1,ti]

α (t) f (ξi) dt
∥∥∥

≤
∥∥∥f∥∥∥

∞

∑
i

∥∥∥α (ξi) (ti − ti−1)− K

∫
[ti−1,ti]

α
∥∥∥

+
∑
i

∥∥∥K∫
[ti−1,ti]

α (t) [f (t)− f (ξi)]dt
∥∥∥

<
∥∥∥f∥∥∥

∞
ε+

∑
i

∥∥∥∫
[ti−1,ti]

dα̃ (t) [f (t)− f (ξi)]dt
∥∥∥.
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Now applying the Integration by Parts Formula and then the Fundamental
Theorem of Calculus for the Riemann integral we have that

∑
i

∥∥∥ ∫
[ti−1,ti]

dα̃(t)[f(t)− f(ξi)]
∥∥∥

=
∑
i

∥∥∥α̃(ti)[f(ti)− f(ξi)]− α̃(ti−1)[f(ti−1)− f(ξi)]

−
∫

[ti−1,ti]

α̃(t) d[f(t)− f(ξi)]
∥∥∥

=
∑
i

∥∥∥α̃(ti)[f(tit)− f(ξi)]−
∫

[ξi,ti]

α̃(t)df(t)− α̃(ti−1)[f(ti−1)− f (ξi)]

−
∫

[ti−1,ξi]

α̃ (t) df (t)
∥∥∥

=
∑
i

∥∥∥α̃ (ti)
∫

[ξi,ti]

df (t)−
∫

[ξi,ti]

α̃ (t) df (t)

+ α̃ (ti−1)
∫

[ti−1,ξi]

df (t)−
∫

[ti−1,ξi]

α̃ (t) df (t)
∥∥∥

=
∑
i

∥∥∥ ∫
[ξi,ti]

[α̃ (ti)− α̃ (t)]df (t) +
∫

[ti−1,ξi]

[α̃ (ti−1)− α̃ (t)]df (t)
∥∥∥

<V (α̃)

where ω (f) denotes the oscillation of f on [a, b]. Since f is continuous and α̃
is of bounded variation, the proof is complete.

We denote by £1([a, b], X) the space of all functions f : [a, b] → X
which are Bochner-Lebesgue integrable with finite integral. The integral of
f ∈ £1([a, b], X) is denoted by L

∫
[a,b]

f = L
∫

[a,b]
f (t) dt and we write ‖f‖1 =

L
∫

[a,b]
‖f ()‖. From the Riemannian definition of £1([a, b], X) (see [18] and

[13]), it follows that £1([a, b], X) ⊂ H([a, b], X). Besides, if X = R, then the
positive functions which are Kurzweil-Henstock integrable are also Lebesgue
integrable. Thus, if f ∈ H ([a, b],R) is absolutely integrable (i.e., ‖f ()‖ ∈
£1 ([a, b],R)), then f is Lebesgue integrable. From Example 1.1 before Theo-
rem 2.9, we also observe that when the dimension of X is infinite, then it may
happen that f ∈ R([a, b], X) \£1([a, b], X).

Theorem 2.10. ([13], 9) Let f ∈ H([a, b], X). Then f is absolutely integrable
if and only if f̃ ∈ BV ([a, b], X). In any case, ‖f‖1 = V (f̃).
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Proof. Suppose that f is absolutely integrable. Since

V
(
f̃
)

= sup

{∑
i

∥∥∥f̃ (ti)− f̃ (ti−1)
∥∥∥ ; a = t0 < t1 < . . . < tn = b

}

we have that∑
i

∥∥∥f̃ (ti)− f̃ (ti−1)
∥∥∥ =

∑
i

∥∥∥K∫
[ti−1,ti]

f
∥∥∥ ≤∑

i

L

∫
[ti−1,ti]

‖f‖ = ‖f‖1 .

Now, suppose that
f̃ ∈ BV ([a, b], X).

We will prove that there exists K
∫

[a,b]
‖f‖ = L

∫
[a,b]
‖f‖ = V

(
f̃
)

. Given ε >

0, we will find a gauge δ of [a, b] such that for every δ-fine d = (ti) ∈ TD[a,b],∣∣∣∑
i

∥∥∥f(ξi)
∥∥∥(ti − ti−1)− V (f̃)

∣∣∣ < ε.

But if d = (ti) ∈ TD[a,b] is δ-fine, then∣∣∣∑
i

∥∥∥f(ξit)
∥∥∥(ti − ti−1)− V (f̃)

∣∣∣
≤
∑
i

∣∣∣∥∥∥f(ξi)
∥∥∥(ti − ti−1)−

∥∥∥K∫
[ti−1,ti]

f
∥∥∥∣∣∣+

∣∣∣∑
i

∥∥∥K∫
[ti−1,ti]

f
∥∥∥− V (f̃)∣∣∣

≤
∑
i

∥∥∥f (ξi) (ti − ti−1)−K
∫

[ti−1,ti]

f
∥∥∥+

∣∣∣∑
i

∥∥∥f̃ (ti)− f̃ (ti−1)
∥∥∥− V (f̃)∣∣∣

By the definition of V
(
f̃
)

, we may take the division of [a, b] such that the
last summand is smaller than ε/2. Since f ∈ H([a, b], X), then we may take a
gauge δ of [a, b] such that for every δ-fine d = (ti) ∈ TD[a,b], the first summand
is also smaller than ε/2, and we may suppose that the points chosen for the
second summand are points of the δ-fine tagged division d = (ti). The proof
is then complete.

Theorem 2.11. If α ∈ £1 ([a, b], L(X,Y )) and f ∈ G([a, b], X), then α f ∈
£1 ([a, b], Y ) and L

∫
[a,b]

α f = K
∫

[a,b]
dα̃ f .

