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INTERVAL MAPS AND KOENIGS’
SEQUENCES

Abstract

Let f be an interval map in a neighborhood of the fixed point 0 with
−1 < λ = f ′(0) < 0. Continuity of f is not assumed at points other
than the fixed point. It is shown that if either

f ◦ f(x) ≥ λ2x or f ◦ f(x) ≤ λ2x

for each x in a neighborhood of 0, then the Koenigs’ sequence {φk}

defined by φk(x) =
fk(x)

λk
converges uniformly to a limit φ in a neigh-

borhood of 0 with φ(0) = 0 and φ′(0) = 1. Two examples are presented,
the first of which is a C1 map f with f(0) = 0 and −1 < f ′(0) < 0 hav-
ing a divergent Koenigs’ sequence. The other example is a C1 convex
map g with g(0) = 0 and 0 < g′(0) < 1 for which the associated Koenigs’
sequence diverges and which has no orientation-reversing composition
square root that is differentiable at 0.

1 Introduction

The Koenigs’ sequence {φk} associated with an interval map f : I → I with

fixed point 0 in I and 0 < |f ′(0)| < 1 is defined by φk(x) =
fk(x)

(f ′(0))k
for each

x ∈ I, where fk denotes the k’th iterate of f . Our present study concentrates
on an interval map f : I → I with fixed point 0 in I and −1 < λ = f ′(0) < 0.

It is well-known that Koenigs’ sequence converges on a local neighborhood
of 0 if f ∈ C1+ε for some ε > 0. It is also well-known that f ∈ C1 is insufficient
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to guarantee convergence of Koenigs’ sequence. We are interested in finding
general conditions on f that ensure convergence of Koenigs’ sequence on a
neighborhood of 0. The limiting behavior of Koenigs’ sequence is dependent
on an interplay of the orbits of f and f2. We show that when either

f ◦ f(x) ≥ λ2x or f ◦ f(x) ≤ λ2x

on a neighborhood of 0, then Koenigs’ sequence converges uniformly on a
neighborhood of 0 to a limit φ with φ(0) = 0 and φ′(0) = 1. Furthermore,
it is shown that φ is invertible on each orbit of f in a neighborhood of 0.
Consequently, since φ satisfies the Schröder equation

φ ◦ f(x) = λφ(x) , (1)

it conjugates f orbitwise to its linearization λx that is, φ ◦ f ◦ φ−1(x) = λx .
Another interest in studying convergence properties of Koenigs’ sequences

is the problem of existence of iterative roots. Consider a map g having fixed
point 0 with 0 < λ2 = g′(0) < 1 and −1 < λ < 0. Suppose g satisfies either

g(x) ≥ λ2x or g(x) ≤ λ2x

on a neighborhood of 0, and let f be an orientation-reversing iterative square
root of g. A necessary condition for such an f to be differentiable at the fixed
point 0, with λ = f ′(0), is that the limit φ of the Koenigs’ sequence for g
satisfy the Schröder equation as it appears in (1) on a neighborhood of 0.

1.1 Koenigs’ Sequences

Suppose f : X → C is an analytic function where X is a neighborhood of the
origin in the complex plane, f(0) = 0, and 0 < |f ′(0)| < 1. G. Koenigs [3]
showed that the Schröder equation [4], φ ◦ f(z) = λφ(z) where λ is a scalar,
has a unique local analytic solution φ given by

φ(z) = lim
k→∞

φk(z) = lim
k→∞

fk(z)
λk

, (2)

where λ = f ′(0), φ(0) = 0, and φ′(0) = 1. The sequence {φk} is the Koenigs’
sequence for f . The Schröder equation was introduced in a more general form
by E. Schröder in 1871 [6] and has since been studied extensively ; traditionally
because of its connection with the problem of continuous iteration (see [9], p.
31). The Schröder equation is an eigenvalue equation of a composition opera-
tor. If φ is an invertible solution of the Schröder equation, then φ conjugates f
to its linearization λz that is, φ◦f ◦φ−1(z) = λz . There are numerous results
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concerning solutions of the Schröder equation and associated convergence of
Koenigs’ sequences. A number of authors [8], [4], [7], have considered the case
when f is an interval map. These results pertain to maps that are continuous
and strictly increasing on a neighborhood of the fixed point.

There is an independent motivation for investigating the limiting behav-
ior of Koenigs’ sequences [2]. The problem of obtaining smooth solutions of
the Feigenbaum-Cvitanović functional equation is related to the problem of
determining sufficient conditions on an interval self-map f to ensure conver-
gence of Koenigs’ sequence on a neighborhood of a stable fixed point 0 when
−1 < f ′(0) < 0. For a good introduction to this equation see [5].

2 Stable Fixed Points

Throughout this paper, I shall denote an interval of the reals of finite positive
length and will be regarded as the underlying topological space. If 0 ∈ I, then a
neighborhood η(0) shall refer to a subinterval of I having 0 as an interior point,
with corresponding left-neighborhood defined by η−(0) = η(0)∩{x ∈ I|x < 0}
and right-neighborhood η+(0) similarly defined. We begin with a result that
identifies an important class of functions.

