
Real Analysis Exchange
Vol. (), , pp. 343–358

Ryszard J. Pawlak, Department of Mathematics,  Lódź University, Banacha
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ON SMALL SUBSETS OF THE SPACE OF
DARBOUX FUNCTIONS

Abstract

We prove that the set F of all bounded functionally connected func-
tions is boundary in the space of all bounded Darboux functions (with
the metric of uniform convergence). Next we prove that the set of
bounded upper (lower)semi-continuous Darboux functions and the set of
all bounded quasi-continuous functionally connected functions is porous
at each point of the space F .

Since 1875, when Darboux functions were defined, many papers have ap-
peared about their properties. Proofs of many properties of real Darboux
functions of real variables are very important, because the family of Darboux
functions includes many important classes of functions; for example, continu-
ous functions and functionally connected functions. (See the next page for the
definition.) Mutual inclusions among several families of Darboux-like functions
inspired questions concerning the size of particular sets in spaces of functions.
One of the questions is how strong the inclusions are. Similar issues have
already been considered in a great number of papers such as [4], [5] and [6].
In [3] Jȩdrzejewski noticed that each continuous function is functionally con-
nected and each functionally connected function is a Darboux function. It is
not difficult to show that there exists a discontinuous, functionally connected
function and there exists a Darboux function which is not functionally con-
nected. Moreover, it turns out that in the space of bounded Darboux functions
(with the metric of uniform convergence) the set of bounded functionally con-
nected functions is boundary (its complement is a dense set) and in the space
of bounded functionally connected functions the set of bounded upper (lower)
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semi-continuous functions is porous at each point of this space. We shall also
show that bounded quasi-continuous functionally connected functions form a
porous set in the space of bounded functionally connected functions.

We use the following symbols and notion.
If (X, d) is a metric space, then B(x, r) denotes the open ball with cen-

ter at x and radius r > 0. Let M ⊂ X, x ∈ X, R > 0. Then γ(x,R,M)
denotes the supremum of the set of all r > 0 for which there exists z ∈
X such that B(z, r) ⊂ B(x,R) \ M. The set M is called porous at x if
lim supR→0+

γ(x,R,M)
R > 0.

The cardinality of R is denoted by c. Let Γ(f) denote the graph of a
function f : R→ R.

We say that a function f : R → R is a Darboux function if an image of
each interval is a connected set. By D we denote a set of all bounded Darboux
functions f : R→ R.

By C∗u (C∗l ) we mean the set of all bounded upper (lower) semi-continuous
Darboux functions f : R→ R. Let C denote the set of all bounded continuous
functions f : R→ R and let DB1 denote the set of all bounded Darboux Baire
1 functions f : R→ R.

We say that a function f : R→ R is functionally connected if for each
a, b ∈ R, a < b and for each continuous function g : [a, b] → R such that
(f(a)−g(a))(f(b)−g(b)) < 0 there exists x ∈ (a, b) such that f(x) = g(x). By
F we mean the set of all bounded functionally connected functions f : R→ R.

The following characterization of functionally connected functions will be
useful in the further consideration.

Theorem. ([4][Theorem II.2]) A function f : R → R is a functionally con-
nected iff for an arbitrary continuous function g : R → R function f + g is a
Darboux one.

Then (from this Theorem and Theorem II.3.2 from [1])

C∗u ⊂ DB1 ⊂ F andC∗l ⊂ DB1 ⊂ F .

A function f : R→ R is quasi-continuous at x0 if for each ε > 0 and δ > 0
there exists an open set U ⊂ (x0 − δ, x0 + δ) such that f(U) ⊂
(f(x0)− ε, f(x0) + ε). If the function f is quasi-continuous at each point, we
say that f is quasi-continuous. By Q we denote a set of all bounded quasi-
continuous functions f : R→ R. Let Q∗ = Q∩ F .

By ρ we denote the metric of uniform convergence.

Theorem 1. The set F is boundary in the space D.
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Proof. Let f ∈ D and let ε > 0. We shall show that there exists g ∈ B(f, ε)\
F . First, let us suppose that f is not a constant function . There are points a
and b such that f(a) 6= f(b). For example assume f(a) < f(b). Let N ≥ 3 be
such that f(b)−f(a)

N < ε
4 . Let f(a) = p0 < p1 < p2 < ... < pN−1 < pN = f(b)

be points such that
pi − pi−1 = f(b)−f(a)

N for i = 1, 2, ..., N and

[f(a), f(b)] = [p0, p1] ∪ [p1, p2] ∪ ... ∪ [pN−1, pN ].