Proof. Since f is bounded, then ‖f‖∞ < ∞. The function ‖α () f ()‖ :
[a, b]→ R is m-measurable (m for the Lebesgue measure) and ‖α (t) f (t)‖ ≤
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‖f‖∞ ‖α (t)‖ for every t ∈ [a, b]. From the fact that £1 ([a, b],R) is a vector lat-
tice it follows that ‖α () f ()‖ ∈ £1 ([a, b],R) and therefore α f ∈ £1 ([a, b], Y ).
Now we prove the equality. Let ε > 0. Since α ∈ £1 ([a, b], L(X,Y )) ⊂
H ([a, b], L(X,Y )), there is a gauge δ1 of [a, b] such that for every δ1-fine
d = (ζj , sj) ∈ TD[a,b],∑

j

‖α (ζj) (sj − sj−1) − [α̃ (sj)− α̃ (sj−1)]‖ < ε.

By Theorem 2.10, α̃ is a function of bounded variation and therefore regulated
and of bounded semivariation. Then by Theorem 2.6, there exists the Kurzweil
integral K

∫
[a,b]

dα̃ f which means that there is a gauge δ2 of [a, b] such that
for every δ2-fine d = (ρk, rk) ∈ TD[a,b],∥∥∥∑

k

[α̃ (rk)− α̃ (rk−1)]f (ρk)− K

∫
[a,b]

dα̃ f
∥∥∥ < ε.

Let δ be a gauge of [a, b] such that δ(ξ) ≤ δl(ξ), for every ξ ∈ [a, b] and l = 1, 2.
Then for every δ-fine d = (ti) ∈ TD[a,b], we have that∥∥∥∑

i

α(ξi)f(ξi)(ti − ti−1)− K

∫
[a,b]

dα̃ f
∥∥∥

≤
∑
i

‖α (ξi) f (ξi) (ti − ti−1)− [α̃ (ti)− α̃ (ti−1)]f (ξi)‖

+
∥∥∥∑

i

[α̃ (ti)− α̃ (ti−1)]f (ξi)− K

∫
[a,b]

dα̃ f
∥∥∥ < ε ‖f‖∞ + ε.

Corollary 2.12. Let I([a, b], X) denote one of the spaces BV ([a, b], X) or
C([a, b], X). If α ∈ £1 ([a, b], L(X,Y )) and f ∈ I([a, b], X), then α f ∈
£1 ([a, b], Y ) with L

∫
[a,b]

α f =
∫

[a,b]
dα̃ f .

Proof. In any of the cases the result comes from Theorem 2.5, since α̃ ∈
C ([a, b], L(X,Y )) (Theorem 2.2) and α̃ ∈ BV ([a, b], L(X,Y )) (Theorem 2.10).

3 The Volterra-Henstock Linear Integral Equation

The first result of this section gives a necessary condition for the existence of
the Henstock integral.
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Lemma 3.1. If f ∈ H([a, b], X), then there exists a sequence of closed sets
{Xn}n∈N such that Xn ↑ [a, b] (i.e., Xn ⊂ Xn+1 ⊂ [a, b], for every n ∈
N and ∪Xn = [a, b]) and f ∈ £1(Xn, X), for every n ∈ N. Furthermore,
lim
n→∞

L
∫
Xn∩[a,t]

f = K
∫

[a,t]
f uniformly for every t ∈ [a, b].

Proof. It suffices to adapt the proof given in [7] for the Banach space-valued
case.

Lemma 3.2. ([14], Th. 7.1.2) Let {Tn}n∈N be a sequence of mappings from X
to X such that each mapping has a fixed point xn = Tn (xn), let T : X → X be
such that for some integer m, Tm is a contraction, where Tm is the composition
of T m times, and suppose that Tn → T uniformly. Then xn → x0 = T (x0).

Theorem 3.3. Given α ∈ H ([a, b], L(X,Y )) and a function f : [a, b] → X,
then α f ∈ H ([a, b], Y ) if one of the following conditions is satisfied:

i) f ∈ BV ([a, b], X);

ii) f ∈ C([a, b], X) and α̃ ∈ BV ([a, b], L(X,Y )).

In any case, K
∫

[a,b]
α f =

∫
[a,b]

dα̃ f.

Proof. For i), see [2], Th. 2.2.8, or [6]; for ii) see Theorem 2.9.

Remark 1. It is also true that if α ∈ BV ([a, b], L(X,Y )) and f ∈ H([a, b], X),
then α f ∈ H ([a, b], Y ) and K

∫
[a,b]

α f =
∫

[a,b]
αdf̃ , (see [2], Th. 2.2.6 or [6]).

We consider the next Volterra-Henstock linear integral equation

x(t) + K

∫
[a,t]

α(s)xt(s)ds = f(t), t ∈ [a, b], (V )H

in the following two cases

a) α ∈ H ([a, b], L (X)) is bounded and x, f ∈ BVa([a, b], X);

b) α ∈ H ([a, b], L (X)) with α̃ ∈ BV ([a, b], L (X)) and x, f ∈ C([a, b], X).

In view of Theorem 2.10, we can replace b) by

b’) α ∈ H ([a, b], L (X)) is absolutely integrable and x, f ∈ C([a, b], X).

In the real case whenX = R, it follows from the considerations before Theorem
2.10 that b’) is equivalent to a case when α ∈ £1 ([a, b],R). But this will be
treated in a more general context (the Bochner-Lebesgue integral) in Section
4.