Lemma 2.1. Let f : I → I with 0 ∈ I and f(0) = 0. Let λ and ε > 0 satisfy
−1 < λ± ε < 0. Then

λ− ε < f(x)
x

< λ+ ε (3)

for each x 6= 0 if and only if the orbits of f have the following properties :

1. If x < 0, then x(λ + ε)2k+1 < f2k+1(x) < x(λ − ε)2k+1 for each k ≥ 0,
and x(λ− ε)2k < f2k(x) < x(λ+ ε)2k for each k > 0.

2. If x > 0 , then x(λ− ε)2k+1 < f2k+1(x) < x(λ+ ε)2k+1 for each k ≥ 0,
and x(λ+ ε)2k < f2k(x) < x(λ− ε)2k for each k > 0.

Proof. Assume that (3) holds for each x ∈ I\{0}. It follows from (3), the
f -invariance of I, and the choice of ε, that

0 < x(λ+ ε) < f(x) < x(λ− ε) ≤ |x| (4)

for each x ∈ I−(0), and

−|x| ≤ x(λ− ε) < f(x) < x(λ+ ε) < 0 (5)

for each x ∈ I+(0). Successively applying (4) and (5) yields 1.) and 2.). The
converse follows from 1.) and 2.) with k = 0.
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If f : I → I has a fixed point 0 ∈ I with −1 < f ′(0) < 0, then there
is an f -invariant neighborhood η(0) for which f satisfies the conclusions of
Lemma 2.1 with λ = f ′(0). We now present a corresponding lemma for in-
terval self-maps where the trajectories converge to the stable fixed point in a
monotonic manner. In the following lemma, if I−(0) or I+(0) is empty, then
it is understood that the result is only valid for the one-sided neighborhood of
0.

Lemma 2.2. Let f : I → I with 0 ∈ I and f(0) = 0. Let λ and ε > 0 satisfy
0 < λ ± ε < 1. Then λ − ε < f(x)

x < λ + ε for each x 6= 0 if and only if the
orbits of f have the following properties :

1. If x < 0 , then x(λ+ ε)k < fk(x) < x(λ− ε)k for each k > 0.

2. If x > 0 , then x(λ− ε)k < fk(x) < x(λ+ ε)k for each k > 0.

Proof. For the given 0 < λ < 1 and ε > 0 assume that (3) holds for each
x ∈ I\{0}. It follows from (3) and the choice of ε that

x < x(λ+ ε) < f(x) < x(λ− ε) < 0 (6)

for each x ∈ I−(0), and

0 < x(λ− ε) < f(x) < x(λ+ ε) < x (7)

for each x ∈ I+(0). Successively applying (6) and (7) yields 1.) and 2.). The
converse follows from 1.) and 2.) with k = 1.

If f : I → I has a fixed point 0 ∈ I with 0 < f ′(0) < 1, then there is an f -
invariant neighborhood η(0) wherein f satisfies the conclusions of Lemma 2.2
with λ = f ′(0). Functions satisfying either Lemma 2.1 or Lemma 2.2 will be
referred to as being 0-local.

Definition 2.3. A function f is 0-local on I if f : I → I, 0 ∈ I, f(0) = 0,
and there is a λ and ε > 0 satisfying 0 < |λ| ± ε < 1 such that

λ− ε < f(x)
x

< λ+ ε

for each x 6= 0.

The notion of c-locality can be defined in a similar manner for any real c.
At times, it will be necessary to specify that f is 0-local on I with λ and the
given ε. The next result, which follows from the definition, presents a useful
property of 0-local functions.
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Proposition 2.4. If f is 0-local on I with λ, then fn is 0-local on I with λn

for each n > 0.

A function satisfying the conditions of Lemma 2.1 is a strictly decreasing
function of its orbits, and a function satisfying the conditions of Lemma 2.2 is
a strictly increasing function of its orbits. The following lemma is an improve-
ment of Lemma 2.1 and Lemma 2.2 for interval maps that are differentiable
at the fixed point.

Lemma 2.5. Let f be 0-local on I with λ = f ′(0) and ε. Then there is a
sequence of functions {τk}∞k=1 such that fk(x) = x

∏k
ν=1(λ+ τν(x)) for each

x ∈ I and k > 0, where τk : I → (−ε, ε ), τk(0) = 0, τk is continuous at 0,
and τk

k→ 0 uniformly on I.

Proof. Define

τk(x) =


f(fk−1(x))
fk−1(x)

− λ , if x ∈ I\{0} ;

0 , if x = 0 ,

and note that τk+1 = τk ◦ f for each k > 0. The formula for fk(x) is verified
by substitution of the given formula for τk. We conclude from Lemma 2.1
and Lemma 2.2 that τk

k→ 0 uniformly on I. The 0-locality of f and the
differentiability of f at 0 imply that τk is continuous at 0.