Obviously, for all i ∈ {1, 2, ...N}

f−1
|[a,b] (pi−1, pi) is a c-dense-in-itself set. (1)

So, there exist sets F (i)
α , α < c, such that f−1

|[a,b](pi−1, pi) =
⋃
α<c F

(i)
α , where

sets F (i)
α , α < c, are pairwise disjoint and dense in f−1

|[a,b](pi−1, pi). Let Fi =

{F (i)
α : α < c} for i = 1, 2, ...N.
Let

ξ1 : F1 → [p0, p2],
ξi : Fi → [pi−2, pi+1] (i ∈ {2, ..., N − 1}),
ξN : FN → [pN−2, pN ]

be bijections. Let g∗ : R→ R be defined by

g∗(x) =


f(x) if x /∈ (a, b);
f(x) if x ∈ (a, b) and

f(x) ∈ (−∞, f(a)) ∪ (f(b),+∞) ∪ {pi : i = 0, 1, ..., N};
ξi(K) if x ∈ K ∈ Fi, i = 1, 2, ..., N.

We define a function g : R→ R as follows.

g(x) =



g∗(x) if x /∈ (a, b) or if x ∈ (a, b) and g∗(x) 6= l(x);
pi if x ∈ (a, b), g∗(x) = l(x)

and g∗(x) ∈ (pi−1, pi), i = 1, 2, ..., N ;
pi−1 if x ∈ (a, b), g∗(x) = l(x) = pi

and f(x) < pi (i = 1, 2, ..., N);
pi+1 if x ∈ (a, b), g∗(x) = l(x) = pi

and f(x) ≥ pi (i = 0, 1, ..., N − 1).
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where l is a linear function such that l(a) = f(a) and l(b) = f(b).

First note that for an arbitrary i ∈ {1, 2, ..., N} and for an arbitrary non-
degenerate interval I ⊂ R

I ∩ f−1
|[a,b] (pi−1, pi) 6= ∅ ⇒ ∀α<c ∃x1 6=x2 x1, x2 ∈ I ∩ F (i)

α . (2)

((2) follows from (1) and the fact that F (i)
α is dense in f−1

|[a,b] (pi−1, pi) for each
α < c.) We will show that for an arbitrary nondegenerate interval I ⊂ R and
for an arbitrary i ∈ {2, 3, ..., N − 1}

I ∩ f−1
|[a,b] (pi−1, pi) 6= ∅ ⇒ g(I ∩ f−1

|[a,b] (pi−1, pi)) ⊃ [pi−2, pi+1]. (3)

Let i ∈ {2, 3, ..., N − 1} be fixed and let I be a nondegenerate interval such
that I ∩ f−1

|[a,b](pi−1, pi) 6= ∅. Let y0 ∈ [pi−2, pi+1]. Then y0 ∈ ξi(Fi). So, there

exists α < c such that y0 = ξi(F
(i)
α ). By (2) there exists x1, x2 ∈ I ∩ F (i)

α

such that x1 6= x2. Then g∗(x1) = ξi(F
(i)
α ) = g∗(x2). Hence g∗(x1) 6= l(x1)

or g∗(x2) 6= l(x2). For example, assume g∗(x1) 6= l(x1). Obviously x1 ∈ (a, b).
Hence g(x1) = g∗(x1) = ξi(F

(i)
α ) = y0. So y0 ∈ g(I) finishing the proof of (3) .

In the analogous way we can show that for an arbitrary nondegenerate
interval I ⊂ R

I ∩ f−1
|[a,b] (p0, p1) 6= ∅ ⇒ g(I ∩ f−1

|[a,b] (p0, p1)) ⊃ [p0, p2] (4)

and

I ∩ f−1
|[a,b] (pN−1, pN ) 6= ∅ ⇒ g(I ∩ f−1

|[a,b] (pN−1, pN )) ⊃ [pN−2, pN ]. (5)

Now, we will show that

g|[a,b] is a Darboux function . (6)

Let I ⊂ [a, b] be a nondegenerate interval. Then there are two possible cases.