By means of Lemmas 3.1 and 3.2 we will be able to obtain conclusions
about equation ((V )H) through the analysis of equations of ((V )L) type in
any of the cases a) and b’).
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Case a): Let α ∈ H ([a, b], L (X)) be bounded and f ∈ BVa([a, b], X). By
Lemma 3.1 and the Corollary 2.12, given n ∈ N, we can consider the mapping
Tn given by

(Tnx) (t) = f (t)− L

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b],

where χXn denotes the characteristic function of Xn. By Theorem 2.10, Tn
takes elements from BVa([a, b], X) to BVa([a, b], X). Furthermore, each Tn
is continuous since ‖χXn ()α ()‖1 < ∞, and Tn is a contraction whenever
‖χXn ()α ()‖1 < 1.

Consider the continuous mapping T : BVa([a, b], X) → BVa([a, b], X) de-
fined by

(Tx) (t) = f (t)− K

∫
[a,t]

α (s)x (s) ds, t ∈ [a, b].

Given x ∈ BVa([a, b], X), Tx really belongs to BVa([a, b], X). In fact, given
any division (ti) of [a, b], then∑

i

‖Tx (ti)− Tx (ti−1)‖ ≤
∑
i

∥∥f (ti)− f (ti−1)
∥∥

+
∑
i

∥∥∥K∫
[ti−1,ti]

α (s)x (s) ds
∥∥∥

≤V (f) + ‖α‖∞ ‖x‖∞ (b− a) .

With the notation and considerations above, the proof of the next theorem
follows easily.

Theorem 3.4. Given α ∈ H ([a, b], L (X)) bounded, consider the Volterra-
Henstock linear integral equation

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )H

the Volterra-Bochner-Lebesgue linear integral equations obtained from Lemma
3.1

x(t) + L

∫
[a,t]

χXn(s)α(s)x(s)ds = f(t), t ∈ [a, b], and n ∈ N (V )Ln

and the mapping T : BVa([a, b], X)→ BVa([a, b], X) defined by

(Tx) (t) = f (t)− K

∫
[a,t]

α (s)x (s) ds, t ∈ [a, b],
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where in all cases x, f ∈ BVa([a, b], X). If ‖χXn()α()‖1 < 1 for each n ∈ N,
then given f ∈ BVa([a, b], X), each equation (V )Ln admits one and only one
solution xn ∈ BVa([a, b], X). Consider also the following conditions:

i) {xn}n∈N has a convergent subsequence xnk → x0;

ii) Tm is a contraction for some m > 1.

If i) is satisfied, then x0 ∈ BVa([a, b], X) is a solution of (V )H . If ii) is
satisfied, then there exists x = lim

n
xn and x ∈ BVa([a, b], X) satisfies (V )H .

Proof. For each n ∈ N, ‖χXn ()α ()‖1 < 1. Hence each Tn given by

(Tnx) (t) = f (t)− L

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b],

is a contraction and therefore has a unique fixed point xn by the Contraction
Principle. Therefore (V )Ln has one and only one solution xn ∈ BVa([a, b], X).

If i) holds, then given nk ∈ N,

‖x0 − Tx0‖
≤‖x0 − xnk‖+ ‖xnk − Tnkxnk‖+ ‖Tnkxnk − Tnkx0‖+ ‖Tnkx0 − Tx0‖ ,

where the first summand tends to zero as k → 0 (by the convergence of the
subsequence), the second summand is equal to zero (once xnk is a fixed point
of Tnk), the third summand is smaller than ‖χXn ()α ()‖1 ‖xnk − x0‖ which
tends to zero as k → 0 (because ‖χXn ()α ()‖1 < 1 and by the convergence
of the subsequence), and the fourth summand tends to zero as k → 0, (by
Lemma 3.1).

Suppose now that ii) holds. From Lemma 3.1, Tn → T . As a matter
of fact, Tn → T uniformly. Thus xn → x = Tx, (by Lemma 3.2), and we
complete the proof.

Lemma 3.5. (see [12], 3.3; see [17] for the real-valued case) Suppose that
f ∈ H([a, b], X) and g : [a, b] → X is a function such that g = f m-almost
everywhere (m for the Lebesgue measure). Then g ∈ H([a, b], X) and g̃ = f̃ .

We say that two functions g and f ofH([a, b], X) are equivalent if g̃ = f̃ and
we write H([a, b], X)A to denote the space of all equivalence classes of functions
of H([a, b], X) endowed with the Alexiewicz norm f ∈ H([a, b], X) 7→

∥∥f∥∥
A

=∥∥f̃∥∥∞. In what follows we will write f ∈ H([a, b], X)A to denote that we have
picked up a function f = fΦ ∈ Φ, where Φ ∈ H([a, b], X)A.

The next assertion is a consequence of [11], Th. 3.5.
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Theorem 3.6. Given α ∈ SV ([a, b], L (X)) with α (b) = 0, consider the
Volterra-Henstock linear integral equation

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

where x, f ∈ H([a, b], X)A. Then for every f ∈ H([a, b], X)A there exists one
and only one solution x ∈ H([a, b], X)A with

x (t) = f (t)− K

∫
[a,t]

ρ (t, s)x (s) ds, t ∈ [a, b],

where the kernel ρ : [a, b]× [a, b] → L (X) is bounded and can be given by the
Neumann series which converges in L (H([a, b], X)A).

Theorem 3.7. Let α ∈ H ([a, b], L (R)) ∼= H ([a, b],R) be bounded and suppose
that there exists a sequence {Xn}n∈N such that each Xn is a finite union
of nonoverlapping closed intervals, Xn ↑ [a, b] and α ∈ BV (Xn, L (R)) ∼=
BV (Xn,R), for every n ∈ N. Consider the Volterra-Kurzweil-Henstock linear
integral equations

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b]. (V )H

and

x (t) + K

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Hn

where x, f ∈ BVa ([a, b],R). Then given n ∈ N and f ∈ BVa ([a, b],R), (V )Hn
admits one and only one solution xn ∈ BVa ([a, b],R), there exists x = lim

n
xn

and x ∈ BVa ([a, b],R) satisfies (V )H .