The final lemma of this section provides a means of constructing and rep-
resenting a function in the form stated in the preceding lemma.

Lemma 2.6. Let ε > 0, 0 < |λ| ± ε < 1, and let τ : I → (−ε, ε ) with 0 ∈ I,
τ(0) = 0, and τ continuous at 0. If

f(x) = x(λ+ τ(x)) (8)

for each x ∈ I, then f is 0-local on I with λ = f ′(0) and ε. Let τ1 = τ

and τk+1 = τk ◦ f for each k > 0. Then fk(x) = x
∏k
ν=1(λ+ τν(x)) for each

x ∈ I and k > 0, where τk : I → (−ε, ε ), τk(0)=0, τk is continuous at 0, and
τk

k→ 0 uniformly on I.

Proof. Since (8) holds for each x ∈ I,

τ(x) =

{
f(x)
x
− λ , if x ∈ I\{0} ;

0 , if x = 0 .
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By assumption τ : I → (−ε, ε ) and τ is continuous at 0. Consequently, (3)
holds for each x ∈ I\{0} with λ = f ′(0). It follows that f is 0-local on I with
λ = f ′(0) and ε. Since {τk}∞k=1 satisfies the recursion formula τk+1 = τk ◦ f ,
the proof is complete.

Lemma 2.6 will be used to construct an interval map for which the associ-
ated Koenigs’ sequence diverges everywhere except at the fixed point.

3 Convex Functions and Stable Fixed Points

A study of the convexity relationship between an interval self-map and its
second iterate in a neighborhood of a stable fixed point will be useful for
establishing sufficient conditions for convergence of Koenigs’ sequences. We
begin with a result that reveals a convexity relationship between a twice dif-
ferentiable function f and its second iterate f2 in a neighborhood of a stable
fixed point 0 when −1 < f ′(0) < 0.

Proposition 3.1. Let f : I → I be twice differentiable with 0 ∈ I, f(0) = 0,
−1 < f ′(0) < 0, and f ′′(0) > 0. If f ′′ is continuous at 0, then there is a
neighborhood of 0 wherein f is strictly convex and f2 is strictly concave.

Proof. If g = f2, then g′′(0) = f ′(0)f ′′(0)(1 + f ′(0)) and therefore f ′′(0)
and g′′(0) have opposite signs. Since f ′′(0) > 0 and f ′′ is continuous at 0,
there is a neighborhood of 0 wherein f ′′(x) > 0 and g′′(x) < 0.

The proof of Proposition 3.1 yields the following related result.

Proposition 3.2. Let f : I → I be twice differentiable with 0 ∈ I, f(0) = 0,
either f ′(0) < −1 or f ′(0) > 0, and f ′′(0) > 0. If f ′′ is continuous at 0, then
there is a neighborhood of 0 wherein f and f2 are both strictly convex.

If f ′′(x) > 0 for each x in a neighborhood of 0 but f ′′ is discontinuous at
0, then the conclusion of Proposition 3.1 is no longer ensured. The following
example illustrates this fact.

Example 3.3. Let

f(x) =
{

x(x/2 + µ), if x ≤ 0 ;
x(x/2 + µ) + ρ

∫ x
0
t2 sin (1/t)dt, if x > 0 ,

where −1 < µ < 0 and 1 + µ < ρ < 1. Therefore,

f ′(x) =
{

µ+ x, if x ≤ 0;
µ+ x+ ρx2 sin (1/x), if x > 0 ,
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and

f ′′(x) =
{

1, if x ≤ 0;
1 + 2ρx sin (1/x)− ρ cos (1/x), if x > 0 .

Clearly f is strictly convex for x ≤ 0, and f ′′(x) > 1− ρ− 2ρx for each x > 0.
Since ρ < 1, there is a δ > 0 such that f ′′(x) > 0 for each x ∈ [−δ, δ]. Let f
be 0-local on η(0) ⊆ [−δ, δ]. Then µ = f ′(0), f ′′ is discontinuous at 0, and f
is strictly convex on η(0). Let g = f2 and let xk = 1/2kπ for k > 0. Then

g′′(xk) =f ′′(f(xk))(f ′(xk))2 + f ′′(xk)f ′(f(xk))

=(µ+ xk)2 + (1− ρ)(µ+ f(xk))
k−→µ(1 + µ− ρ) > 0 ,

and therefore there is a K > 0 such that g′′(xk) > 0 for each k ≥ K. Thus f2

is not concave on any neighborhood of the fixed point 0.

The following proposition is closely associated with convergence of both
{φk} and {φ′k} on a neighborhood of the fixed point 0.

Proposition 3.4. Let f : I → I with 0 ∈ I, f(0) = 0, −1 < λ = f ′(0) < 0,
and f ′′(0) > 0. Then there is a neighborhood η(0) wherein

λx < f(x) and f ◦ f(x) < λ2x

for each x 6= 0.