1. I ⊂ {x ∈ [a, b] : f(x) < f(a) or f(x) > f(b)}. Then I ⊂ (a, b) and
g(I) = f(I) is a connected set since f is a Darboux function.

2. I ∩ {x ∈ [a, b] : f(x) ∈ [f(a), f(b)]} 6= ∅.

Let i1 = min{i ∈ {1, 2, ..., N} : I ∩ f−1
|[a,b](pi−1, pi) 6= ∅} and i2 = max{i ∈

{1, 2, ..., N} : I ∩ f−1
|[a,b](pi−1, pi) 6= ∅}. Obviously i1 ≤ i2. Moreover for all

i ∈ {i1, ..., i2}
I ∩ f−1

|[a,b] (pi−1, pi) 6= ∅. (7)
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Consider the four following subcases.
2a. I ⊂ {x ∈ [a, b] : f(x) ∈ [f(a), f(b)]}.

Then from the fact that f is a Darboux function and from the definition
of i1, i2 we can infer that I ⊂

⋃i2
i=i1

f−1
|[a,b] [pi−1, pi]. Hence

g∗(I) ⊂
i2⋃
i=i1

g∗(f−1
|[a,b] (pi−1, pi)) ∪

i2⋃
i=i1−1

g∗(f−1
|[a,b] {pi}) =

i2⋃
i=i1

g∗(
⋃
α<c

F (i)
α ) ∪

i2⋃
i=i1−1

{pi} =
i2⋃
i=i1

ξi(Fi) ∪
i2⋃

i=i1−1

{pi} =
i2⋃
i=i1

ξi(Fi),

so

g∗(I) ⊂
i2⋃
i=i1

ξi(Fi). (8)

And again, consider the following subcases.
1. i1 ≥ 2, i2 ≤ N − 1.

In that case from (8) and the definition of ξi, i ∈ {2, ..., N − 1}, it follows
that

g∗(I) ⊂ [pi1−2, pi2+1]. (9)

Now, we will show that
g(I) = [pi1−2, pi2+1]. (10)

Indeed, by (7), (3) and the definition of i1 and i2, we have

g(I) ⊃
i2⋃
i=i1

[pi−2, pi+1] = [pi1−2, pi2+1].

We will prove that g(I) ⊂ [pi1−2, pi2+1]. Let y0 ∈ g(I). Then there exists
x0 ∈ I such that y0 = g(x0).
The following cases are possible.

- If g∗(x0) 6= l(x0), then g(x0) = g∗(x0) ∈ [pi1−2, pi2+1] (by (9)).

- If g∗(x0) = l(x0) and there exists i0 ∈ {i1 − 1, ..., i2 + 1} such that
g∗(x0) ∈ (pi0−1, pi0) (by (9)), then g(x0) = pi0 ∈ [pi1−1, pi2+1] ⊂ [pi1−2, pi2+1].

- If g∗(x0) = l(x0) and there exists i0 ∈ {i1 − 2, ..., i2 + 1} such that
g∗(x0) = pi0 (by (9)) and f(x0) < pi0 , then i0 > i1 − 2. (If i0 = i1 − 2,
f(x0) < pi0 = pi1−2 < pi1−1, which contradicts the definition of i1 and the
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fact that f is a Darboux function.) Hence g(x0) = pi0−1 ∈ [pi1−2, pi2 ] ⊂
[pi1−2, pi2+1].

- If g∗(x0) = l(x0) and there exists i0 ∈ {i1 − 2, ..., i2 + 1} such that
g∗(x0) = pi0 (by (9)) and f(x0) ≥ pi0 , then i0 < i2 + 1. (If i0 = i2 + 1,
f(x0) ≥ pi0 = pi2+1 > pi2 , which contradicts the definition of i2 and the
fact that f is a Darboux function.) Hence g(x0) = pi0+1 ∈ [pi1−1, pi2+1] ⊂
[pi1−2, pi2+1].

The proof of (10) is now complete. So g(I) is a connected set.
2. i1 = 1, i2 ≤ N − 1.

Note that from (9) and the definition of ξi, i ∈ {1, ..., N − 1}, it follows
that

g∗(I) ⊂ [p0, pi2+1]. (11)

Now we will show that
g(I) = [p0, pi2+1]. (12)

Indeed, by (7), (3) and (4) and the definition of i1 and i2, we have

g(I) ⊃ [p0, p2] ∪
i2⋃
i=2

[pi−2, pi+1] = [p0, pi2+1].

