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FUNCTIONS PRESERVING SEQUENCE
SPACES

Abstract

Let A and B be sets of real sequences. Let F (A, B) denote the
set of functions f : R → R that preserve A and B in the sense that
(f(an)) ∈ B for all sequences (an) ∈ A. These functions are general-
izations of convergence preserving functions first introduced by Rado.
We establish identities and inclusions for F (A, B) when A and B are
lp-spaces and other well-known sequence spaces. We also characterize
F (A, B) in terms of elementary classes of functions. Our characteriza-
tions are motivated by the work of Borśık, Červeňanský and Šalát.

1 Introduction and Notation

A function f : R → R is said to be convergence preserving provided that∑∞
n=1 f(an) converges whenever the real series

∑∞
n=1 an converges. These

functions are introduced by Rado in [2] where it is shown that f is convergence
preserving if and only if f is linear near the origin. This characterization is
first established by Rado in the setting of Banach spaces. The real-variable
result is then derived as a special case. This theorem is also obtained in [6]
via purely real-variable arguments and an even simpler proof is found in [4].
Generalizations of convergence preserving functions are investigated by Borśık,
Červeňanský and Šalát in [1]. Their study entails the f -transform concept.
Given a function f : R→ R the f -transform of the series

∑∞
n=1 an is the series∑∞

n=1 f(an). Three new classes of functions are defined in [1], in addition to
convergence preserving functions. These classes are the four combinations
obtained when the domain and range of the f -transform are chosen pairwise
from the set of convergent and absolutely convergent series.

In this paper we investigate functions for which the domain and range
of the f -transform are extended to sequence spaces. Specifically, if A and
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B are sets of real sequences we study the class of functions f such that the
transformed sequence (f(an)) belongs to B for each sequence (an) in A. A
number of our results extend those in [1] and [2]. Some these were announced
at the Summer Symposium in Real Analysis, XXII, at Santa Barbara.

Let (an) denote the sequence whose nth-term is the real number an and
let (0) denote the zero sequence. We work with the following sequence spaces.

ω = {(an) : an ∈ R}.

c0 = {(an) : an → 0 as n→∞}.

c00 = {(an) : an 6= 0 for finitely many n}.

cs = {(an) :
∑∞

n=1 an converges}.

lp = {(an) :
∑∞

n=1 |an|p converges}, p ∈ (0,∞).

l∞ = {(an) : sup{|an|} <∞}.

Let I =
⋂

0<p<∞
lp, U =

⋃
0<p<∞

lp and S = {c0, c00, cs, lp(p ∈ (0,∞]), I,U}.

The symbol ⊂ will denote proper containment and ⊆ will denote contain-
ment which may entail equality. Some of our results depend on inclusions for
the spaces above. An important chain of inclusions is that

c00 ⊂ I ⊂ lr1 ⊂
⋂

r1<s<r2

ls ⊂
⋃

r1<t<r2

lt ⊂ lr2 ⊂ U ⊂ c0 ⊂ l∞ (1)

where 0 < r1 < r2 <∞. Furthermore, if 0 < p ≤ 1 then

lp ⊂ cs ⊂ c0 but cs 6⊆ U . (2)

Definition 1.1. For A,B ⊆ ω let F (A,B) = {f : R → R : (f(an)) ∈ B for
all (an) ∈ A}.

The spaces F (A,B) entail those in [1] when A,B ∈ {cs, l1} :

F (cp) = F (cs, cs), F (acp) = F (l1, l1),

F (ac,c) = F (l1, cs), F (c,ac) = F (cs, l1).
(3)
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2 Basic Identities and Inclusions

We are mostly interested in studying the spaces F (A,B) where A,B ∈ S.
In all of these cases F (A,B) 6= φ since each such space contains the zero
function, z(x) = 0, x ∈ R. There are certain choices of A,B ∈ S for which
F (A,B) = {z}. These will appear in the next section. The first proposition is
a useful consequence of Definition 1.1.

Proposition 2.1. Let A1, A2, B1, B2 ⊆ ω.

(i) If B1 ⊆ B2 then F (A1, B1) ⊆ F (A1, B2);

(ii) If A1 ⊆ A2 then F (A2, B1) ⊆ F (A1, B1).

The notation in (3) and [1, Remark 2.11] imply that

F (cs, l1) ⊂ F (cs, cs) ⊂ F (l1, l1).

Moreover, [1, Theorem 2.6] contains the surprising identity

F (l1, l1) = F (l1, cs). (4)

It will follow from several characterization theorems in the next section that
for certain A1, B1, B2 ∈ S where B1 ⊂ B2, we have F (A1, B1) = F (A1, B2).
Here is an important example of this. Let q ∈ (0,∞). Assume f ∈ F (l∞, lq)
and x ∈ R. The constant sequence (an), where an = x, is an element of l∞.
It follows that (f(an)) ∈ lq which implies f(x) = 0. This proves that for each
q ∈ (0,∞),

F (l∞, lq) = {z}. (5)

Proposition 2.2. Let p, r1 ∈ (0,∞] and r2 ∈ [0,∞). Then we have the fol-
lowing:

(i)
⋃

0<s<r1

F (lp, ls) = F (lp,
⋃

0<s<r1

ls);

(ii)
⋂

s>r2

F (lp, ls) = F (lp,
⋂

s>r2

ls);

(iii) F (lp, lr1) ⊆ F (lp, lr2) whenever r1 < r2 and the inclusion is proper if
p <∞.