Proof. Since f ′′(0) > 0, there is a neighborhood ζ(0) wherein f ′(x) < λ for
each x ∈ ζ−(0) and λ < f ′(x) for each x ∈ ζ+(0). It follows from the Mean
Value Theorem that λx < f(x) for each x ∈ ζ(0)\{0}. If g = f2, then g : I → I
with g(0) = 0, 0 < λ2 = g′(0) < 1, and g′′(0) = f ′(0)f ′′(0)(1 + f ′(0)) < 0.
Proceeding in a manner similar to the above shows that there is a neighborhood
η(0)⊆ζ(0) with the required properties.

The next proposition presents conditions under which concavity of f2 im-
plies convexity of f .

Proposition 3.5. Let f : I → I, 0 ∈ I, f(0) = 0, −1 < f ′(0) < 0, and let f
be differentiable with f ′ continuous at 0. If f2 is concave on a neighborhood
of 0, then f is convex on a neighborhood of 0.

Proof. Let f be 0-local on η(0) with f ′(x) < 0 for each x ∈ η(0) and f2

concave on η(0). Let x, y ∈ η−(0) and x < y. We will show that f ′(x) ≤ f ′(y).
Since (f2)′(y) ≤ (f2)′(x), we have

f ′(y)f ′(f(y)) ≤ f ′(x)f ′(f(x)), and therefore
f ′(y)
f ′(x)

≤ f ′(f(x))
f ′(f(y))

.
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Furthermore since (f2)′(f(x)) ≤ (f2)′(f(y)), it follows that

f ′(f(x))f ′(f2(x)) ≤ f ′(f(y))f ′(f2(y)) and
f ′(y)
f ′(x)

≤ f ′(f(x))
f ′(f(y))

≤ f ′(f2(y))
f ′(f2(x))

.

Continuing in this manner we obtain

f ′(y)
f ′(x)

≤ f ′(f2k−1(x))
f ′(f2k−1(y))

≤ f ′(f2k(y))
f ′(f2k(x))

≤ lim
k→∞

f ′(f2k(y))
f ′(f2k(x))

= 1 ;

where in taking the limit we used the fact that f ′ is continuous at 0. We
conclude that f ′(x) ≤ f ′(y). Similarly, it can be shown that if x, y ∈ η+(0)
and x < y, then f ′(x) ≤ f ′(y). The continuity of f ′ at 0 implies that f ′ is
increasing on η(0).

The proof of Proposition 3.5 shows that if f2 is strictly concave on a
neighborhood of 0, then f is strictly convex on a neighborhood of 0. The
proof also indicates that with the additional assumptions that f is 0-local on
I and f ′(x) < 0 for each x ∈ I, then f2 concave on I implies that f is convex
on I. Some interesting aspects of Proposition 3.5 are highlighted in the next
example.

Example 3.6. Let −1 < µ < 0, let α, β be positive real numbers, and let

f(x) =
{
x(αx+ µ), if x ≤ 0;
x(βx+ µ), if x > 0.

Then f(0) = 0, f ′(0) = µ, and f ′ is continuous. We are led to the following
conclusions :

1. If α/β ∈ (0, |µ|)
⋃

(1/|µ|,∞), then there is an f -invariant neighborhood
η(0) for which f is strictly convex and f ′′ exists and is bounded on η(0)\
{0} ; however, f2 is not concave on any neighborhood of 0. Note that
f ′′(0) does not exist.

2. If α/β ∈ (|µ|, 1/|µ|), then there is an f -invariant neighborhood η(0) for
which f2 is strictly concave, f is strictly convex, and f ′′ exists and is
bounded on η(0)\{0}. Note that f ′′(0) exists if and only if α = β.

The proof of Proposition 3.5 yields the following result.

Proposition 3.7. Let f : I → I, 0 ∈ I, f(0) = 0, 0 < f ′(0) < 1, and let f be
differentiable with f ′ continuous at 0. If f2 is concave on a neighborhood of
0, then f is concave on a neighborhood of 0.

Note that under the assumptions of Proposition 3.7 if f2 is strictly concave
on a neighborhood of 0, then f is strictly concave on a neighborhood of 0.
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4 A Preliminary Result

Consider a 0-local map g on I with 0 ∈ I◦ and 0 < g′(0) < 1. If f ◦f = g, then
f is referred to as an iterative square root of g. An iterative square root f is
orientation-reversing if f(I−(0))⊆I+(0) and f(I+(0))⊆I−(0). The existence
of an orientation-reversing iterative square root of g is closely associated with
convergence of Koenigs’ sequences. We will now present a result that will lead
to a description of sufficient conditions for uniform convergence of Koenigs’
sequences. Note that D−f and D+f refer to the derivates of f defined by

D−f(x) = lim sup
y→x−

f(y)− f(x)
y − x

and D+f(x) = lim inf
y→x+

f(y)− f(x)
y − x

.

