Stanisław Wroński, Institute of Mathematics, Łódź Technical University, al. Politechniki 11, 90-924 Łódź, Poland. e-mail: wronskis@ck-sg.p.lodz.pl

ON A FAMILY OF FUNCTIONS DEFINED BY THE BOUNDARY OPERATOR

Abstract

For a topological space X, let $M(X, R)$ denote the family of all functions $f \in R^{X}$ such that $f(F r(A)) \subseteq F r(f(A))$. Let $N(X, R)$ denote the family of all continuous functions $f \in R^{X}$ such that $\operatorname{card}\left(f^{-1}(c)\right)=$ 1 for each $c \in\left(\inf _{x \in X} f(x), \sup _{x \in X} f(x)\right)$. We show that $M(X, R)=N(X, R)$ if X is a connected and locally connected Hausdorff space. We adopt the following notation:

- X - a topological space with the family O of open sets,
- R - the set of real numbers with the natural topology,
- $C(X, R)$ - the family of continuous functions from X into R.

For $f \in R^{X}$ let i_{f} and s_{f} abbreviate $\inf _{x \in X} f(x)$ and $\sup _{x \in X} f(x)$ respectively. By $\operatorname{int}(A), \operatorname{cl}(A)$ and $\operatorname{Fr}(A)$ we denote the interior, the closure and the boundary of the set $A \subseteq X$.

Let us define two classes of functions: $M(X, R)$ and $N(X, R)$ in the following manner:

$$
\begin{gathered}
M(X, R)=\left\{f \in R^{X}: \forall_{A \subseteq X} f(F r(A)) \subseteq \operatorname{Fr}(f(A))\right\} \\
N(X, R)=\left\{f \in C(X, R): \forall_{c \in\left(i_{f,}, s_{f}\right)} \operatorname{card}\left(f^{-1}(c)\right)=1\right\}^{1}
\end{gathered}
$$

Then we have the following:

[^0]Theorem 1. $N(X, R) \subseteq M(X, R) \subseteq C(X, R)$
Proof. For an indirect proof of the first inclusion suppose that $N(X, R) \backslash$ $M(X, R) \neq \emptyset$. Thus, there exist $f \in N(X, R)$ and $A \subseteq X$ such that $f(\operatorname{Fr}(A)) \backslash$ $\operatorname{Fr}(f(A)) \neq \emptyset$. Let $y \in f(\operatorname{Fr}(A)) \backslash \operatorname{Fr}(f(A))$, then there exists an $x \in$ $\operatorname{cl}(A) \backslash \operatorname{int}(A)$ such that $y=f(x)$ and therefore $y \in \operatorname{cl}(f(A))$ because f is continuous. Since $y \notin \operatorname{Fr}(f(A))$ then necessarily $y \in \operatorname{int}(f(A))$. Since $x \notin \operatorname{int}(A)$ and f is continuous then $y \in \operatorname{cl}(f(X \backslash A))$. This means that $\operatorname{int}(f(A))$, being an open neighborhood of y, intersects the set $f(X \backslash A)$ i.e. $\operatorname{int}(f(A)) \cap f(X \backslash A) \neq \emptyset$. Let $c \in \operatorname{int}(f(A)) \cap f(X \backslash A)$. Then there exist distinct elements $x^{\prime} \in A$ and $x^{\prime \prime} \in X \backslash A$ such that $f\left(x^{\prime}\right)=f\left(x^{\prime \prime}\right)=c$. Since $c \in \operatorname{int}(f(A))$ we have $c \in\left(i_{f}, s_{f}\right)$ which contradicts the assumption that $f^{-1}(c)$ is a singleton.

To prove the second inclusion assume that $f \in M(X, R)$ and $A \subseteq X$. Then $f(c l(A))=f(A \cup F r(A))=f(A) \cup f(F r(A)) \subseteq f(A) \cup F r(f(A))=c l(f(A))$ which means that $f \in C(X, R)$.

It is worth noticing that the family $C(X, R)$ can be larger than $M(X, R)$. Indeed, the function $f: R \rightarrow R$ such that $f(x)=|x|$ belongs to the set $C(R, R) \backslash M(R, R)$. If we take as X the set of the real numbers with the discrete topology then the characteristic function of the interval $[0, \infty)$ belongs to $M(X, R) \backslash N(X, R)$. However, if X is assumed to be a connected and locally connected Hausdorff space then one gets:

Theorem 2. $N(X, R)=M(X, R) .{ }^{2}$
To prove the above theorem we shall need several lemmas.
Lemma 1. If the sets M and N are disjoint, nonempty and closed in a connected and locally connected space then the complement of $M \cup N$ has a component whose closure intersects each of M and N.