Proof. For every n ∈ N, let Xn =
kn⋃
i=1

[ain, b
i
n]. By Lemma 3.5, we may

suppose that α
(
bin
)

= 0 for every i and every n. Since α ∈ BV (Xn, L (R))
implies that α ∈ BV

(
[ain, b

i
n], L (R)

)
for every i, then given n ∈ N and i ∈

{1, . . . , kn}, it follows from Theorem 3.6 that there exists a unique solution
xin ∈ H

(
[ain, b

i
n],R

)
A

of

xin (t) + K

∫
[ain,t]

α
∣∣
[ain,b

i
n] (s)x (s) ds = f (t) , t ∈ [ain, b

i
n], (V )Hn,i
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such that

xin (t) = f
∣∣
[ain,b

i
n] (t)− K

∫
[ain,t]

ρin (t, s)xin (s) ds, t ∈ [ain, b
i
n],

with bounded kernel ρin:[ain, b
i
n] × [ain, b

i
n] → L (R) given by the Neumann

series which converges in L
(
H
(
[ain, b

i
n],R

)
A

)
. As a matter of fact, xin ∈

BV
(
[ain, b

i
n],R

)
because f ∈ BV

(
[ain, b

i
n],R

)
and

∥∥ρin∥∥∞ <∞ (see the consid-
erations before Theorem 3.4). Now, for every n ∈ N and every i ∈ {1, . . . , kn},
let yin : [a, b] → R be given by yin = xin on [ain, b

i
n] and yin = 0 otherwise, and

let φin : [a, b]× [a, b] → L (R) be defined by φin = ρin on [ain, b
i
n]× [ain, b

i
n] and

φin = 0 otherwise. Then, xn =
kn∑
i=1

yin ∈ BVa ([a, b],R) is a (unique) solution of

(V )Hn . Moreover,

xn(t) =
kn∑
i=1

yin(t) =
kn∑
i=1

(
χ[ain,b

i
n]f (t)− K

∫
[ain,b

i
n]∩[a,t]

φin (t, s) yin (s) ds
)

=f (t)−
kn∑
i=1

(K∫
[ain,b

i
n]∩[a,t]

φin (t, s) yin (s) ds
)

=f(t)− K

∫
Xn∩[a,t]

kn∑
i=1

φin (t, s) yin (s) ds

=f (t)− K

∫
Xn∩[a,t]

ρn (t, s)xn (s) ds, t ∈ [a, b],

where ρn (t, s) =
kn∑
i=1

φin (t, s), for each n ∈ N.

Given n ∈ N, let Tn : BVa ([a, b],R)→ BVa ([a, b],R) be defined by

(Tnx) (t) = f (t)− K

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b].

Since the Dominated Convergence Theorem holds for the real-valued Hen-
stock integral and Xn ↑ [a, b], then Tn → T , where T : BVa ([a, b],R) →
BVa ([a, b],R) is given by

(Tx) (t) = f (t)− K

∫
[a,t]

α (s)x (s) ds, t ∈ [a, b],

with x, f ∈ BVa ([a, b],R). From the fact that the functions x, f , xn and
χXn (·)α (·) are of bounded variation, then Tn → T uniformly. The rest of
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the proof follows the steps of the proof of Theorem 3.4, (see the Remark after
Theorem 3.4).

Remark 2. When we consider Banach space-valued functions, then neither
the Dominated Convergence Theorem nor the Monotone Convergence Theo-
rem hold for the Henstock integral. The next example of Birkhoff ([1]) shows
us that fact.

Example 3.1. Consider f : [0, 1] → X = l2 (N) defined by f =
∞∑
i=1

fi, where

fi (t) = 2iei,j , if j
2i < t ≤ j

2i + 1
22i , i = 1, 2, . . ., j = 0, 1, . . . , 2i− 1. We use ei,j

to denote a doubly infinite set of orthonormal vectors of l2 (N). Then f i =
f1 + . . .+ fi is such that f i ∈ H ([0, 1], X) for every i ∈ N∗, but f̃ is nowhere
differentiable and hence f /∈ H ([0, 1], X) (by the Fundamental Theorem of
Calculus - see [12] or [5] for the Banach case or [16] for the real-valued case).
We point out however that f̃ (t) = K

∫
[0,t]

f exists in the sense of the Kurzweil
integral for every t ∈ [0, 1]. Indeed, because the space X = l2 (N) fulfills the
required conditions which make the Monotone Convergence Theorem be valid
for the Kurzweil integral (see [3]).

The next result comes directly from the Contraction Principle.

Theorem 3.8. Let α ∈ H ([a, b], L (X)) be bounded with (b− a) ‖α‖∞ < 1,
then given f ∈ BVa([a, b], X), there is one and only one x ∈ BVa([a, b], X)
that satisfies the linear integral equation of Volterra-Henstock

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b]. (V )H

Case b’): Let α ∈ H ([a, b], L (X)) be absolutely integrable and suppose
f ∈ C([a, b], X). By Theorems 2.5 and 2.6 we can consider the mapping
T : C([a, b], X)→ C([a, b], X) defined by

(Tx) (t) = f (t)− K

∫
[a,t]

α (s)x (s) ds, t ∈ [a, b].

In addition, by Lemma 3.1, for every n ∈ N, we can consider the continuous
mapping Tn : C([a, b], X)→ C([a, b], X) given by

(Tnx) (t) = f (t)− L

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b].