We will prove that g(I) ⊂ [p0, pi2+1]. Let y0 ∈ g(I). Then there exists x0 ∈ I
such that y0 = g(x0).
There are possible the following cases.

- If g∗(x0) 6= l(x0), then g(x0) = g∗(x0) ∈ [p0, pi2+1].

- If g∗(x0) = l(x0) and there exists i0 ∈ {1, ..., i2 + 1} such that g∗(x0) ∈
(pi0−1, pi0) (by (11)), then g(x0) = pi0 ∈ [p1, pi2+1] ⊂ [p0, pi2+1].

- If g∗(x0) = l(x0) and there exists i0 ∈ {0, .., i2 +1} such that g∗(x0) = pi0
(by (11)) and f(x0) < pi0 , then i0 > 0. (If i0 = 0, f(x0) < pi0 = p0 = f(a),
which contradicts the assumption 2a. and the fact that f is a Darboux func-
tion.) Hence g(x0) = pi0−1 ∈ [pi1−1, pi2 ] ⊂ [p0, pi2+1].

- If g∗(x0) = l(x0) and there exists i0 ∈ {0, ..., i2+1} such that g∗(x0) = pi0
(by (11)) and f(x0) ≥ pi0 , then i0 < i2+1. (If i0 = i2+1, f(x0) ≥ pi0 = pi2+1,
which contradicts the definition of i0 and the fact that f is Darboux function.)
Hence g(x0) = pi0+1 ∈ [pi1−1, pi2+1] = [p0, pi2+1].

The proof of (12) is now complete. So g(I) is a connected set.
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3. In the way similar to the previous cases we can show that for i1 ≥ 1, i2 = N
we have g(I) = [pi1−2, pN ] and for i1 = 1, i2 = N we have g(I) = [p0, pN ], so
g(I) is a connected set in these cases.
2b. I ⊂ {x ∈ [a, b] : f(x) ≤ f(b)} and I ∩ {x ∈ [a, b] : f(x) < f(a)} 6= ∅.

From the fact f is a Darboux function it follows that i1 = 1. Then, by (7),
(3) and (4), we have

g(I ∩ f−1[f(a), f(b)]) ⊃
i2⋃
i=1

g(I ∩ f−1
|[a,b] (pi−1, pi)) ⊃ [p0, pi2+1].

In a way analogous to case (2) we can show that

g(I ∩ f−1[f(a), f(b)]) ⊂ [p0, pi2+1],

so
g(I ∩ f−1[f(a), f(b)]) = [p0, pi2+1].

Let m = inf{f(x) : x ∈ I}. Then, by our assumption, m < f(a).
Moreover (by the fact that f is a Darboux function, the definition of m and
the assumption of 2).

f(I ∩ {x : f(x) < f(a)}) =
{

[m, f(a)) if m ∈ f(I),
(m, f(a)) if m /∈ f(I).

So,

g(I) = g(I ∩ {x : f(x) ∈ [f(a), f(b)]}) ∪ g(I ∩ {x : f(x) < f(a)})
= [f(a), pi2+1] ∪ f(I ∩ {x : f(x) < f(a)})

=

{
[f(a), pi2+1] ∪ [m, f(a)) = [m, pi2+1] if m ∈ f(I),
[f(a), pi2+1] ∪ (m, f(a)) = (m, pi2+1] if m /∈ f(I).

Hence g(I) is an interval, so it is a connected set.
2c. I ⊂ {x ∈ [a, b] : f(x) ≥ f(a)} and I ∩ {x ∈ [a, b] : f(x) > f(b)} 6= ∅
2d. I ∩ {x ∈ [a, b] : f(x) < f(a)} 6= ∅ and I ∩ {x ∈ [a, b] : f(x) > f(b)} 6= ∅.

These cases are analogous to the previous ones. The proof of (6) is thus
complete.