Proof. See [1, p. 183].
Lemma 2. For every open and connected $V \subseteq X$ and for any $a, b \in V$, if $a \neq b$ then there exists an open and connected set I such that $I \subseteq V$ and $a \in I, b \in \operatorname{Fr}(I)$.

Proof. Given $V \subseteq X$ and $a, b \in V$ are such as required in the above lemma. Since the subspace V must be locally connected (see [2]) and $\{a\},\{b\}$ are nonempty, disjoint and closed in V then, by lemma 1, the set $V \backslash\{a, b\}$ in the subspace V must have a component U such that $\{a, b\} \subseteq \operatorname{cl}(U)$. Since the

[^1]component U is open and connected in V, it is also open and connected in X. Since U is open and $\{a, b\} \subseteq c l(U)$ then $\{a, b\} \subseteq \operatorname{Fr}(U)$. Applying again the assumption that X is a locally connected Hausdorff space we get that there exists a connected open set $W \subseteq X$ such that $a \in W \subseteq V$ and $b \notin W$. Since $a \in \operatorname{Fr}(U)$ then $W \cap U \neq \emptyset$. Now, putting $I=W \cup U$ we obtain a connected open set such that $a \in I \subseteq V$. We will show that $b \in \operatorname{Fr}(I)$. Indeed, on one hand $b \in \operatorname{Fr}(U) \subseteq \operatorname{cl}(U) \subseteq \operatorname{cl}(I)$. On the other hand, $b \notin U$ because $b \in \operatorname{Fr}(U)$. Since at the same time $b \notin W$, we have $b \notin W \cup U=I$.

This together with the fact proved before allows us to conclude that $b \in$ $\operatorname{Fr}(I)$.

In the lemmas that follow we shall assume that $f \in M(X, R)$.
Lemma 3. For every real number c, the set $\operatorname{Fr}\left(f^{-1}(c)\right)$ has at most one element.

Proof. For an indirect argument, let us assume that for some real number c there exist two distinct $x_{1}, x_{2} \in X$ such that $\left\{x_{1}, x_{2}\right\} \subseteq \operatorname{Fr}\left(f^{-1}(c)\right)$. By the continuity of f (see Theorem 1) it follows that $f^{-1}(c)$ is a closed set and therefore $f\left(x_{1}\right)=f\left(x_{2}\right)=c$. Let K, L be open sets such that $x_{1} \in K, x_{2} \in L$, and $K \cap L=\emptyset$. From assumptions about the space X it follows that there exist connected and open sets A, B such that $x_{1} \in A \subseteq K, x_{2} \in B \subseteq L$. Note that there must exist an element $x_{1}^{\prime} \in A$ such that $f\left(x_{1}^{\prime}\right) \neq c$. Indeed, in the opposite case one gets that $A \subseteq f^{-1}(c)$ and consequently $x_{1} \notin \operatorname{Fr}\left(f^{-1}(c)\right)$. Analogously one can show the existence of an element $x_{2}^{\prime} \in B$ such that $f\left(x_{2}^{\prime}\right) \neq c$. Now we have to consider the following four cases:

1. $f\left(x_{1}^{\prime}\right)<c$ and $f\left(x_{2}^{\prime}\right)>c$
2. $f\left(x_{1}^{\prime}\right)>c$ and $f\left(x_{2}^{\prime}\right)<c$
3. $f\left(x_{1}^{\prime}\right)>c$ and $f\left(x_{2}^{\prime}\right)>c$
4. $f\left(x_{1}^{\prime}\right)<c$ and $f\left(x_{2}^{\prime}\right)<c$.

All the cases above can be dealt with in a similar manner and for this reason only the case 1 will be considered in detail. First, by lemma 2, we pick a connected open set U such that $x_{1} \in U, x_{1}^{\prime} \in \operatorname{Fr}(U)$ and $U \subseteq A$. By the same lemma, we get a connected open set V such that $x_{2}^{\prime} \in V, x_{2} \in \operatorname{Fr}(V)$ and $V \subseteq B$. Now our assumptions yield that $f(U), f(V)$ are connected subsets of the straight line, $x_{1}^{\prime} \in \operatorname{cl}(f(U)), x_{2} \in \operatorname{cl}(f(V))$. Let us put $W=U \cup V$, then $f(W)=f(U) \cup f(V) \supseteq\left(f\left(x_{1}^{\prime}\right), f\left(x_{2}^{\prime}\right)\right]$ which implies that $c \notin \operatorname{Fr}(f(W))$. Note that $\operatorname{Fr}(V) \subseteq F r(W)$ because U and V are separated. Since $x_{2} \in F r(V)$ then $x_{2} \in \operatorname{Fr}(W)$ and consequently $c=f\left(x_{2}\right) \in f(\operatorname{Fr}(W)) \subseteq \operatorname{Fr}(f(W))$, a contradiction.