Lemma 4.1. Let g be 0-local on I with 0 ∈ I◦, 0 < λ2 = g′(0) < 1, and g(x) ≤
λ2x for each x ∈ I. If f is an orientation-reversing iterative square root of
g, then f(x)/x is increasing on each of the orbits of g. If D−f(0) ≤ D+f(0),
then f(x)/x is increasing on each of the orbits of f .

Proof. We first prove that f(x)/x is increasing on the orbits of g on I−(0).
If x ∈ I−(0), then

g(x)
x
≥ λ2 ≥ g(f(x))

f(x)
, (9)

and multiplying (9) by f(x)/g(x) gives

f(x)
x
≤ g(f(x))

g(x)
and equivalently

f(x)
x
≤ f(f2(x))

f2(x)
=
f(g(x))
g(x)

. (10)

The result follows from the latter inequality in (10) since x < f2(x) = g(x).
The proof that f(x)/x is increasing on each of the orbits of g on I+(0) is
similar, except that we consider an x ∈ I+(0) and each of the above inequalities
is reversed.

With the additional assumption that D−f(0) ≤ D+f(0), we will now show
that f(x)/x is increasing on each of the orbits of f on I. It is sufficient to
consider the orbit of an arbitrary x ∈ I−(0) :

f(f2k(x))
f2k(x)

k↗ µ ≤ D−f(0) ≤ D+f(0) ≤ ρ k↙ f(f2k+1(x))
f2k+1(x)

for some real numbers µ and ρ. The conclusion follows.

Under the assumptions of Lemma 4.1 if f is differentiable at the fixed
point, then f(x)/x is increasing on each of the orbits of f . Note however that
we can’t conclude that f is 0-local on the entire interval I. If in the statement
of Lemma 4.1 one assumes that g(x) ≥ λ2x for each x ∈ I, then f(x)/x is a
decreasing function of the orbits of g.
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5 Convergence of Koenigs’ Sequences

If f is 0-local on I with −1 < f ′(0) < 0, then φk(x) < 0 for each x < 0,
φk(0) = 0, φk(x) > 0 for each x > 0, and φk is strictly increasing on each of
the orbits of f on I. Thus, if {φk} converges to a limit φ, then φ(0) = 0 and,
as we shall see, φ is strictly increasing on each of the orbits of f on I. We now
present the principal result.

Theorem 5.1. Let f be defined on a neighborhood of 0 with f(0) = 0 and
−1 < λ = f ′(0) < 0. If either f ◦ f(x) ≤ λ2x or f ◦ f(x) ≥ λ2x on a
neighborhood of 0, then Koenigs’ sequence converges uniformly to a limit φ
on a neighborhood of 0 with φ(0) = 0 and φ′(0) = 1. The limit φ is invertible
on each orbit of f in a neighborhood of 0 and conjugates f orbitwise to its
linearization λx, that is φ ◦ f ◦ φ−1(x) = λx .

Proof. We assume without loss of generality that f is 0-local on I with ε.
We present the proof only for the case when f ◦ f(x) ≤ λ2x for each x ∈ I.
The proof for the other case is similar. Let x ∈ I−(0). Since f satisfies the
conditions of Lemma 4.1 and f is differentiable at 0, it follows that

f(f2k(x))
f2k(x)

k↗ λ k↙ f(f2k+1(x))
f2k+1(x)

(11)

where the convergence is uniform on I−(0). Consequently, for each k ≥ 0 we
have

f2(f2k+1(x))
f2k+1(x)

≤ λ2 , λ2 ≤ f2(f2k(x))
f2k(x)

and
f(f2k(x))
f2k(x)

≤ λ . (12)

Multiplication of the first inequality in (12) by f2k+1(x)/λ2k+3 gives

φ2k+1(x) ≤ φ2k+3(x) (13)

for each k ≥ 0. Similar manipulation of the latter two inequalities in (12)
shows that for each k ≥ 0,

φ2k+2(x) ≤ φ2k(x) and φ2k+1(x) ≤ φ2k(x) . (14)

Dividing (11) by λ yields

f(f2k+1(x))/λ
f2k+1(x)

k↗ 1 k↙ f(f2k(x))/λ
f2k(x)

and equivalently
φ2k+2(x)
φ2k+1(x)

k↗ 1 k↙ φ2k+1(x)
φ2k(x)

, (15)
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where the convergence is uniform on I−(0). We conclude from (13), (14), and
(15), that limk→∞ φk(x) = φ(x) exists and

φ2k+1(x) k↗ φ(x) k↙ φ2k(x) (16)

for each x ∈ I−(0). To prove that the convergence in (16) is uniform on I−(0)
we consider

φ2k(x)− φ2k+1(x) = |φ2k(x)|
∣∣∣∣1− φ2k+1(x)

φ2k(x)

∣∣∣∣ . (17)

Since f is 0-local on I with ε, then

|φ2k(x)| ≤ |φ1(x)|=
∣∣∣∣f(x)
λ

∣∣∣∣< |x||ε− λ||λ|
≤ |I

−(0)||ε− λ|
|λ|

. (18)