From condition (6) and the fact that g|(−∞,a] = f|(−∞,a] and g|[b,+∞) =
f|[b,+∞) are Darboux functions, it follows that g is a Darboux function ([7],
Lemma 1). We will show that

g /∈ F . (13)
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Suppose that g ∈ F . Then g − l ∈ D (Theorem II.2 from [4]). Note that

0 /∈ (g − l)(a, b). (14)

Indeed, if 0 ∈ (g − l)(a, b), there exists c ∈ (a, b) such that (g − l)(c) = 0. So
g(c) = l(c). Hence

(c, g(c)) ∈ Γ(g|(a,b)) ∩ Γ(l). (15)

But, on the other hand, by the definition of the function g, we can easily show
that Γ(g|(a,b))∩Γ(l) = ∅. This condition contradicts (15) completing the proof
of (14).

Obviously (a, b) ∩ f−1
|[a,b](p0, p1) 6= ∅ and (a, b) ∩ f−1

|[a,b](pN−1, pN ) 6= ∅. So,
by (4), g(a, b) ⊃ [p0, p2] and by (5), g(a, b) ⊃ [pN−2, pN ]. Hence, in particular,
there exists x1 ∈ (a, b) such that g(x1) = p0 and there exists x2 ∈ (a, b) such
that g(x2) = pN .
Thus we have

(g − l)(x1) = p0 − l(x1) = f(a)− l(x1) < f(a)− f(a) = 0

and

(g − l)(x2) = pN − l(x2) = f(b)− l(x2) > f(b)− f(b) = 0.

Hence the above conditions and (14) contradicts the fact that g − l ∈ D.
the proof of (13) is now complete.

Now we shall show that

g ∈ B(f, ε). (16)

Let x ∈ R. Consider the following cases.
1. x /∈ (a, b). Then |f(x)− g(x)| = |f(x)− f(x)| < ε

2 .

2. x ∈ (a, b) and g∗(x) 6= l(x).
Then the following subcases are possible.
2a. f(x) ∈ (−∞, f(a)) ∪ (f(b),+∞) ∪ {pi : i = 0, 1, ...N}. Then

|f(x)− g(x)| = |f(x)− f(x)| < ε

2
.

2b. x ∈ F
(i)
α ∈ Fi, i = 1, 2, ..., N, α < c. Since F (i)

α ⊂ f−1
|[a,b] (pi−1, pi),
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f(x) ∈ (pi−1, pi). So

f(x)− g(x) = f(x)− g∗(x) = f(x)− ξi(F (i)
α ) < pi − ξi(F (i)

α )

<


p1 − p0, if i = 1,
pi − pi−2, if i = 2, 3, ..., N − 1,
pN − pN−2, if i = N,

=


f(b)−f(a)

N , if i = 1,
f(b)−f(a)

N + f(b)−f(a)
N , if i = 2, 3, ..., N − 1,

f(b)−f(a)
N + f(b)−f(a)

N , if i = N,

<


ε
4 , if i = 1,
ε
4 + ε

4 , if i = 2, 3, ..., N − 1 ≤ ε
2

ε
4 + ε

4 , if i = N,

and

f(x)− g(x) = f(x)− g∗(x) = f(x)− ξi(F (i)
α ) > pi−1 − ξi(F (i)

α )

>


p0 − p2, if i = 1,
pi−1 − pi+1, if i = 2, 3, ..., N − 1,
pN−1 − pN , if i = N,

=


− f(b)−f(a)

N − f(b)−f(a)
N , if i = 1,

− f(b)−f(a)
N − f(b)−f(a)

N , if i = 2, 3, ..., N − 1,
− f(b)−f(a)

N , if i = N,

>


− ε4 −

ε
4 , if i = 1,

− ε4 −
ε
4 , if i = 2, 3, ..., N − 1 ≥ − ε2 .

− ε4 , if i = N.

So |f(x)− g(x)| < ε
2 .

3. x ∈ (a, b), g∗(x) = l(x), g∗(x) ∈ (pi0−1, pi0), i0 = 1, 2, ..., N.
Then

f(x) ∈ (pi0−2, pi0+1). (17)

Indeed, in the other case there are three possible cases.
- f(x) ∈ (−∞, f(a)] ∪ [f(b),+∞).

Then g∗(x) = f(x) /∈ (pi0−1, pi0), which contradicts our assumption.
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-there exists j ∈ {1, 2, ..., i0 − 2, i0 + 2, ..., N} such that f(x) ∈ (pj−1, pj).
Then g∗(x) ∈ [pj−2, pj+1]. But [pj−2, pj+1] ∩ (pi0−1, pi0) = ∅. So g∗(x) /∈
(pi0−1, pi0), which contradicts our assumption.