Lemma 4. $\left(\forall c \in\left(i_{f,} s_{f}\right)\right)\left(\forall s \in \operatorname{Fr}\left(f^{-1}(c)\right)\right)(\forall U \in O, s \in U)(\exists a \in U)$ $(\exists b \in U) \quad(f(a)<c<f(b))$

Proof. For an indirect argument let us suppose that for some $c \in\left(i_{f}, s_{f}\right)$, for some $s \in \operatorname{Fr}\left(f^{-1}(c)\right)$ and for some neighborhood V_{s} of s, c is a lower bound of $f\left(V_{s}\right)$ i.e. for every $x \in V_{s}, f(x) \geq c$ (assuming here that c is an upper bound of $f\left(V_{s}\right)$ one can argue further in a similar manner). By the Theorem 1 one gets that the set $\{x \in X: f(x) \geq c\}$ is closed, nonempty and distinct from the whole space. We shall show that it is open too. Indeed, if $f\left(x_{0}\right)=c$ then either $x_{0} \neq s$ - in which case, by Lemma 3, x_{0} is an interior point of the set $f^{-1}(c) \subseteq\{x \in X: f(x) \geq c\}-$ or $x_{0}=s$. But then, by the indirect assumption, the neighborhood V_{s} of s must be contained in the set $\{x \in X: f(x) \geq c\}$. Next, if $f\left(x_{0}\right)>c$ then by the continuity of f, it follows that the whole f-image of some neighborhood of x_{0} lays strictly above c which contradicts the assumption that the space X is connected.

Lemma 5. For every $c \in\left(i_{f}, s_{f}\right)$ the set $f^{-1}(c)$ is nonempty.
Proof. It is an immediate consequence of the assumption that the function f is continuous and the space X is connected.
Proof of Theorem 2. By lemma 5 we need only to prove that for every $c \in\left(i_{f}, s_{f}\right)$, the set $f^{-1}(c)$ has at most one element. Suppose the contrary, i.e. for some $c \in\left(i_{f}, s_{f}\right)$ the set $f^{-1}(c)$ has more than one element. From the assumptions it follows that the set $f^{-1}(c)$ is a closed subset of X distinct from the empty set and from X. Since the space X is connected then $f^{-1}(c)$ can not be open and therefore $\operatorname{Fr}\left(f^{-1}(c)\right) \neq \emptyset$. Let $x^{\prime} \in \operatorname{Fr}\left(f^{-1}(c)\right) \subseteq f^{-1}(c)$ and let $x^{\prime \prime}$ be an element of $f^{-1}(c)$ which is distinct from x^{\prime}. Then, by lemma 3, $x^{\prime \prime} \in \operatorname{int}\left(f^{-1}(c)\right)$. Let U and V be connected sets such that $x^{\prime} \in U, x^{\prime \prime} \in V$, $U \cap V=\emptyset$. By lemma 4, there exist $a, b \in U$ such that $f(a)<c<f(b)$. Next, by lemma 2 one can find a connected set W such that $a \in W, b \in \operatorname{Fr}(W)$ and $W \subseteq U$. Let us put $A=W \cup\left\{x^{\prime \prime}\right\}$. Then $f(A) \supseteq[f(a), f(b))$ and therefore $c \notin \operatorname{Fr}(f(A))$. Since $x^{\prime \prime} \in \operatorname{Fr}(A)$ then $c=f\left(x^{\prime \prime}\right) \in f(\operatorname{Fr}(A)) \subseteq \operatorname{Fr}(f(A))$, a contradiction.

References

[1] N. Bourbaki, Éléments de mathématique, Topologie générale, Hermann, Paris, (Russian edition, Nauka, Moscow 1968).
[2] K. Kuratowski, Topology, vol. 2, Academic Press, New York, 1968.

[^0]: Key Words: connected space, locally connected space, boundary, continuous function
 Mathematical Reviews subject classification: 54C08, 54C30, 54C05
 Received by the editors December 10, 1997
 ${ }^{1}$ Professor Ryszard Pawlak observed that instead of the family of continuous functions one can take the family of functions having the Darboux property.

[^1]: ${ }^{2}$ The referee has remarked that it would be interesting to know whether Theorem 2 holds for functions $f \in R^{X}$ where X is only assumed to be arcwise connected.