Let δ > 0 be given. It follows from the uniform convergence in (15) that there
is a K(δ) ≥ 0 such that∣∣∣∣1− φ2k+1(x)

φ2k(x)

∣∣∣∣ < δ

(
|λ|

|I−(0)||ε− λ|

)
(19)

for every x ∈ I−(0) and k > K. We conclude from (16), (17), (18), and (19),
that φ2k(x)−φ2k+1(x) < δ for every x ∈ I−(0) and k > K. Since φk(0) = 0 for
each k ≥ 0, φ(0) = 0. The proof that {φk} converges uniformly on I−(0)∪{0}
is complete. In an entirely similar manner it can be shown that {φk} converges
uniformly on I+(0) ∪ {0}. The fact that φ1(x) ≤ φ(x) ≤ φ0(x) for each x ∈ I
and φ′1(0) = 1 = φ′0(0) shows that φ′(0) = 1.

To prove that φ is strictly increasing, and therefore invertible, on each orbit
of f in I+(0), it is sufficient to prove that φ(f2(x)) < φ(x) for an arbitrary
x ∈ I+(0). Let x ∈ I+(0). Since f is 0-local on I with ε, we have

0 < f2k(x)(λ+ ε)2 < f2(f2k(x)) < f2k(x)(λ− ε)2

for each k ≥ 0. It follows that φ2k(f2(x)) < φ2k(x)(λ − ε)2 for each k ≥ 0,
and therefore φ(f2(x)) ≤ φ(x)(λ− ε)2 < φ(x) , which concludes the proof for
x ∈ I+(0). The proof for x ∈ I−(0) is similar. An alternate proof uses the
fact that φ satisfies the Schröder equation.

The proof of Theorem 5.1 yields the following corollary.

Corollary 5.2. Let f be 0-local on I with −1 < λ = f ′(0) < 0. If f ◦ f(x) ≤
λ2x for each x ∈ I, then φ2k+1(x) k↗ φ(x) k↙ φ2k(x) , and if f ◦ f(x) ≥ λ2x
for each x ∈ I, then φ2k(x) k↗ φ(x) k↙ φ2k+1(x) . The convergence is uniform
in both cases with φ(0) = 0 and φ′(0) = 1.
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Functions satisfying the conditions of Theorem 5.1 are presented in the
following proposition.

Proposition 5.3. Let p(x) = x(αx + λ) and q(x) = x(βx + λ) for each
x ∈ R with −1 < λ < 0 and 0 < α < β < −α/λ. If f is a function satisfying
p(x)≤f(x)≤q(x) on a neighborhood of 0, then f ′(0) = λ and f ◦ f(x) ≤ λ2x
on a neighborhood of 0.

The authors thank the referee for the following simplified proof of Propo-
sition 5.3.
Proof. It is clear that f ′(0) = λ. Using the fact that q is decreasing on a
neighborhood of 0, we get

f(f(x)) ≤ q(f(x)) ≤ q(p(x)) = λ2x+ (λα+ λ2β)x2 +O(x3) ,

and it follows immediately from the conditions on α and β that λα+ λ2β < 0.

Functions satisfying the conditions of Proposition 3.4 also satisfy the con-
ditions of Theorem 5.1. Other examples include those described in Proposi-
tion 3.1 and Proposition 3.5. We have the following additional corollary of
Theorem 5.1.

Corollary 5.4. Let g be 0-local on I with λ2 = g′(0) and −1 < λ < 0. Let
f be an orientation-reversing iterative square root of g with λ = f ′(0). If
g(x) ≤ λ2x for each x ∈ I, then the Koenigs’ sequence for g satisfies

λφk(x) k↗ λφ(x) = φ(f(x)) k↙ φk(f(x)) ;

and if g(x) ≥ λ2x for each x ∈ I, then

φk(f(x)) k↗ φ(f(x)) = λφ(x) k↙ λφk(x) .

The convergence is uniform on I in both cases, with φ(0) = 0 and φ′(0) = 1.

Without prior knowledge of the existence of an orientation-reversing iter-
ative square root of g, the following result can be obtained.

Proposition 5.5. Let g be defined on a neighborhood of 0 with g(0) = 0 and
0 < λ2 = g′(0) < 1. If g(x) ≤ λ2x on a neighborhood of 0, then for each x < 0
and y > 0 on a neighborhood of 0 the Koenigs’ sequence for g satisfies

−∞ ≤ φ(x) k↙ φk(x) < 0 = φ(0) ≤ φ(y) k↙ φk(y) .

If g(x) ≥ λ2x on a neighborhood of 0, then for each x < 0 and y > 0 on a
neighborhood of 0 the Koenigs’ sequence for g satisfies

φk(x) k↗ φ(x) ≤ φ(0) = 0 < φk(y) k↗ φ(y) ≤ ∞ .
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Proof. We assume without loss of generality that g is 0-local on I. If g(x) ≤
λ2x for each x ∈ I, then for each x ∈ I and k ≥ 0 we have g(gk(x)) ≤ λ2gk(x)
and therefore

φk+1(x) =
g(gk(x))
λ2(k+1)

≤ λ2gk(x)
λ2(k+1)

= φk(x) .

