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ON A FAMILY OF FUNCTIONS DEFINED
BY THE BOUNDARY OPERATOR

Abstract

For a topological space X, let M(X, R) denote the family of all
functions f ∈ RX such that f(Fr(A)) ⊆ Fr(f(A)). Let N(X, R) denote
the family of all continuous functions f ∈ RX such that card(f−1(c)) =

1 for each c ∈

 
inf

x∈X
f(x), sup

x∈X
f(x)

!
. We show that M(X, R) = N(X, R)

if X is a connected and locally connected Hausdorff space.

We adopt the following notation:

• X - a topological space with the family O of open sets,

• R - the set of real numbers with the natural topology,

• C(X,R) - the family of continuous functions from X into R.

For f ∈ RX let if and sf abbreviate inf
x∈X

f(x) and sup
x∈X

f(x) respectively.

By int(A), cl(A) and Fr(A) we denote the interior, the closure and the bound-
ary of the set A ⊆ X.

Let us define two classes of functions: M(X, R) and N(X, R) in the fol-
lowing manner:

M(X, R) =
{
f ∈ RX : ∀A⊆Xf(Fr(A)) ⊆ Fr(f(A))

}
N(X, R) =

{
f ∈ C(X, R) : ∀c∈(if,sf )card(f−1(c)) = 1

}
1

Then we have the following:

Key Words: connected space, locally connected space, boundary, continuous function
Mathematical Reviews subject classification: 54C08, 54C30, 54C05
Received by the editors December 10, 1997

1Professor Ryszard Pawlak observed that instead of the family of continuous functions
one can take the family of functions having the Darboux property.
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Theorem 1. N(X,R) ⊆M(X,R) ⊆ C(X, R)

Proof. For an indirect proof of the first inclusion suppose that N(X, R) \
M(X, R) 6= ∅. Thus, there exist f ∈ N(X, R) and A ⊆ X such that f(Fr(A))\
Fr(f(A)) 6= ∅. Let y ∈ f(Fr(A)) \ Fr(f(A)), then there exists an x ∈
cl(A) \ int(A) such that y = f(x) and therefore y ∈ cl(f(A)) because f
is continuous. Since y /∈ Fr(f(A)) then necessarily y ∈ int(f(A)). Since
x /∈ int(A) and f is continuous then y ∈ cl(f(X \ A)). This means that
int(f(A)), being an open neighborhood of y, intersects the set f(X \ A) i.e.
int(f(A)) ∩ f(X \ A) 6= ∅. Let c ∈ int(f(A)) ∩ f(X \ A). Then there exist
distinct elements x′ ∈ A and x′′ ∈ X \ A such thatf(x′) = f(x′′) = c. Since
c ∈ int(f(A)) we have c ∈ (if , sf ) which contradicts the assumption that
f−1(c) is a singleton.

To prove the second inclusion assume that f ∈M(X, R) and A ⊆ X. Then
f(cl(A)) = f(A ∪ Fr(A)) = f(A) ∪ f(Fr(A)) ⊆ f(A) ∪ Fr(f(A)) = cl(f(A))
which means that f ∈ C(X, R).

It is worth noticing that the family C(X, R) can be larger than M(X, R).
Indeed, the function f : R → R such that f(x) = |x| belongs to the set
C(R,R) \ M(R,R). If we take as X the set of the real numbers with the
discrete topology then the characteristic function of the interval [0,∞) belongs
to M(X, R)\N(X,R). However, if X is assumed to be a connected and locally
connected Hausdorff space then one gets:

Theorem 2. N(X,R) = M(X, R).2

To prove the above theorem we shall need several lemmas.

Lemma 1. If the sets M and N are disjoint, nonempty and closed in a con-
nected and locally connected space then the complement of M ∪N has a com-
ponent whose closure intersects each of M and N .

Proof. See [1, p. 183].

Lemma 2. For every open and connected V ⊆ X and for any a, b ∈ V , if
a 6= b then there exists an open and connected set I such that I ⊆ V and
a ∈ I, b ∈ Fr(I).

Proof. Given V ⊆ X and a, b ∈ V are such as required in the above lemma.
Since the subspace V must be locally connected (see [2]) and {a}, {b} are
nonempty, disjoint and closed in V then, by lemma 1, the set V \ {a, b} in
the subspace V must have a component U such that {a, b} ⊆ cl(U). Since the

2The referee has remarked that it would be interesting to know whether Theorem 2 holds
for functions f ∈ RX where X is only assumed to be arcwise connected.
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component U is open and connected in V , it is also open and connected in X.
Since U is open and {a, b} ⊆ cl(U) then {a, b} ⊆ Fr(U). Applying again the
assumption that X is a locally connected Hausdorff space we get that there
exists a connected open set W ⊆ X such that a ∈ W ⊆ V and b /∈ W . Since
a ∈ Fr(U) then W ∩ U 6= ∅. Now, putting I = W ∪ U we obtain a connected
open set such that a ∈ I ⊆ V . We will show that b ∈ Fr(I). Indeed, on
one hand b ∈ Fr(U) ⊆ cl(U) ⊆ cl(I). On the other hand, b /∈ U because
b ∈ Fr(U). Since at the same time b /∈W , we have b /∈W ∪ U = I.