Proof. (i) If p =∞ then the proof of (5) shows that F (l∞,
⋃

0<s<r1
ls) = {z}

so we get equality in this case. Assume p < ∞. It is easy to verify (⊆) using
Definition 1.1. We prove (⊇) by contradiction. Suppose first that r1 <∞ and
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f ∈ F (lp,
⋃

0<s<r1
ls) but f 6∈

⋃
0<s<r1

F (lp, ls). Choose a natural number
k0 > 1/r1 and let sk = r1 − (k + k0)−1 for k ∈ N. There exists a sequence
(ak,n) ∈ lp such that (f(ak,n)) 6∈ lsk and

∑∞
n=1 |ak,n|p ≤ 1/2k. Let (bm) be the

usual diagonal enumeration of the set {ak,n : k, n ∈ N} where m is defined by
the pairing function m = 1

2 (k+n)(k+n−1)− (k−1). The sequence (bm) ∈ lp
since for each N ∈ N,

N∑
m=1

|bm|p ≤
N∑

k=1

N∑
n=1

|ak,n|p ≤
N∑

k=1

2−k < 1.

However, the transformed sequence (f(bm)) 6∈ lsk for any k since

N(N+1)/2∑
m=1

|f(bm)|sk ≥
N∑

n=1

|f(ak,n)|sk →∞

as N → ∞. This shows (f(bm)) 6∈ F (lp,
⋃

0<s<r1
ls) which is a contradiction.

That establishes (⊇) when r1 < ∞. For (⊇) in the case where r1 = ∞, the
proof is identical except that we let sk = k.

(ii) If p =∞ then equality follows from (5); if p <∞ then equality is easily
verified using Definition 1.1.

(iii) If p = ∞ then equality follows once more from (5). If p < ∞ then
(⊆) in (iii) is easily verified. The proper containment in (iii) is established by
example. Let f(x) = |x|p/r2 for x ∈ R. For each (an) ∈ lp,

∞∑
n=1

|f(an)|r2 =
∞∑

n=1

|an|p <∞,

and therefore (f(an)) ∈ lr2 . This shows f ∈ F (lp, lr2). Choose a sequence
(bn) ∈ lp such that (bn) 6∈ lp1 for any p1 < p. Then

∞∑
n=1

|f(bn)|r1 =
∞∑

n=1

|bn|(r1p)/r2 =∞

since (r1p)/r2 < p. This proves f 6∈ F (lp, lr1) which gives proper containment.

The next result also gives inclusions for F (A,B) when A or B is an lp-
space or union or intersection of lp-spaces. However, unlike Proposition 2.2,
the inclusions are proper.
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Proposition 2.3. Let r1 ∈ (0,∞], q ∈ (0,∞) and r2 ∈ [0,∞). Then we have
the following:

(i) F (
⋃

0<p<r1

lp, lq) ⊂
⋃

0<p<r1

F (lp, lq);

(ii)
⋂

p>r2

F (lp, lq) ⊂ F (
⋂

p>r2

lp, lq);

(iii) F (lr2 , lq) ⊂ F (lr1 , lq) whenever r1 < r2.

Proof. In each assertion (⊆) is easily verified using Definition 1.1 and (5).
We demonstrate proper inclusion with examples.

(i) Fix p1 ∈ (0, r1) and let f(x) = |x|p1/q. A similar calculation to that in
the proof of Proposition 2.2(iii) shows that f ∈ F (lp1 , lq) and consequently
f ∈

⋃
0<p<r1

F (lp, lq). Let p2 ∈ (p1, r1) and choose a sequence (bn) ∈ lp2 such

that (bn) 6∈ ls for any s < p2. Clearly (bn) ∈
⋃

0<p<r1

lp. However,

∞∑
n=1

|f(bn)|q =
∞∑

n=1

|bn|p1 =∞

since p1 < p2. This proves f 6∈ F (
⋃

0<p<r1

lp, lq).

(ii) We argue similarly as above. Fix p1 ∈ (r2,∞) and again let f(x) =
|x|p1/q. Then f ∈ F (lp1 , lq) and the transformed sequence (f(an)) ∈ lq when-
ever (an) ∈

⋂
p>r2

lp. This proves f ∈ F (
⋂

p>r2

lp, lq). Let p2 ∈ (p1,∞) and choose

a sequence (bn) ∈ lp2 such that (bn) 6∈ ls for any s < p2. A small calculation
shows (f(bn)) 6∈ lq which implies f 6∈

⋂
p>r2

F (lp, lq).

(iii) Let r ∈ (r1, r2) and let f(x) = |x|r/q to get the proper inclusion.

Theorem 3.4 in the next section shows that the proper inclusions in Propo-
sition 2.3 are replaced with equality when q =∞. Linear and algebraic struc-
ture properties for the spaces F (A,B) are established in the following result
which also extends [1, Theorem 2.8 and Remark 2.9] and [5, p. 542].