Likewise case a), if ‖χXn ()α ()‖1 < 1, then Tn is a contraction.
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Theorem 3.9. Given α ∈ H ([a, b], L (X)) absolutely integrable, consider the
linear integral equation of Volterra-Henstock

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )H

the Volterra-Bochner-Lebesgue linear integral equations obtained through Lemma
3.1

x (t) + L

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Ln

and the mapping T : C([a, b], X)→ C([a, b], X) defined by

(Tx) (t) = f (t)− K

∫
[a,t]

α (s)x (s) ds, t ∈ [a, b],

where x, f ∈ C([a, b], X). If ‖χXn ()α ()‖1 < 1 for each n ∈ N, then given
f ∈ C([a, b], X), each equation (V )Ln admits one and only one solution xn ∈
C([a, b], X). Consider also the following conditions:

i) {xn}n∈N has a convergent subsequence xnk → x0;

ii) α is bounded and Tm is a contraction for some m > 1.

If i) is satisfied, then x0 ∈ C([a, b], X) is a solution of (V )H . If ii) is satisfied,
then there exists x = lim

n
xn and x ∈ C([a, b], X) satisfies (V )H .

Proof. The proof is analogous to the that of Theorem 3.4.

Theorem 3.10. Let α ∈ H ([a, b], L (X)) be absolutely integrable and bounded
with (b− a) ‖α‖∞ < 1. Then for every f ∈ C([a, b], X), there is one and
only one x ∈ C([a, b], X) that satisfies the Volterra-Henstock linear integral
equation

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b]. (V )H

Proof. The assertion follows directly from the Contraction Principle.

4 The Volterra-Bochner-Lebesgue Linear Integral Equa-
tion

Let I([a, b], X) denote one of the Banach spaces G([a, b], X), BVa([a, b], X)
or C([a, b], X). From Theorem 2.11 and its Corollary, we can consider the
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Volterra-Bochner-Lebesgue linear integral equation

x (t) + L

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b] (V )L

where α ∈ £1 ([a, b], L (X)) and x, f ∈ I([a, b], X). Then the Contraction
Principle implies the following.

Theorem 4.1. Suppose α ∈ £1 ([a, b], L (X)) with ‖α‖1 < 1. Then given
f ∈ I([a, b], X), there is one and only one x ∈ I([a, b], X) that satisfies the
linear integral equation of Volterra-Bochner-Lebesgue

(t) + L

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b]. (V )L

Let I ⊂ [a, b] be finite. We say that f : [a, b]→ X is of bounded variation on
[a, b]\I whenever f is of bounded variation on every closed interval contained in
[a, b]. Let f ∈ £1([a, b], X) be continuous or of bounded variation on [a, b] \ I.
Then it is immediate that there exists a sequence of sets {Xn}n∈N such that
each Xn is the finite union of nonoverlapping closed intervals and Xn ∩ I = ∅,
Xn ↑ [a, b], and for every t ∈ [a, b],

lim
n

L

∫
Xn∩[a,t]

f (s) ds = L

∫
[a,t]

f (s) ds.

If I ⊂ [a, b] is finite and α ∈ £1 ([a, b], L (X)) is continuous or of bounded
variation on [a, b] \ I, then there exists a sequence {Xn}n∈N as above such
that for every t ∈ [a, b],

lim
n

L

∫
Xn∩[a,t]

α (s) ds = L

∫
[a,t]

α (s) ds. (4.1)

Similarly, if x ∈ G([a, b], X), then there exists the integral L
∫

[a,t]
αx (Theorem

2.11) and we can find a sequence {Yn}n∈N such that each Yn is the finite union
of nonoverlapping closed intervals and Yn ∩ I = ∅, Yn ↑ [a, b] and for every
t ∈ [a, b],

lim
n

L

∫
Yn∩[a,t]

α (s)x (s) ds = L

∫
[a,t]

α (s)x (s) ds.

We affirm however that in fact the same sequence for α ∈ £1 ([a, b], L (X))
suits for αx ∈ £1([a, b], X), that is

lim
n

L

∫
Xn∩[a,t]

α (s)x (s) ds = L

∫
[a,t]

α (s)x (s) ds,
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for every t ∈ [a, b]. Indeed. Taking approximating Riemannian sums for the
integrals L

∫
[a,t]

α (s)x (s) ds and L
∫
Xn∩[a,t]

α (s)x (s) ds we have that∥∥∥∑
i

α(ξi)x(ξi)(ti − ti−1)−
∑
i

χXn(ξi)α(ξi)x(ξi)(ti − ti−1)
∥∥∥

≤ ‖x‖∞
∑
i

∥∥∥(1− χXn)(ξi)α(ξi)(ti − ti−1)
∥∥∥

which can be made sufficiently small by (4.1) and by the Riemannian definition
of Bochner-Lebesgue integral, (see [13] and [18]).

Theorem 4.2. Let I([a, b], X) denote one of the two spaces C([a, b], X) or
G([a, b], X), BVa([a, b], X). Given α ∈ £1

(
[a, b], L(X)

)
, consider the Volterra-

Bochner-Lebesgue linear integral equations

x (t) + L

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

and

x (t) + L

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Ln

where x, f ∈ I([a, b], X) and the sequence {Xn}n∈N is obtained as in the pre-
vious paragraph for α ∈ £1 ([a, b], L (X)). Suppose f ∈ I([a, b], X), and that
‖χXn ()α ()‖1 < 1 for every n ∈ N. Then (V )Ln has one and only one solution
xn ∈ I([a, b], X). Consider also the following conditions:

i) {xn}n∈N has a convergent subsequence xnk → x0;

ii) α is bounded and Tm is a contraction for some m > 1.

If i) is satisfied, then x0 ∈ I([a, b], X) is a solution of (V )L. If ii) is satisfied,
then there exists x = lim

n
xn and x ∈ I([a, b], X) satisfies (V )L.