-there exists j ∈ {0, 1, ..., N} such that f(x) = pj .
Then g∗(x) = f(x) = pj /∈ (pi0−1, pi0), which contradicts our assumption.

The proof of (17) is thus completed..
Hence f(x) − g(x) < pi0+1 − pi0 = f(b)−f(a)

N < ε
4 <

ε
2 and f(x) − g(x) >

pi0−2 − pi0 = −[ f(b)−f(a)
N + f(b)−f(a)

N ] > −( ε4 + ε
4 ) = − ε2 .

So |f(x)− g(x)| < ε
2 .

4. x ∈ (a, b), g∗(x) = l(x), g∗(x) = pi0 , i0 = 1, 2, ..., N, f(x) < pi0 .
Assume that i0 ≥ 2 (for i0 = 1 the proof is analogous). Note that

f(x) ≥ pi0−2. (18)

Indeed, suppose that f(x) < pi0−2. If i0 = 2, then f(x) < p0 = f(a) and
g∗(x) = f(x) < f(a) = p0 < p2, which contradicts our assumption. Therefore,
assume that i0 ≥ 3. Then the following cases are possible.

-If f(x) < f(a), then g∗(x) = f(x) < f(a) = p0 < pi0 , which contradicts
our assumption.
-If f(x) = pi, i = 0, 1, ..., i0 − 3, then g∗(x) = f(x) = pi ≤ pi0−3 < pi0 , which
contradicts our assumption.
-If f(x) ∈ (pi−1, pi), i = 1, 2, ..., i0 − 2, then ( by the definition of ξi )
g∗(x) ≤ pi+1 ≤ pi0−1 < pi0 , which contradicts our assumption completing the
proof of (18).

Thus, we have

f(x)− g(x) = f(x)− pi0−1 > −
f(b)− f(a)

N
>
−ε
4
> −ε

2

and

f(x)− g(x) = f(x)− pi0−1 <
ε

4
<
ε

2
.

Hence |f(x)− g(x)| < ε
2 .

5. x ∈ (a, b), g∗(x) = l(x), g∗(x) = pi0 , i0 = 0, 1, ..., N − 1, f(x) ≥ pi0 .
Assume that i0 ≤ N − 2 (for i0 = N − 1 the proof is analogous). Like the
procedure in 4. we can show that f(x) ≤ pi0+2. So we have

f(x)− g(x) ≤ pi0+2 − pi0+1 =
f(b)− f(a)

N
<
ε

4
<
ε

2
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f(x)− g(x) ≥ pi0 − pi0+1 = −(pi0+1 − pi0) = −f(b)− f(a)
N

> −ε
4
> −ε

2
.

Hence |f(x)−g(x)| < ε
2 . Thus we have proved that for all x ∈ R |f(x)−g(x)| <

ε
2 completing the proof of (16).

The proof of the theorem is finished in case f is not a constant function. If
f is a constant function, then there exists f̂ ∈ D such that ρ(f, f̂) < ε

2 and f̂

is not a constant function (for example f̂(x) = f(x)+ ε
2π arctanx). Then from

the first part of the proof we infer that there exists g ∈ B(f̂ , ε2 ) \ F . Hence
g ∈ B(f, ε) and g /∈ F .

Theorem 2. The set C∗u is porous at each point of the set F .

Proof. Let f ∈ F and let R > 0. Consider the following cases.
1. Assume that there exists a point x0 of continuity of f . Let δ > 0 be

such that
f([x0 − δ, x0 + δ]) ⊂ (f(x0)− R

8
, f(x0) +

R

8
).

We will show that there exists g ∈ F such that

B(g,
R

16
) ⊂ B(f,R)\C∗u. (19)

Define a function g : R→ R by

g(x) =


f(x) if x /∈ (x0 − δ, x0 + δ),
l1(x) if x ∈ [x0 − δ, x0],
R
8 sin 1

x−x0
+ f(x0) ifx ∈ (x0, x0 + δ

2 ],
l2(x) if x ∈ [x0 + δ

2 , x0 + δ];

where l1 is a linear function such that l1(x0 − δ) = f(x0 − δ), and l1(x0) =
f(x0); l2 is a linear function such that l2(x0 + δ