Proposition 2.4. Let A,B ⊆ ω.
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(i) If A and B are linear sequence spaces then F (A,B) is a linear space
under function addition and scalar multiplication;

(ii) Let A,B ∈ S. The space F (A,B) is closed under multiplication of func-
tions if and only if B ∈ S\{cs} or A = c00;

(iii) The space F (A,B) is closed under function composition whenever B ⊆
A.

Proof. (i) The proof is straightforward.

(ii) Sufficiency is obvious if A = c00. If B ∈ S\{cs} and A ∈ S, then
B ⊆ l∞ by (1), hence sufficiency in (ii) follows easily. We prove necessity in
(ii) with a counterexample. Let an = n−n and En = ((n + 1)−(n+1), n−n]
for n ∈ N. Clearly (an) 6∈ c00, but (an) ∈ I hence (an) ∈ A. Note also that⋃∞

n=1En = (0, 1]. Consider the function f : R→ R defined by

f(x) =
{

0 if x 6∈ (0, 1],
(−1)n/

√
n if x ∈ En.

The transformed sequence (f(an)) ∈ cs by Leibnitz’s test for alternating series.
However, (f ·f)(an) = 1/n so (f ·f) 6∈ cs.

(iii) The proof is straightforward.

3 Characterization Theorems

In this section we characterize many of the spaces F (A,B) in terms of well-
known and easily described classes of functions. Our results extend Theorem
A, Theorem 2.6 and Theorem 2.10 in [1] and [2, Theorem 1]. In particular, the
classes we consider include those of importance in [2, Theorem 1]: f ∈ F (cs, cs)
if and only if f is linear near zero; and in [1, Theorem 2.10]: f ∈ F (cs, l1) if
and only if f is identically zero in a neighborhood of 0. The classes of functions
are as follows:
F = {f : R→ R};
BNZ (bounded near zero) = {f ∈ F : ∃ M, δ > 0 such that |f(x)| <

M ∀ x ∈ (−δ, δ)};
CAZ (continuous at zero) = {f ∈ F : f is continuous at 0};
DAZ(g) (dominated at zero by g) = {f ∈ F : ∃ c, δ > 0 such that |f(x)| ≤

c|g(x)| ∀ x ∈ (−δ, δ)} (here g ∈ F);
LB (locally bounded) = {f ∈ F : ∀ n ∈ N,∃ Mn > 0 such that |f(x)| <

Mn ∀ x ∈ (−n, n)};
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LNZ (linear near zero) = {f ∈ F : ∃ a ∈ R, δ > 0 such that f(x) =
ax ∀ x ∈ (−δ, δ)};

ZAZ (zero at zero) = {f ∈ F : f(0) = 0};
ZE (zero everywhere) = {z};
ZNZ (zero near zero) = {f ∈ F : ∃ δ > 0 such that f(x) = 0 ∀ x ∈

(−δ, δ)}.

Given a function f ∈ F we often write f(·) in place of the mapping notation
x 7→ f(x). In particular, if r ∈ (0,∞) then | · |r denotes the function x 7→ |x|r.
The first result is a useful characterization of F (l1, l1) and is essentially proved
in [1, Theorem 2.6].

Proposition 3.1. F (l1, l1) = DAZ(| · |).

Proof. If f ∈ F (l1, l1) then [1, Theorem 2.6] shows f ∈ (ZAZ) ∩ (CAZ). It
follows from (5) in [1, Theorem 3.1] that f ∈ DAZ(| · |). Conversely, one also
sees in (5) of [1, Theorem 3.1] that f ∈ DAZ(| · |) whenever f ∈ F (l1, l1).

Proposition 3.1 is used next to give a similar characterization of F (lp, lq)
where p, q ∈ (0,∞).

Theorem 3.2. For p, q ∈ (0,∞) we have that F (lp, lq) = DAZ(| · |p/q).

Proof. To prove (⊆) let f ∈ F (lp, lq). If (an) ∈ l1 then (|an|1/p) ∈ lp and
hence (f(|an|1/p)) ∈ lq. It follows that the function |f(| · |1/p)|q ∈ F (l1, l1)
and similarly |f(−| · |1/p)|q ∈ F (l1, l1). By Proposition 3.1 there exists c, δ > 0
such that |f(±|x|1/p)|q ≤ c|x| for all x ∈ (−δ, δ). Therefore, whenever x ∈
(−δ1/p, δ1/p),

|f(x)| ≤ |f(|x|)|+ |f(−|x|)| = |f(||x|p|1/p)|+ |f(−||x|p|1/p)| ≤ 2c1/q|x|p/q.

This proves f ∈ DAZ(| · |p/q). For (⊇) let f ∈ DAZ(| · |p/q) and assume
c, δ > 0 are such that |f(x)| ≤ c|x|p/q for all x ∈ (−δ, δ). If (an) ∈ lp then
|f(an)|q ≤ cq|an|p for all sufficiently large n. This implies (f(an)) ∈ lq by the
comparison test and thus f ∈ F (lp, lq).