Proof. For each n ∈ N, let Tn : I([a, b], X)→ I([a, b], X) be given by

Tnx (t) = f (t)− L

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b],

where x ∈ I([a, b], X). Then Tn is continuous (because ‖χXn ()α ()‖1 < ∞)
and Tn is a contraction whenever ‖χXn ()α ()‖1 < 1. The rest of the proof is
analogous to the proof of Theorem 3.4 replacing the integral of Henstock by
the integral of Bochner-Lebesgue.

If either I([a, b], X) = C([a, b], X) or I([a, b], X) = BVa([a, b], X) in the
theorem above, we obtain the stronger results of Theorems 4.3 and 4.5 below.
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Theorem 4.3. Given α ∈ £1 ([a, b], L (X)), and I ⊂ [a, b] finite, suppose that
α is continuous on [a, b] \I and consider the Volterra-Bochner-Lebesgue linear
integral equations

x (t) + L

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

and

x (t) + L

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Ln

where x, f ∈ C([a, b], X) and the sequence {Xn}n∈N satisfies the conditions
of the paragraph before Theorem 4.2. Then given f ∈ C([a, b], X) and n ∈ N,
(V )Ln has a solution xn ∈ C([a, b], X). Besides, there exists x = lim

n
xn and

x ∈ C([a, b], X) satisfies (V )L.

Proof. For each n ∈ N, (V )Ln has a solution xn ∈ C([a, b], X). Indeed.

For every n ∈ N, let Xn =
kn⋃
i=1

[ain, b
i
n]. Then α ∈ C

(
[ain, b

i
n], L (X)

)
, for

every n ∈ N and i = 1, . . . , kn and by a well-known result from the Theory
of Integral Equations (see, for instance, [15], p. 74), there exists a solution
xin ∈ C

(
[ain, b

i
n], X

)
of

xin (t) + L

∫
[ain,t]

α
∣∣
[ain,b

i
n] (s)x (s) ds = f (t) , t ∈ [ain, b

i
n], (V )Ln,i

such that

xin (t) = f
∣∣
[ain,b

i
n] (t)− L

∫
[ain,t]

ρin (t, s)xin (s) ds, t ∈ [ain, b
i
n],

with continuous kernel ρin:[ain, b
i
n]× [ain, b

i
n]→ L (X) determined by the Neu-

mann series method. For every n ∈ N and every i ∈ {1, . . . , kn}, let yin :
[a, b] → X be given by yin = xin on [ain, b

i
n] and yin = 0 otherwise, and let

φin : [a, b] × [a, b] → L (X) be defined by φin = ρin on [ain, b
i
n] × [ain, b

i
n] and

φin = 0 otherwise. Then xn =
kn∑
i=1

yin is a solution of (V )Ln and

xn (t) = f (t)− L

∫
Xn∩[a,t]

ρn (t, s)xn (s) ds, t ∈ [a, b],
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where ρn (t, s) =
kn∑
i=1

φin (t, s), for each n ∈ N. Moreover xn ∈ C([a, b], X),

since f and the indefinite integral are continuous (Theorem 2.2). Hence, for
every n ∈ N, the mapping Tn : C([a, b], X)→ C([a, b], X) given by

(Tnx) (t) = f (t)− L

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b],

has a fixed point. The rest of the demonstration follows the steps of Theorem
3.4 and the observation in the proof of Theorem 4.2.

Let L1([a, b], X)A denote the space of all equivalence classes of functions
of £1([a, b], X) endowed with the Alexiewicz norm. When we write f ∈
L1([a, b], X)A we mean that we have chosen a function f = fΦ ∈ Φ, where
Φ ∈ L1([a, b], X)A. The next result is a consequence of [11], Th. 3.5 and the
Remark that follows it.

Theorem 4.4. Given α ∈ SV ([a, b], L (X)) with α (b) = 0, consider the
Volterra-Bochner-Lebesgue linear integral equation

x (t) + L

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

where x, f ∈ L1([a, b], X)A. Then for every f ∈ L1([a, b], X)A there exists one
and only one solution x ∈ L1([a, b], X)A with

x (t) = f (t)− L

∫
[a,t]

ρ (t, s)x (s) ds, t ∈ [a, b],

where the kernel ρ:[a, b] × [a, b] → L (X) is bounded and can be given by the
Neumann series which converges in L (L1([a, b], X)A).

Theorem 4.5. Given α ∈ £1 ([a, b], L (X)) and I ⊂ [a, b] finite, suppose
that α is of bounded variation on [a, b] \ I and consider the Volterra-Bochner-
Lebesgue linear integral equations

x (t) + L

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

and

x (t) + L

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Ln

where x, f ∈ BVa([a, b], X) and the sequence {Xn}n∈N satisfies the conditions
of the paragraph before Theorem 4.2. Then given f ∈ BVa([a, b], X) and n ∈
N, (V )Ln has a unique solution xn ∈ BVa([a, b], X). Moreover, there exists
x = lim

n
xn and x ∈ BVa([a, b], X) satisfies (V )L.
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Proof. It follows from Theorem 4.4, each (V )Ln has a unique solution xn ∈
L1([a, b], X)A and

x (t) = f (t)− L

∫
[a,t]

ρ (t, s)x (s) ds, t ∈ [a, b],

where the kernel ρ:[a, b]× [a, b] → L (X) is bounded and can be given by the
Neumann series. As a matter of fact, xn ∈ BVa([a, b], X) for every n ∈ N, since
f ∈ BVa([a, b], X) and the indefinite integral of a Bochner-Lebesgue integrable
function is of bounded variation (Theorem 2.10). This means that each Tn
has a fixed point, where Tn : BVa([a, b], X)→ BVa([a, b], X) is given by

(Tnx) (t) = f (t)− L

∫
[a,t]

χXn (s)α (s)x (s) ds, t ∈ [a, b].

The rest of the demonstration follows the steps of Theorem 3.4 and the obser-
vation in the proof of Theorem 4.2.