2 ) = R
8 sin 2

δ + f(x0) and
l2(x0 + δ) = f(x0 + δ).
By Lemma 1.4 of [7], g|[x0−δ,x0+δ] is a bounded Darboux Baire 1 function, so
g|[x0−δ,x0+δ] is functionally connected. By Lemma 5.2 from [3], we infer that
g is also functionally connected. Note that ρ(g, f) ≤ R

2 . Then

B(g,
R

16
) ⊂ B(f,R). (20)

Now we will show that

B(g,
R

16
) ∩ C∗u = ∅. (21)
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If h ∈ B(g, R16 ), then h(x0) < f(x0) + R
16 . On the other hand, consider a

sequence xk = x0 + 2
π+4kπ , k ∈ N.

Then xk → x0 and xk ∈ (x0, x0 + δ
2 ] for k large enough. Thus, we have

lim sup
x→x0

h(x) ≥ lim sup
k→∞

[g(xk)− R

16
] = f(x0) +

R

16
> h(x0),

so the function h is not upper semi-continuous at the point x0, which finishes
the proof of (21).

According to (20) and (21) we may infer that γ(f,R, C∗u) ≥ R
16 . Therefore

we deduce that

lim sup
R→0+

γ(f,R, C∗u)
R

≥ 1
16

> 0,

so C∗u is porous at f and we have proved the theorem in case 1.
2. Assume f has no points of continuity. Then there exists x0, such that

the function f is not upper semi-continuous at x0. Indeed, if f is upper semi-
continuous (at every point), then it is in Baire class 1. Thus, it has a point of
continuity which contradicts our assumption.
We define a function g : R → R g(x) = f(x). We will show that for R small
enough

B(g,R) ∩ C∗u = ∅. (22)

Indeed, there exists xn → x0, xn 6= x0 such that f(xn)→ α > f(x0). Consider
R > 0 such that R < α−f(x0)

3 . If η ∈ B(g,R), then

η(x0) < f(x0) +R <
α+ 2f(x0)

3
<

2α+ f(x0)
3

and

lim sup
x→x0

η(x) ≥ lim sup
n→∞

[f(xn)−R] >
2α+ f(x0)

3
.

Hence lim supx→x0
η(x) > η(x0). So, the function η is not upper semi-continuous

at x0. Thus η /∈ C∗u completing the proof of(22).
Thus, for R small enough γ(f,R, C∗u) = R. Therefore we deduce that

lim sup
R→0+

γ(f,R, C∗u)
R

= lim sup
R→0+

R

R
= 1,

so C∗u is porous at f and we have proved this theorem in the case 2. .

In an analogous way we can establish the following result.

Theorem 3. The set C∗l is porous at each point of the set F .
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The above theorem implies the following assertion.

Theorem 4. The set C is porous at each point of the set F .

Theorem 5. The set Q∗ is porous at each point of the set F .

Proof. Let f ∈ F and R > 0. Consider the following cases.
1. Assume that the function f is quasi-continuous at every point. Let x0

be an arbitrary point and fix δ > 0. There exists an open interval (a, b) 6= ∅
such that [a, b] ⊂ (x0 − δ, x0 + δ) and f([a, b]) ⊂ (f(x0) − R

6 , f(x0) + R
6 ). We

will show that there exists g ∈ F such that

B(g,
R

24
) ⊂ B(f,R)\Q∗. (23)

Let a1 = a+ b−a
4 and b1 = b− b−a

4 . Let E ⊂ [a1, b1] be a bilaterally c-dense in
itself Fσ set of null measure such that a1, b1 /∈ E. From [1], Theorem II.2.4 we
can deduce that there exists a Darboux Baire 1 function h : [a1, b1] → [0, R6 ]
such that R

6 ∈ h((a1, b1)), h(x) = 0 for x /∈ E and 0 < h(x) ≤ R
6 for x ∈ E.