Note in Proposition 3.1 and Theorem 3.2 that the characterization of
F (lp, lq) is expressed in terms of the ratio, p/q.

Corollary 3.3. Let p, q ∈ (0,∞). Then F (lpt, lqt) = F (lp, lq) for each t ∈
(0,∞).

Proof. The equality follows from the simple observation thatDAZ(|·|pt/qt) =
DAZ(| · |p/q) for each t ∈ (0,∞).
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Suppose 0 < q < p < ∞. It is easy to check using Theorem 3.2 that
f ′(0) = 0 for each f ∈ F (lp, lq). However, the function g ∈ F defined by

g(x) =
{

0 if x is irrational,
|x|p/q if x is rational

shows there are elements of F (lp, lq) for which zero is the only point of differ-
entiability. When 0 < p ≤ q < ∞ there are functions in F (lp, lq) which are
not differentiable at any point; take g for example. In the special case when
p = q ∈ (0,∞), Corollary 3.3 and [1, Theorem 2.6] imply that the four Dini
derivatives of each function in F (lp, lq) are finite. The four Dini derivatives
can be distinct [1, Example 2.3].

Our next theorem is a characterization of F (A,B) when A or B is l∞.
The result extends (5) and shows that Theorem 3.2 is false if either lp or lq

are replaced with l∞. Part (iii) shows that the inclusions in Proposition 2.3
become equalities when q =∞.

Theorem 3.4. (i) F (l∞, B) = ZE for all B ∈ S\{l∞};

(ii) F (c00, l∞) = F ;

(iii) F (A, l∞) = BNZ for all A ∈ S\{c00, l∞};

(iv) F (l∞, l∞) = LB.

Proof. (i) To prove (⊆), note from (1) and (2) that c0 is the largest space
in S\{l∞}. It suffices by Proposition 2.1(i) to prove the result for c0. Let
f ∈ F (l∞, c0) and x ∈ R. The constant sequence (an), where an = x, is an
element of l∞ and hence (f(an)) ∈ c0. This implies f(x) = 0 for all x ∈ R
which gives (⊆). The inclusion (⊇) is obvious.

(ii) The inclusion (⊆) is obvious. For (⊇) let f ∈ F and (an) ∈ c00.
For some natural number m, an 6= 0 for exactly m − 1 values of n. So the
transformed sequence (f(an)) consists of at mostm distinct terms. This proves
f ∈ F (c00, l∞).

(iii) To verify (⊆) let A ∈ S\{c00, l∞} and f ∈ F . If f 6∈ BNZ then there
exists a sequence (an) with |an| ∈ (0, n−n) such that |f(an)| > n. The com-
parison test implies (an) ∈ A. However, (f(an)) 6∈ l∞ which is a contradiction.
This proves f ∈ BNZ. For (⊇) let f ∈ BNZ and assume M, δ > 0 are such
that |f(x)| < M whenever x ∈ (−δ, δ). If (an) ∈ A then an → 0 as n → ∞.
Therefore, |an| < δ for all sufficiently large n which implies |f(an)| < M for
all but finitely many n. This shows (f(an)) ∈ l∞ which gives (⊇).
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(iv) To establish (⊆) let f ∈ LB. Assume for each natural n there is a
number Mn > 0 such that |f(x)| < Mn for all x ∈ (−n, n). If (ak) ∈ l∞ then
|ak| < n0 for some n0 so |f(ak)| < Mn0 for all k. This shows (f(ak)) ∈ l∞

and thus f ∈ F (l∞, l∞). For (⊇) suppose f ∈ F but f 6∈ LB. Then for some
fixed n there exists xk ∈ (−n, n) such that |f(xk)| > k for each k ∈ N. The
sequence (xk) ∈ l∞ but the transformed sequence (f(xk)) 6∈ l∞ which is a
contradiction.

When A and B are as in Theorem 3.4 we have the proper inclusions

F (l∞, B) ⊂ F (l∞, l∞) ⊂ F (A, l∞) ⊂ F (c00, l∞).

In part (iv) of Theorem 3.4, it is not necessary for a function to be bounded
on R in order that it be an element of F (l∞, l∞). Consider the simple example
f(x) = x. Clearly f ∈ LB and thus f ∈ F (l∞, l∞).

We can now summarize conditions on the indices p, q, r and s which imply
F (lp, lq) is properly contained in F (lr, ls).

Corollary 3.5. Let (p, q), (r, s) ∈ (0,∞]× (0,∞]. Each of the following con-
ditions imply the proper inclusion F (lp, lq) ⊂ F (lr, ls) :

(i) p =∞ and q, r <∞;

(ii) r < p <∞ and either s = q <∞ or s < q ≤ ∞;

(iii) p < r <∞, q < s and qr < sp;

(iv) p = r <∞ and q ≤ s.

Proof. (i) Combine parts (i) and (iii) of Theorem 3.4 with Theorem 3.2, and
then observe that ZE ⊂ DAZ(| · |r/s) when s < ∞, and that ZE ⊂ BNZ
when s =∞.

(ii) When s = q <∞ the assertion follows from Proposition 2.3(iii). When
s < q ≤ ∞, combine Proposition 2.3(i) with Proposition 2.3(iii) if q <∞, and
with Theorem 3.4(iii) if q =∞.