5 Applications

5.1 Applications to Ordinary Differential Equations

Consider the equation
ẋ = f (t, x) (5.1)

where f : [a, b]×B → R is a function and B ⊂ R is an open set. Let J ⊂ [a, b]
be a closed interval. We say that x : J → R is a Carathéodory solution
(respectively a Henstock solution) of equation (4.1) if and only if the following
conditions are satisfied:

i) x (t) ∈ B m-almost everywhere on J ;

ii) x (t) = x (c) + ∗ ∫
[c,t]

f (s, x (s)) ds, for every t, c ∈ J ;

where m denotes Lebesgue measure and ∗
∫

= L
∫

(resp. ∗
∫

= K
∫

), provided
the integral exists. From the Fundamental Theorem of Calculus it is immediate
that if x satisfies ii) for ∗

∫
= L

∫
(resp. ∗

∫
= K

∫
), then x is absolutely

continuous and differentiable (resp. x satisfies the Strong Lusin Condition and
is differentiable m-almost everywhere) and ẋ = f (t, x) m-almost everywhere.

Example 5.1. Let F : [0, 1]→ R be given by F (t) = t sin
1
t

if t 6= 0, F (0) =

0, and f = F ′, that is f (t) = sin
1
t
− 1
t

cos
1
t

if t 6= 0 and f (0) = 0. Then

f ∈ H ([0, 1],R) \ £1 ([0, 1],R) and F = f̃ (from the Fundamental Theorem of
Calculus). Consider the initial value problem
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ẋ+ αx = f, x (a) = 0 (5.2)

where x ∈ G ([0, 1],R) and α ∈ £1 ([0, 1],R). Integrating (5.2) we obtain the
Volterra-Lebesgue linear integral equation

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

By Theorem 4.1, if ‖α‖1 < 1, then there exists a unique solution x ∈
G ([0, 1],R) of equation (V )H (note that the indefinite integral F is continu-
ous - Theorem 2.2). In other words, if ‖α‖1 < 1, then there exists a unique
Carathéodory solution x (which is in fact absolutely continuous by the Fun-
damental Theorem of Calculus) of equation (5.1).

Example 5.2. Consider the initial value problem

ẋ+ αx = βu, x (a) = 0, (5.3)

where x ∈ C ([a, b],R), α ∈ £1 ([a, b],R) and either β ∈ H ([a, b],R) and
u ∈ BV ([a, b],R) or β ∈ BV ([a, b],R) and u ∈ H ([a, b],R). In any case
there exists F (t) = K

∫
[a,t]

β (s)u (s) ds, for every t ∈ [a, b] (see [2] or [5]).
Integrating (5.3) we obtain the linear integral equation of Volterra-Lebesgue

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

If ‖α‖1 < 1, then there is a unique Carathéodory solution x ∈ C([a, b], X) of
equation (5.3) (Theorem 4.1).

Now we change the hypothesis. Let x ∈ BVa ([a, b],R), α ∈ £1 ([a, b],R)
and either β ∈ £1 ([a, b],R) and u ∈ BV ([a, b],R) or β ∈ BV ([a, b],R) and
u ∈ £1 ([a, b],R), then there exists F (t) = L

∫
[a,t]

β (s)u (s) ds, for every
t ∈ [a, b] (see [2] or [5]) and F ∈ BVa ([a, b],R) (Theorem 2.10). By Theorem
4.1, there is a unique Carathéodory solution x ∈ BVa([a, b], X) of equation
(5.3) whenever ‖α‖1 < 1.

Example 5.3. The continuous-time linear dynamic system

ẋ (t) = A (t)x (t) +B (t)u (t) ẏ (t) = C (t)x (t) +D (t)u (t) (5.4)

where A, B, C and D are continuous matrix 1× 1, has solution given by

x (t) = e
R
[a,t] A(s)dsx (a) +

∫
[a,t]

e
R
[a,τ] A(s)dsB (τ)u (τ) dτ.
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If x ∈ C ([a, b],R), A ∈ £1 ([a, b],R) and either B ∈ H ([a, b],R) and u ∈
BV ([a, b],R) or B ∈ BV ([a, b],R) and u ∈ H ([a, b],R), then

x (t) = e
L

R
[a,t] A(s)dsx (a) + K

∫
[a,t]

e
L

R
[a,τ] A(s)dsB (τ)u (τ) dτ (5.5)

is a Henstock solution of the system. If moreover we have that ‖A‖1 < 1, then
(5.5) is the unique (continuous) solution of (5.4) and, according to the first
part of Example 5.2, it is in fact a Carathéodory solution.

Example 5.4. Consider the initial value problem

ẋ+ αx = f, x (a) = 0, (5.6)

where x ∈ BV0 ([0, 1],R), f ∈ £1 ([0, 1],R) and α : [0, 1] → R is given by

α (t) =
sin t
t

if t 6= 0 and α (0) = 0. Hence α ∈ H ([0, 1],R) \ £1 ([0, 1],R),

α ∈ BV
(
[ 1
n , 1],R

)
for every n ∈ N∗, and F = f̃ ∈ BV0 ([0, 1],R) (by Theorem

2.10). Let us consider the Volterra-Henstock linear integral equation obtained
from (5.6)

x(t) + K

∫
[a,t]

α(s)xt(s)ds = f(t), t ∈ [a, b], (V )H

as well as the linear integral equations of Volterra-Henstock

x (t) + K

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Hn

By Theorem 3.6, for every n ∈ N∗, there exists a unique solution xn ∈
H ([0, 1],R)A of (V )Hn whose resolvent is given by the Neumann series:

xn(t) = F (t) + K

∫
[0,t]∩[ 1

n ,1]

∞∑
j=1

(−1)(j−1) sin(s)(−Si(t) + Si(s))(j−1)

(j − 1)! s
F (s) ds

= F (t) + K

∫
[0,t]∩[ 1

n ,1]

sin(s)e(Si(t)−Si(s))

s
F (s) ds, for t ∈ [0, 1]

where Si (t) =
∫

[0,t]

sin s
s
ds. However, since F ∈ BV ([0, 1],R) and the kernel

ρn (t, s) =
sin (s) e(Si(t)−Si(s))

s
is bounded (Theorem 3.6), then it follows that

xn is of bounded variation. From Theorem 3.7, we have that

x (t) = lim
n
xn (t) = F (t) + K

∫
[0,t]

sin (s) e(Si(t)−Si(s))

s
F (s) ds, t ∈ [0, 1],

(5.7)
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is of bounded variation and satisfies (V )H . Thus x given by (5.7) is a Henstock
solution of (5.6).