This together with the fact proved before allows us to conclude that b ∈
Fr(I).

In the lemmas that follow we shall assume that f ∈M(X, R).

Lemma 3. For every real number c, the set Fr(f−1(c)) has at most one
element.

Proof. For an indirect argument, let us assume that for some real number
c there exist two distinct x1, x2 ∈ X such that {x1, x2} ⊆ Fr(f−1(c)). By
the continuity of f (see Theorem 1) it follows that f−1(c) is a closed set and
therefore f(x1) = f(x2) = c. Let K, L be open sets such that x1 ∈ K, x2 ∈ L,
and K ∩ L = ∅. From assumptions about the space X it follows that there
exist connected and open sets A, B such that x1 ∈ A ⊆ K, x2 ∈ B ⊆ L. Note
that there must exist an element x′1 ∈ A such that f(x′1) 6= c. Indeed, in the
opposite case one gets that A ⊆ f−1(c) and consequently x1 /∈ Fr(f−1(c)).
Analogously one can show the existence of an element x′2 ∈ B such that
f(x′2) 6= c. Now we have to consider the following four cases:

1. f(x′1) < c and f(x′2) > c

2. f(x′1) > c and f(x′2) < c

3. f(x′1) > c and f(x′2) > c

4. f(x′1) < c and f(x′2) < c.

All the cases above can be dealt with in a similar manner and for this
reason only the case 1 will be considered in detail. First, by lemma 2, we pick
a connected open set U such that x1 ∈ U, x′1 ∈ Fr(U) and U ⊆ A. By the
same lemma, we get a connected open set V such that x′2 ∈ V, x2 ∈ Fr(V ) and
V ⊆ B. Now our assumptions yield that f(U), f(V ) are connected subsets
of the straight line, x′1 ∈ cl(f(U)), x2 ∈ cl(f(V )). Let us put W = U ∪ V ,
then f(W ) = f(U)∪ f(V ) ⊇ (f(x′1), f(x′2)] which implies that c /∈ Fr(f(W )).
Note that Fr(V ) ⊆ Fr(W ) because U and V are separated. Since x2 ∈ Fr(V )
then x2 ∈ Fr(W ) and consequently c = f(x2) ∈ f(Fr(W )) ⊆ Fr(f(W )), a
contradiction.
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Lemma 4. (∀c ∈ (if,sf )) (∀s ∈ Fr(f−1(c))) (∀U ∈ O, s ∈ U) (∃a ∈ U)
(∃b ∈ U) (f(a) < c < f(b))

Proof. For an indirect argument let us suppose that for some c ∈ (if , sf ),
for some s ∈ Fr(f−1(c)) and for some neighborhood Vs of s, c is a lower
bound of f(Vs) i.e. for every x ∈ Vs, f(x) ≥ c (assuming here that c is an
upper bound of f(Vs) one can argue further in a similar manner). By the
Theorem 1 one gets that the set {x ∈ X : f(x) ≥ c} is closed, nonempty and
distinct from the whole space. We shall show that it is open too. Indeed, if
f(x0) = c then either x0 6= s – in which case, by Lemma 3, x0 is an interior
point of the set f−1(c) ⊆ {x ∈ X : f(x) ≥ c} – or x0 = s. But then, by the
indirect assumption, the neighborhood Vs of s must be contained in the set
{x ∈ X : f(x) ≥ c}. Next, if f(x0) > c then by the continuity of f , it follows
that the whole f -image of some neighborhood of x0 lays strictly above c which
contradicts the assumption that the space X is connected.

Lemma 5. For every c ∈ (if , sf ) the set f−1(c) is nonempty.

Proof. It is an immediate consequence of the assumption that the function
f is continuous and the space X is connected.
Proof of Theorem 2. By lemma 5 we need only to prove that for every
c ∈ (if , sf ), the set f−1(c) has at most one element. Suppose the contrary,
i.e. for some c ∈ (if , sf ) the set f−1(c) has more than one element. From the
assumptions it follows that the set f−1(c) is a closed subset of X distinct from
the empty set and from X. Since the space X is connected then f−1(c) can
not be open and therefore Fr(f−1(c)) 6= ∅. Let x′ ∈ Fr(f−1(c)) ⊆ f−1(c) and
let x′′ be an element of f−1(c) which is distinct from x′. Then, by lemma 3,
x′′ ∈ int(f−1(c)). Let U and V be connected sets such that x′ ∈ U, x′′ ∈ V,
U ∩V = ∅ . By lemma 4, there exist a, b ∈ U such that f(a) < c < f(b). Next,
by lemma 2 one can find a connected set W such that a ∈W, b ∈ Fr(W ) and
W ⊆ U . Let us put A = W ∪ {x′′}. Then f(A) ⊇ [f(a), f(b)) and therefore
c /∈ Fr(f(A)). Since x′′ ∈ Fr(A) then c = f(x′′) ∈ f(Fr(A)) ⊆ Fr(f(A)), a
contradiction.
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[1] N. Bourbaki, Éléments de mathématique, Topologie générale, Hermann,
Paris, (Russian edition, Nauka, Moscow 1968).

[2] K. Kuratowski, Topology, vol. 2, Academic Press, New York, 1968.