(iii) For t ∈ (0,∞) the inequalities pt > r and qt < s are satisfied if
r/p < s/q which is equivalent to qr < sp. The assertion now follows from
Corollary 3.3 and Proposition 2.1.

(iv) If s < ∞ then the result follows from Proposition 2.2(iii). If s = ∞
then combine Theorem 3.2 and Theorem 3.4(iii) and note that DAZ(| · |p/q) ⊂
BNZ.

The next result deals with the spaces F (A,B) when A or B is c00 or c0.
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Theorem 3.6. (i) F (A, c00) = ZNZ for all A ∈ S\{c00, l∞};

(ii) F (c00, B) = ZAZ for all B ∈ S\{l∞};

(iii) F (A, c0) = (CAZ) ∩ (ZAZ) for all A ∈ S\{c00, l∞};

(iv) F (c0, B) = ZNZ for all B ∈ S\{c0, l∞}.

Proof. (i) To prove (⊆), note from (1) that I is the smallest space in
S\{c00, l∞}. It is thus sufficient by Proposition 2.1(ii) to prove F (I, c00) ⊆
ZNZ. Assume f ∈ F but f 6∈ ZNZ. Choose a strictly decreasing sequence
(an) such that an ∈ (0, n−n) and f(an) 6= 0. Then (an) ∈ I by the comparison
test, but (f(an)) 6∈ c00 which is a contradiction. To verify (⊇) let f ∈ ZNZ
and assume δ > 0 is such that f(x) = 0 for all x ∈ (−δ, δ). If (xn) ∈ A then
xn ∈ (−δ, δ) for all but finitely many n. Thus f(xn) = 0 for all but finitely
many n which shows f ∈ F (A, c00).

(ii) For (⊆), it follows from Proposition 2.1(i) that we need only prove
F (c00, c0) ⊆ ZAZ. If f ∈ F (c00, c0) then (f(0)) ∈ c0 since (0) ∈ c00. This
implies f(0) = 0. To verify (⊇) let f ∈ ZAZ and (an) ∈ c00. Since an = 0
for all but finitely many n, f(an) = 0 for all but finitely many n. This shows
f ∈ F (c00, c00) and from Proposition 2.1(i), f ∈ F (c00, B).

(iii) As in (i), to prove (⊆) we need only verify that F (I, c0) ⊆ (CAZ) ∩
(ZAZ). If f ∈ F (I, c0) then (f(0)) ∈ c0 since (0) ∈ I. This implies f(0) =
0 and hence f ∈ ZAZ. Suppose f 6∈ CAZ. There exists an ε > 0 and a
sequence (an) such that |an| ∈ (0, n−n) and |f(an)| > ε. Then (an) ∈ I by
the comparison test, but (f(an)) 6∈ c0 which is a contradiction. This shows
f ∈ CAZ. For (⊇) let f ∈ (CAZ)∩ (ZAZ). If (an) ∈ c0 then f(an)→ f(0) as
n→∞ and f(0) = 0. This proves the transformed sequence (f(an)) ∈ c0 and
hence f ∈ F (A, c0) by Proposition 2.1(ii).

(iv) To prove (⊆) we first assume B ⊆ cs and let f ∈ F (c0, B). It follows
from Proposition 2.1 that f ∈ F (cs, cs) and hence f ∈ F (cp) by (3). Following
[2, Theorem 1] there exists a ∈ R and δ > 0 such that f(x) = ax for all
x ∈ (−δ, δ). Choose a natural number n0 > 1/δ. The sequence (xn) = ((n0 +
n)−1) ∈ c0 so (f(xn)) ∈ cs. This implies a = 0 and f ∈ ZNZ. Now assume
B 6⊆ cs. We establish (⊆) by contradiction. Let f ∈ F (c0, B) and assume f 6∈
ZNZ. Choose a sequence (an) ∈ c0 such that (f(an)) 6∈ cs and |f(an)| ∈ (0, 1].
Let m0 = 0 and for each natural j let mj ∈ N satisfy mj |f(aj)|j ≥ 1/j. For
each k let Mk =

∑k−1
j=0 mj . Define the sequence (bn) as follows: given k and

i = 1, 2, ....,mk, let bn = ak where n = Mk + i. The terms of (bn) agree with
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the terms of (an) in succession on blocks of length mk. This implies (bn) ∈ c0.
Let p, k ∈ N with k > p. We have

Mk+1∑
n=1

|f(bn)|p =
k∑

j=1

mj |f(aj)|p ≥
k∑

j=p

mj |f(aj)|j ≥
k∑

j=p

1/j.

It follows that the transformed sequence (f(bn)) 6∈ lp so f 6∈ U . Since B ⊆ U ,
f 6∈ F (c0, B) which is a contradiction. This proves f ∈ ZNZ which gives
(⊆). For (⊇) let f ∈ ZNZ and assume δ > 0 is such that f(x) = 0 for all
x ∈ (−δ, δ). If (an) ∈ c0 then an ∈ (−δ, δ) for all but finitely many n so
f(an) = 0 for all but finitely many n. This proves f ∈ F (c0, c00) and hence
f ∈ B by Proposition 2.1(i).