The conclusion follows from the above inequality along with the fact that
φk(x) < 0 for each x ∈ I−(0), φk(0) = 0, and φk(x) > 0 for each x ∈ I+(0).
The proof for the case where g(x) ≥ λ2x is similar.

Let g be convex and 0-local on a closed interval I with 0 ∈ I◦ and 0 < λ2 =
g′(0) < 1. It is well-known that there exists an orientation-reversing iterative
square root of g on I. As well, g satisfies the conditions of Proposition 5.5.
It follows from Theorem 5.1 that a necessary condition for the existence of an
orientation-reversing iterative square root f that is differentiable at 0 is that
the limit φ of the Koenigs’ sequence for g satisfy the Schröder equation (1) for
each x ∈ I.

6 Divergence of Koenigs’ Sequences

We will now construct a 0-local map f with −1 < λ = f ′(0) < 0 for which the
associated Koenigs’ sequence diverges everywhere except at the fixed point.
Once this has been accomplished, we will then see that f can easily be redefined
to be a C1 map with divergent Koenigs’ sequence.

Example 6.1. Let −1/e < λ < 0, 0 < ε < −λ, 0 < σ < log (1− ε/λ), and let

f(x) = xλ eσP (x) for each x ∈ I ,

where the interval I and the function P are defined as follows : Let a0 < 0 and
ak = a0 λ

k
∏k
ν=1 e

σ/ν for each k > 0. Let I = [a0, a1], and define

P (x) =


1

2k + 1
, if x ∈ [a2k, a2k+2) , k ≥ 0 ;

0 , if x = 0 ;
1

2k + 2
, if x ∈ (a2k+3, a2k+1] , k ≥ 0 .

Then f is 0-local on I with λ = f ′(0), and the Koenigs’ sequence for f
satisfies

lim
k→∞

φk(x) =

 −∞ , if x ∈ [a0, 0) ;
0 , if x = 0 ;

+∞ , if x ∈ (0, a1] .
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Proof. It follows that |ak+1| < |ak| for each k ≥ 0 and a2k
k↗ 0 k↙ a2k+1 .

Thus P : I → [0, 1], P (0) = 0, and P is continuous at 0. Now define the
function τ(x) = λ

(
eσP (x) − 1

)
for each x ∈ I. Then τ : I → (−ε, 0 ], τ(0) = 0,

and τ is continuous at 0. Let

f(x) = x(λ+ τ(x)) = xλ eσP (x)

for each x ∈ I. By Lemma 2.6 we conclude that f is 0-local on I with λ = f ′(0).
For each k ≥ 0,

f(ak) = akλ e
σP (ak) = a0 λ

k+1 eσ
Pk+1
ν=1 1/ν = ak+1

and therefore fk(a0) = ak. Since f is strictly decreasing on I, it follows that
for each k ≥ 0,

f([a2k, a2k+2)) ⊂ (a2k+3, a2k+1] and f((a2k+3, a2k+1]) ⊂ [a2k+2, a2k+4) .

Let P1 = P and τ1 = τ . Applying Lemma 2.6, we define the sequence {τk}∞k=1

by setting Pk+1 = Pk ◦ f and τk+1 = τk ◦ f for each k > 0. Thus,

Pk(x) =


1

2n+ k
, if x ∈ [a2n, a2n+2) , n ≥ 0 ;

0 , if x = 0 ;
1

2n+ 1 + k
, if x ∈ (a2n+3, a2n+1] , n ≥ 0 ,

for each k > 0. Therefore Pk : I → [0, 1/k], Pk(0) = 0, Pk is continuous at 0,
and Pk

k→ 0 uniformly on I. For each k > 0,

τk(x) =

 λ
(
e

σ
2n+k − 1

) , if x ∈ [a2n, a2n+2) , n ≥ 0 ;
0 , if x = 0 ;

λ
(
e

σ
2n+1+k − 1

) , if x ∈ (a2n+3, a2n+1] , n ≥ 0 ,

and therefore τk : I → [λ(eσ/k − 1), 0 ] ⊂ (−ε, 0 ], τk(0) = 0, τk is continuous
at 0, and τk

k→ 0 uniformly on I. In accordance with Lemma 2.6, for each
x ∈ I and k > 0 we have

fk(x) = x

k∏
ν=1

(λ+ τν(x)) = xλk
k∏
ν=1

eσPν(x) = xλkeσ
Pk
ν=1Pν(x),

and

φk(x) =
fk(x)
λk

= x eσ
Pk
ν=1Pν(x) . (20)
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If z ∈ I−(0), then z ∈ [a2n, a2n+2) for some n ≥ 0. Using (20) gives

φk(z) = z eσ
Pk
ν=11/(2n+ν) k−→−∞.