5.2 Applications to Singular Integral Equations

We call singular integral equations those integral equations whose kernel has
a singularity. Such equations play an important role in the Theory of Integral
Equations with applications in various areas.

Example 5.5. Let x, f ∈ BV ([0, 1],R) and α : [0, 1] → R be as in Example
4.4. Then according to Example 4.4, given f ∈ BV0 ([0, 1],R), the singular
integral equation

x(t) + K

∫
[a,t]

α(s)xt(s)ds = f(t), t ∈ [a, b], (V )H

admits a solution of bounded variation which is given by

x (t) = f (t) + K

∫
[0,t]

sin (s) e(Si(t)−Si(s))

s
f (s) ds, t ∈ [0, 1].

Example 5.6. Consider the unbounded function α (t) = 1√
t

for t ∈ [0, 1], and
α (0) = 0, and the singular integral equation

x (t) + K

∫
[a,t]

α (s)x (s) ds = f (t) , t ∈ [a, b], (V )L

where x, f ∈ C ([0, 1],R). Since α is Lebesgue integrable on the interval [0, 1],
then α ∈ £1

(
[ 1
n , 1],R

)
for each n ∈ N∗, and we can consider the linear integral

Volterra equations

x (t) + L

∫
[a,t]

χXn (s)α (s)x (s) ds = f (t) , t ∈ [a, b], and n ∈ N, (V )Ln

where x, f ∈ C ([0, 1],R) and Xn = [ 1
n , 1] for each n ∈ N∗. Given f ∈

C ([0, 1],R), since α ∈ C
(
[ 1
n , 1],R

)
for every n ∈ N∗, then there exists a

continuous solution xn of (V )Ln whose resolvent is given by the Neumann
series:

xn (t) = f (t) + L

∫
[0,t]∩[ 1

n ,1]

∞∑
i=1

(√
t−
√
s
)i

√
s

f (s) ds

= f (t) + L

∫
[0,t]∩[ 1

n ,1]

(
− 1
√
s
(√
t−
√
s− 1

)) f (s) ds, t ∈ [0, 1].
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By Theorem 4.3 and the Monotone Convergence Theorem,

x (t) = lim
n
xn (t) = f (t)+ L

∫
[0,t]

(
− 1
√
s
(√
t−
√
s− 1

)) f (s) ds, t ∈ [0, 1],

is a continuous solution for the singular integral equation (V )L.
Let us suppose now that x, f ∈ BV0 ([0, 1],R) instead of x, f ∈ C ([0, 1],R).

From the fact that α ∈ BV
(
[ 1
n , 1],R

)
for every n ∈ N∗, and given that

f ∈ BV0 ([0, 1],R) ⊂ H ([0, 1],R), we can calculate the solution xn of each
(V )Ln by the Neumann series method (see Theorem 3.6). We have that

xn (t) = f (t) + K

∫
[0,t]∩[ 1

n ,t]

∞∑
i=1

(√
t−
√
s
)i

√
s

f (s) ds

= f (t) + K

∫
[0,t]∩[ 1

n ,t]

(
− 1
√
s
(√
t−
√
s− 1

)) f (s) , ds, t ∈ [0, 1].

Then, by Theorem 4.4 and the Monotone Convergence Theorem,

x (t) = lim
n
xn (t) = f (t)+ K

∫
[0,t]

(
− 1
√
s
(√
t−
√
s− 1

)) f (s) ds, t ∈ [0, 1],

is a solution of bounded variation of the singular integral equation (V )L.

The basis for this paper is [4].
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[2] M. Federson, Fórmulas de Substituicão para integrais de Gauge, MS
Dissertation, Institute of Mathematics and Statistics, University of São
Paulo, 1993.

[3] M. Federson, The Monotone Convergence Theorem for multi-dimensional
Kurzweil vector integrals, Seminário Brasileiro de Análise, 45(1997), 827–
833.

[4] M. Federson, Sobre a existência de soluções para Equações Integrais Lin-
eares com respeito a Integrais de Gauge, Doctoral Thesis, Institute of
Mathematics and Statistics, University of São Paulo, Brazil, 1998.



416 M. Federson and R. Bianconi

[5] M. Federson, The Fundamental Theorem of Calculus for multidimensional
Banach space-valued Henstock vector integrals, Real Analysis Exchange,
1999, to appear.

[6] M. Federson, Substitution Formulas for Kurzweil and Henstock vector
integrals, pre-print, 1999.

[7] L. Gengian, On necessary conditions for Henstock integrability , Real
Analysis Exchange, 18(1992–93), 522–531.

[8] C. S. Hönig, The abstract Riemann-Stieltjes integral and its Applica-
tions to linear differential equations with generalized boundary conditions,
Notes of the Institute of Mathematics and Statistics, University of São
Paulo, Mathematics Series #1, 1973.

[9] C. S. Hönig, Volterra-Stieltjes integral equations, Math. Studies, 16,
North-Holland Publ. Comp., Amsterdam, 1975.
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