In Theorem 3.6(iii), zero need be the only point of continuity of a function
f ∈ (CAZ) ∩ (ZAZ). As an example, consider [1, Example 2.4] where a ∈
R, a 6= 0, and

f(x) =
{

0 if x is irrational,
ax if x is rational.

We now characterize F (A,B) where A,B ∈ {I,U}.Our results for these spaces
are natural and appealing in the sense that F (A,B) is expressible in terms of
intersections and unions of F (lp, lq)-spaces.

Theorem 3.7. (i) F (U , I) =
⋂

0<p<∞

⋂
0<s<∞

F (lp, ls);

(ii) F (U ,U) = F (I,U) = F (I, I) =
⋃

0<p<∞

⋃
0<s<∞

F (lp, ls).

Proof. (i) Since F (U , I) ⊆ F (lp, I) for all p ∈ (0,∞), Proposition 2.2(ii)
implies that

F (U , I) ⊆
⋂

0<p<∞
F (lp, I) =

⋂
0<p<∞

⋂
0<s<∞

F (lp, ls).

For (⊇) let f ∈
⋂

0<p<∞
⋂

0<s<∞ F (lp, ls) and (an) ∈ U . Then (an) ∈ lr for
some r ∈ (0,∞) so the transformed sequence (f(an)) ∈ I.

(ii) We first show that

F (U ,U) =
⋃

0<p<∞

⋃
0<s<∞

F (lp, ls).
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Since F (U ,U) ⊆ F (lp,U) for all p ∈ (0,∞), Proposition 2.2(i) implies that

F (U ,U) ⊆
⋃

0<p<∞

⋃
0<s<∞

F (lp, ls).

Conversely, let f ∈
⋃

0<p<∞
⋃

0<s<∞ F (lp, ls) so that f ∈ F (lp, ls) for some
p, s ∈ (0,∞). If (an) ∈ U then (an) ∈ lr for some r ∈ (0,∞), thus f ∈
F (lr, l(rs)/p) by Corollary 3.3. The transformed sequence (f(an)) ∈ l(rs)/p

hence (f(an)) ∈ U . It is obvious that F (I, I) ⊆ F (I,U). Suppose f ∈⋃
0<p<∞

⋃
0<s<∞ F (lp, ls) and (an) ∈ I. Let q ∈ (0,∞) and assume p, s ∈

(0,∞) are such that f ∈ F (lp, ls). Corollary 3.3 implies f ∈ F (l(pq)/s, lq) thus
(f(an)) ∈ I. We now have that⋃

0<p<∞

⋃
0<s<∞

F (lp, ls) ⊆ F (I, I) ⊆ F (I,U).

We finish the proof by showing

F (I,U) ⊆
⋃

0<p<∞

⋃
0<s<∞

F (lp, ls).

The argument is by contradiction. Assume there is some f ∈ F (I,U) such
that f 6∈ F (lp, ls) for any p, s ∈ (0,∞). For each k there exists a sequence
(ak,n) ∈ l1/k such that (f(ak,n)) 6∈ lk. We can assume that

∞∑
n=1

|ak,n|1/k ≤ 1/2k

and, by Theorem 3.6(iii), that |f(ak,n)| ≤ 1 for all n and k. Let m0 = 0 and
define

mk = min{M ∈ N :
M∑

n=1

|f(ak,n)|k ≥ 1} and Mk =
k−1∑
j=0

mj .

Let (bm) be the row-by-row enumeration of the set {ak,n : k ∈ N, n =
1, 2, ...,mk}. Therefore, given k and n = 1, 2, ...,mk, m = Mk + n. We show
(bm) ∈ I and (f(bm)) 6∈ U .

Let r ∈ (0, 1) and k0 = min{k ∈ N : k > 1/r}; note that k0 ≥ 2. For all
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natural numbers K > k0,

MK+1∑
m=1

|bm|r =
K∑

k=1

mk∑
n=1

|ak,n|r

≤
k0−1∑
k=1

mk∑
n=1

|ak,n|r +
K∑

k=k0

mk∑
n=1

|ak,n|1/k

≤cr +
K∑

k=k0

1/2k

<cr + 1

where cr is a constant which depends only on r. It follows that (bm) ∈ lr which
implies (bm) ∈ I.

Now let r ∈ [1,∞) and choose a natural number k0 > r. Then for each
K > k0,

MK+1∑
m=1

|f(bm)|r =
K∑

k=1

mk∑
n=1

|f(ak,n)|r ≥
K∑

k=k0

mk∑
n=1

|f(ak,n)|k ≥ K − k0.

This shows that the transformed sequence (f(bm)) 6∈ lr and implies (f(bm)) 6∈
U . This is a contradiction.

In Theorem 3.7(iii) we have the equivalent expression⋃
0<p<∞

⋃
0<s<∞

F (lp, ls) =
⋃

0<r<∞
DAZ(| · |r) (6)

which follows from Theorem 3.2 and Corollary 3.3. Furthermore, by Theorems
3.6 and 3.7,

ZNZ ⊆ F (U , I) ⊆ F (U ,U) ⊆ (CAZ) ∩ (ZAZ).