Similarly, if z ∈ I+(0), then z ∈ (a2n+3, a2n+1] for some n ≥ 0 and therefore

φk(z) = z eσ
Pk
ν=11/(2n+1+ν) k−→+∞.

For an interval map f with f(0) = 0 and −1 < f ′(0) < 0 it is well-known
that Koenigs’ sequence converges if f ∈ C1+ε for some ε > 0. We will now
illustrate by means of an example that C1 is insufficient to ensure convergence
of Koenigs’ sequence. The map defined in Example 6.1 can easily be redefined
to be a C1 function with divergent Koenigs’ sequence. This is achieved in the
following manner.

Example 6.2. Let −1/e < λ < 0, 0 < ε < −λ, 0 < σ < log (1− ε/λ), and let

f(x) = xλ eσP (x) for each x ∈ I ,

where the interval I and the function P are defined as follows : Let a0 < 0 and
ak = a0 λ

k
∏k
ν=1 e

σ/ν for each k > 0. Let I = [a0, a1], and define P (0) = 0
and P (ak) = 1/(k + 1) for each k ≥ 0. Let P be C1 on I \ {0} with P ′

strictly decreasing on both I−(0) and I+(0). Then f is C1 and 0-local on I
with λ = f ′(0) and f has a divergent Koenigs’ sequence.

Proof. That such a P exists follows from the special nature of the sequence
{ak}. Note that P ′ is necessarily negative on I−(0) with limx→0− P

′(x) = −∞
and P ′ is positive on I+(0) with limx→0+ P ′(x) =∞. We have

f ′(x) =
{

λ, if x = 0 ;
λeσP (x) (1 + σxP ′(x)) , otherwise .

It is evident from the formula for f ′ and the fact that P is continuous at 0
with P (0) = 0, that to prove the continuity of f ′ from the right at 0 it suffices
to show that limx→0+ xP ′(x) = 0. If x ∈ I+(0), then x ∈ (a2k+3, a2k+1] for
some k ≥ 0. Since P ′ is positive and strictly decreasing on I+(0),

xP ′(x) ≤ a2k+1P
′(a2k+3) < a2k+1

P (a2k+3)
a2k+3

=
a0λ

2k+1
∏2k+1
ν=1 eσ/ν

a0λ2k+3(2k + 4)
∏2k+3
ν=1 eσ/ν

=
e−σ( 1

2k+2+ 1
2k+3 )

λ2(2k + 4)
k−→ 0 .
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The proof that f ′ is continuous from the left at 0 is similar. It then follows
that f ∈ C1 on I. The 0-locality of f on I with λ = f ′(0) and divergence
of the associated Koenigs’ sequence is proven in a similar manner as for the
previous example. In particular, note that f(ak) = ak+1 for each k ≥ 0 as in
the previous example.

Let g be a C1 convex 0-local map on a closed interval I with 0 ∈ I◦ and
0 < λ = g′(0) < 1. There exists an orientation-reversing iterative square root
of g on I. As well, g satisfies the conditions of Proposition 5.5. It follows from
Theorem 5.1 that an orientation-reversing iterative square root of g is non-
differentiable at the fixed point 0 if the Koenigs’ sequence for g diverges on
I+(0). We conclude with an example of such a map g. Note that it is sufficient
to define g on I+(0) ∪ {0} with the resulting Koenigs’ sequence diverging on
I+(0).

Example 6.3. Let

g(x) =

{
x
(
λ− 1

log (x)

)
, if x ∈ (0, e−1/ε] ;

0 , if x = 0 ,

where 0 < λ < 1 and 0 < ε < 1 − λ. Then g is 0-local on [0, e−1/ε] with
λ = g′+(0) and g′ is strictly increasing on [0, e−1/ε]. The Koenigs’ sequence
for g diverges for each x ∈ (0, e−1/ε].

Proof. The 0-locality of g follows from the choice of ε. Clearly g′ is strictly
increasing on [0, e−1/ε] and λ = g′+(0). Using the standard reorganization, we
see that the Koenigs’ sequence satisfies

φk(x) =
gk(x)
λk

=
g(x)
λ
· g(g(x))
λg(x)

. . . g(gk−2(x))
λgk−2(x)

· g(gk−1(x))
λgk−1(x)

,

and for our specific g,

φk(x) = x(1− 1
λ log (x)

)(1− 1
λ log (g(x))

). . .(1− 1
λ log (gk−1(x))

) .

To show that this sequence diverges it is enough to prove that the series
∞∑
k=0

1
| log (gk(x))|

(21)

diverges. It follows from the definition of g that gk(x) > xλk for each x ∈
(0, e−1/ε], which yields

log (gk(x)) > k log (λ) + log (x) and hence k log ( 1
λ

)− log (x) > | log (gk(x))| .
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Thus,
1

k log ( 1
λ

)− log (x)
<

1
| log (gk(x))|

.

In view of the above inequality, we conclude that the series in (21) diverges.
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