We define a function g : R→ R by

g(x) =


f(x) if x /∈ (a, b),
l1(x) if x ∈ (a, a1],
h(x) + f(x0) if x ∈ (a1, b1),
l2(x) if x ∈ [b1, b),

where l1 is a linear function such that l1(a) = f(a) and l1(a1) = f(x0); l2
is a linear function such that l2(b1) = f(x0) and l2(b) = f(b). Note that
g ∈ F . Indeed, obviously g|[a,a1], g|[a1,b1], g|[b1,b] are bounded Darboux Baire
1 functions. So (Theorem II.2 from [4] and Theorem II.3.2 from [1]) they
are functionally connected. Thus from Lemma 5.2 from [3] and the fact that
g|(−∞,a] = f|(−∞,a], g|[b,+∞) = f|[b,+∞) are functionally connected, we infer
that g ∈ F . Now, let us notice that ρ(g, f) ≤ 1

3R. Then

B(g,
R

24
) ⊂ B(f,R). (24)

We will show that
B(g,

R

24
) ∩Q∗ = ∅. (25)

Let η ∈ B(g, R24 ). Let y0 ∈ (a1, b1) be such that g(y0) = f(x0) + R
6 . Let

δ0 > 0 be a real number such that (y0− δ0, y0 + δ0) ⊂ (a1, b1) and let ε0 = R
24 .
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Let G 6= ∅ be an arbitrary open interval such that G ⊂ (y0 − δ0, y0 + δ0).
There exists z0 ∈ G be such that g(z0) = f(x0) (since (a1, b1) \ E is dense in
(a1, b1)). Then

η(z0) < g(z0) +
R

24
= f(x0) +

R

24
= g(y0)− 3

24
R < η(y0)− R

12
,

so η(z0) /∈ (η(y0)− R
12 , η(y0)+ R

12 ). Then η(G) 6⊂ (η(y0)− R
12 , η(y0)+ R

12 ). Hence
we showed that there exist δ0 > 0 and ε0 > 0 such that for each nonempty open
set G ⊂ (y0−δ0, y0 +δ0), η(G) 6⊂ (η(y0)−ε0, η(y0)+ε0). Hence the function η
is not quasi-continuous at the point y0, which finishes the proof of (25). From
(24) and (25) we may conclude that the condition (23) holds.

According to (23) we may infer that γ(f,R,Q∗) ≥ R
24 . Therefore we deduce

that lim supR→0+
γ(f,R,Q∗)

R ≥ lim supR→0+

R
24
R = 1

24 > 0, so, Q∗ is porous at f
and we have proved the theorem in the case 1.

2. Assume that there exists point x0 ∈ R such that the function f is not
quasi-continuous. Then there exists R0 > 0 and δ0 > 0 such that for each
nonempty open set G ⊂ (x0 − δ0, x0 + δ0) we have

f(G) 6⊂ (f(x0)−R0, f(x0) +R0).

We will show that
B(f,

R0

4
) ∩Q∗ = ∅. (26)

Let η ∈ K(f, R0
4 ). Let Rη = R0

4 , δη = δ0. Let G ⊂ (x0 − δη, x0 + δη) be an
arbitrary nonempty open set. Then (by assumption) there exists y0 ∈ G such
that f(y0) /∈ (f(x0)−R0, f(x0)+R0). Hence η(y0) < f(y0)+ R0

4 < f(x0)− 3
4R0

or η(y0) > f(y0)−R0
4 > f(x0)+ 3

4R0. Thus η(y0) /∈ (f(x0)− 3
4R0, f(x0)+ 3

4R0).
Moreover f(x0)− R0

4 < η(x0) < f(x0) + R0
4 , so

(η(x0)− R0

4
, η(x0) +

R0

4
) ⊂ (f(x0)− 3

4
R0, f(x0) +

3
4
R0).

Hence η(y0) /∈ (η(x0) − R0
4 , η(x0) + R0

4 ). Consequently, η(G) 6⊂ (η(x0) −
R0
4 , η(x0) + R0

4 ), so we have shown that there exists δη > 0 and there ex-
ists Rη > 0 such that for each nonempty open set G ⊂ (x0 − δη, x0 + δη),
η(G) 6⊂ (η(x0)−Rη, η(x0) +Rη). Thus the function η is not quasi-continuous
at the point x0, which finishes the proof of (26).
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According to (26) for all R ≤ R0
4 B(f,R) ∩ Q∗ = ∅. Thus for R small

enough γ(f,R,Q∗) = R. Therefore we deduce that

lim sup
R→0+

γ(f,R,Q∗)
R

= lim sup
R→0+

R

R
= 1

so Q∗ is porous at f and we have proved this theorem in the case 2.

References

[1] A. M. Bruckner, Differentiation of Real Functions, Springer-Verlag
(1978).

[2] R. Engelking, General topology, Warszawa (1977).
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