The following examples demonstrate that these inclusions are proper.

Example 3.8. For i = 1, 2, 3, there are functions fi ∈ F such that

(i) f1 ∈ F (U , I) and f1 6∈ ZNZ;

(ii) f2 ∈ F (U ,U) and f2 6∈ F (U , I);

(iii) f3 ∈ (CAZ) ∩ (ZNZ) and f3 6∈ F (U ,U).
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Proof. (i) If En = ((n + 1)−1, n−1] then (0, 1] =
⋃∞

n=1En and the union is
disjoint. Let f1 be defined by

f1(x) =
{

0 if x 6∈ (0, 1],
|x|n if x ∈ En.

Clearly f1 6∈ ZNZ. Given p, s ∈ (0,∞), choose a natural number n0 ≥ p/s
and let x ∈ (0, n0). Since x ∈ En for some n > n0,

f1(x) = |x|n < |x|n0 ≤ |x|p/s.

This implies f1 ∈ DAZ(| · |p/s) for all p, s ∈ (0,∞) and therefore f1 ∈ F (U , I)
by Theorem 3.7(i) and Theorem 3.2.

(ii) From Theorem 3.7 we can take the simple example f2(x) = |x|.

(iii) Consider the function f3 defined by

f3(x) =
{

0 if x 6∈ (0, 1),
(log(x))−1 if x ∈ (0, 1).

It is obvious that f3 ∈ ZAZ and it is easy to check that f3 ∈ CAZ. To show
that f3 6∈ F (U ,U), it is sufficient by Theorem 3.7(ii) and Theorem 3.2 to verify
f3 6∈ DAZ(|·|1/k) for any k ∈ N. By l’Hopital’s rule we see that log(x)x1/k → 0
as x→ 0+. This implies there does not exist c, δ > 0 such that |f3(x)| ≤ c|x|1/k

for all x ∈ (−δ, δ). Therefore f3 6∈ DAZ(| · |1/k) so f 6∈ F (U ,U).

In the final theorem we characterize the spaces F (A,B) where A or B is
cs. Some of these characterizations have already been established in previous
theorems or are known results in the literature. Most notably, recall the
following results which motivated our present investigation: F (cs, cs) = LNZ,
[2, Theorem 1]; F (cs, l1) = ZNZ, [1, Theorem 2.10]; F (l1, cs) = DNZ(| · |),
[1, Theorem 2.6]. Furthermore, Theorems 3.4 and 3.6 give characterizations
of F (cs,B) where B ∈ {c0, l∞} and of F (A, cs) where A ∈ {c00, c0, l∞}. The
constructions in the next theorem are similar, but slightly more intricate, to
those in Proposition 2.2(i), Theorem 3.6(iv) and Theorem 3.7(ii). We give
two proofs of part (iii) below. The first is a simple consequence of Theorem
3.7(iii). The second proof involves a construction which is interesting in its
own right and does not depend on previous results.

Theorem 3.9. (i) F (cs,U) = ZNZ;

(ii) F (lp, cs) = DAZ(| · |p) for all p ∈ (0,∞);

(iii) F (I, cs) =
⋃

0<p<∞
F (lp, cs);
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(iv) F (U , cs) =
⋂

0<p<∞
F (lp, cs).

Proof. (i) It is easy to check (⊇) either directly from Definition 1.1 or
from Theorem 3.6(iv) and Proposition 2.1(ii). To prove (⊆) we show first
that F (cs, lq) ⊆ ZNZ for all q ∈ (0,∞). By [1, Theorem 2.10] and (1) it is
sufficient to take q ∈ (1,∞). Let f ∈ F (cs, lq) and (an) ∈ cs. The function
|f(·)|q ∈ F (cs, l1) and [1, Theorem 2.10] implies |f(·)|q ∈ ZNZ. Therefore,
f ∈ ZNZ so we now have

ZNZ =
⋃

0<q<∞
F (cs, lq) ⊆ F (cs,U).

By way of contradiction assume there is some f ∈ F (cs,U) such that f 6∈
ZNZ. For each natural k there exists a sequence (ak,n) ∈ cs such that the
transformed sequence (f(ak,n)) 6∈ lk. By the Cauchy criterion there exists

ck ∈ N such that r2 ≥ r1 ≥ ck implies
∣∣∣∑r2

n=r1
ak,n

∣∣∣ ≤ 1/2k. Define

dk = min{d ∈ N :
d∑

n=ck

|f(ak,n)|k ≥ 1}.

Let m0 = 0, mk = dk−ck +1 and Mk =
∑k−1

j=0 mj . Let (bm) be the row-by-row
enumeration of the set {ak,n : k ∈ N, n = ck, ..., dk} such that the kth block
of length mk is enumerated completely before the (k + 1)st block. Thus for
each k and n = ck, ..., dk, m = Mk + n. We show (bm) ∈ cs and (f(bm)) 6∈ U .

Let ε > 0 and choose K such that
∑∞

k=K 1/2k < ε. Given r1, r2 ∈ N with
r2 ≥ r1 ≥MK + 1, define

ki = min{k ∈ N : Mk < ri ≤Mk+1}, i = 1, 2.

Since k2 ≥ k1 ≥ K, it follows from the triangle inequality that

∣∣∣ r2∑
m=r1

bm

∣∣∣ ≤ k2∑
k=k1

1/2k ≤
∞∑

k=K

1/2k < ε.

The Cauchy criterion now implies (bm) ∈ cs.
To see that (f(bm)) 6∈ U , refer to the proof of Theorem 3.7(iii). This

produces the contradiction.

(ii) The proof of (⊆) is similar to the proof of (⊆) in Theorem 3.2 except
that we replace lq with cs and replace DAZ(| · |p/q) with DAZ(| · |p). The
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details are left to the reader. For (⊇) replace lq with cs and see the proof of
(⊇) in Theorem 3.2.

(iii) (Proof 1.) Since F (I, I) ⊆ F (I, cs) ⊆ F (I,U), the result follows
trivially from Theorem 3.7(iii) and (6).

(Proof 2.) For (⊆) note from (ii) that DAZ(| · |p) ⊆ F (I, cs) for all p ∈
(0,∞). Therefore, ⋃

0<p<∞
DAZ(| · |p) ⊆ F (I, cs).

We prove (⊇) by contradiction. Assume there exists f ∈ F (I, cs) such that
f 6∈ F (lp, cs) for any p ∈ (0,∞). For each k there is a sequence (ak,n) ∈ l1/k

such that the transformed sequence (f(ak,n)) 6∈ cs. As in part (ii) above and in
Theorem 3.7(ii), we construct a subsequence (bm) of the infinite array {ak,m :
k, n ∈ N} satisfying (bm) ∈ I and (f(bm)) 6∈ cs.

Use the Cauchy criterion to select εk > 0 with the property that for each
N ∈ N,

∣∣∣∑d
n=c f(ak,n)

∣∣∣ ≥ εk whenever c ≥ d ≥ N. Define sk = min{s ∈
N : s ≥ 1/εk} and note εksk ≥ 1. Choose a natural number Nk such that∑∞

n=Nk
|ak,n|1/k ≤ 1

2ksk
. Now select natural numbers dk ≥ ck ≥ Nk which

satisfy
∑dk

n=ck
|ak,n|1/k ≤ 1

2ksk
and |

∑dk

n=ck
f(ak,n)| ≥ εk Let m0 = s0 =

0, mk = dk − ck + 1 and let Mk =
∑k−1

j=0 mjsj . Define the sequence (bm) such
that for each k, bm replicates sk copies of the kth block, ak,ck

, ..., ak,dk
. Thus

for each k and n = 1, 2, ..., skmk, m = Mk + n.
To prove (bm) ∈ I let r ∈ (0, 1). Let k0 = min{k ∈ N : k > 1/r} and note

k0 ≥ 2. For each natural K > k0,

MK+1∑
m=1

|bm|r =
K∑

k=1

sk

(
dk∑

n=ck

|ak,n|r
)

≤
k0−1∑
k=1

sk

(
dk∑

n=ck

|ak,n|r
)

+
K∑

k=k0

sk

(
dk∑

n=ck

|ak,n|1/k

)

≤cr +
K∑

k=k0

1/2k

<cr + 1

where cr is a constant which depends only on r. This proves (bm) ∈ lr and
implies (bm) ∈ I.

To show that the transformed sequence (f(bm)) 6∈ cs let ε > 0 and M ∈ N.
If we choose k such that Mk + 1 ≥ M, then Mk+1 ≥ Mk + 1 ≥ M. Since the
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numbers sk > 0, we have that

∣∣∣ Mk+1∑
m=Mk+1

f(bm)
∣∣∣ =

∣∣∣sk

dk∑
n=ck

f(ak,n)
∣∣∣ ≥ skεk ≥ 1.

Therefore, the Cauchy criterion fails for the sequence (f(bm)) so (f(bm)) 6∈ cs.
This is a contradiction which ends the proof of (iii).

(iv) For (⊆) we have that F (U , cs) ⊆ F (lp, cs) for all p ∈ (0,∞), thus

F (U , cs) ⊆
⋂

0<p<∞
F (lp, cs).

To verify (⊇) let f ∈
⋂

0<p<∞ F (lp, cs) and (an) ∈ U . Then (an) ∈ lp for some
p ∈ (0,∞) which implies (f(an)) ∈ cs.

Example 3.8 and Theorem 3.9 establish the proper inclusions

ZNZ ⊂ F (U , cs) ⊂ F (I, cs) ⊂ (CAZ) ∩ (ZAZ).

Corollary 3.10. (i) F (U , I) = F (U , cs);

(ii) F (U ,U) = F (I, cs).

Proof. (i) Proposition 2.1(i) implies (⊆). To check (⊇) let p, s ∈ (0,∞) and
let r = p/s. By Theorem 3.2 and Corollary 3.3 we have

DAZ(| · |r) = F (lr, l1) = F (lp/s, l1) = F (lp, ls).

The result now follows from Theorem 3.9(iv) and Theorem 3.7(i).

(ii) This is obvious from Theorem 3.7(ii), Theorem 3.9(iii) and (6).
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