Wojciech Wojdowski, Department of Mathematics, Technical University of Lódź, Al. Politechniki 11, 90-924 Łódź, Poland. e-mail: wwoj@ck-sg.p.lodz.pl

CONTINUITY IN TERMS OF FUNCTIONAL CONVERGENCE

Abstract

The note presents a new approach to the notion of continuity of real function at a point. It is applied to obtain a characterization of continuity at a point with respect to *-topology (Hashimoto topology), density topology and *I*-density topology (Wilczyński topology). The latter is closely related to the definition of density point of measurable set formulated by W. Wilczyński in [8].

Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. For any sequence $\{t_n\}_{n \in N}$ of real numbers decreasing to zero, with $(t_1 < 1)$, we define a sequence of functions $\{f_{t_n}\}_{n \in N}, f_{t_n} : [-1, 1] \to \mathbb{R}$ in the following way

$$f_{t_n}\left(x\right) = f\left(t_n \cdot x\right)$$

The theorem given below presents a new point of view on the notion of continuity. It describes a surprising connection between a continuity of a function at the point and a convergence of an appropriate sequence of functions. We omit the proof since it follows immediately from Cauchy's and Heine's definitions of continuity of a function at a point.

Theorem 1. The following conditions are equivalent:

(1) f is continuous (with respect to the natural topology on the domain and on the range) at 0,

(2) for every sequence $\{t_n\}_{n\in\mathbb{N}}$ decreasing to zero the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) uniformly on [-1,1],

(3) for every sequence $\{t_n\}_{n\in\mathbb{N}}$ decreasing to zero the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) on [-1,1],

(4) there exists a decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ such that the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) uniformly on [-1,1],

Key Words: Continuity, *-topology, Hashimoto topology, Density topology, I-density topology, Wilczyński topology, approximately and I-approximately continuous functions. Mathematical Reviews subject classification: 26B05, 28A20, 54C30.

Received by the editors February 27, 1999

⁸⁶⁹

(5) there are two points $x_1 \in (-1,0)$ and $x_2 \in (0,-1)$ such that for every decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) at x_1 and x_2 .

Now we shall give several applications of this new approach to continuity with respect to the Hashimoto topology, density topology and I-density topology.

Let S be an algebra and \mathcal{I} a proper ideal of subsets of the real line \mathbb{R} . We assume S and \mathcal{I} to be invariant with respect to linear transformations. If $A \in S$, we say that A is S-measurable. Similarly, if for a real function f, $f^{-1}(U)$ is S-measurable for every open U, we say that f is S-measurable. If some property holds for points from $A \setminus P$ for some $P \in \mathcal{I}$, we say that it holds \mathcal{I} -almost everywhere (\mathcal{I} -a.e.) on A. If $B = A \setminus P$ for some $P \in \mathcal{I}$, we say that B is *residual* subset of A or B is residual in A. We use A^c for the complement of A and A - x for $\{y - x : y \in A\}$.

For a given sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers decreasing to zero we shall now consider the convergence of a sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ on a given residual subset of [-1, 1].

Definition 1. We say that a sequence of functions $\{f_n\}_{n \in \mathbb{N}}$ converges a.e. uniformly on a set $A \subset \mathbb{R}$, if there is a residual subset B of A such that $\{f_n\}_{n \in \mathbb{N}}$ converges uniformly on B.

Theorem 2. Let \mathcal{I} be a σ -ideal. For every real function f, if there exists a decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ such that the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) a.e. uniformly on [-1,1], then there exists a residual subset E of \mathbb{R} such that f restricted to $E \cup \{0\}$ is continuous at 0.

PROOF. Let $A \in \mathcal{I}$ be the set such that $\{f_{t_n}\}_{n \in \mathbb{N}}$ converges to f(0) uniformly on [-1,1] - A. Put $E = \mathbb{R} \setminus \bigcup_n (t_n \cdot A)$ and define a function g such that

$$g(x) = \begin{cases} f(x) & x \in E \\ f(0) & x \in \mathbb{R} \setminus E. \end{cases}$$

Now the sequence $\{g_{t_n}\}_{n \in \mathbb{N}}$ converges uniformly to f(0) on [-1, 1]. By Theorem 1 (4) the function g is continuous at 0. Hence g restricted to $E \cup \{0\}$ is continuous at 0. As g restricted to $E \cup \{0\}$ equals f restricted to $E \cup \{0\}$, the proof is complete.

Theorem 3. Let \mathcal{I} be a σ -ideal. For every real function f, if there exists a residual subset E of \mathbb{R} such that f restricted to $E \cup \{0\}$ is continuous at 0, then for every decreasing to zero sequence $\{t_n\}_{n \in \mathbb{N}}$ the sequence of functions $\{f_{t_n}\}_{n \in \mathbb{N}}$ converges to f(0) a.e. uniformly on [-1, 1].

PROOF. Let $A = \mathbb{R} \setminus \{E \cup \{0\}\}$ and $B = \bigcup_n \left(\left(\frac{1}{t_n} \cdot A\right) \cap [-1, 1] \right)$. As E is residual, we have $B \in \mathcal{I}$. Define function g such that

$$g(x) = \begin{cases} f(x) & x \in E \cup \{0\} \\ f(0) & x \notin E \cup \{0\} \end{cases}$$

Clearly, g is continuous at 0, hence the sequence $\{g_{t_n}\}_{n\in\mathbb{N}}$ converges uniformly to f(0) on [-1,1]. The sequence $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) a.e. uniformly on [-1,1], because f_n restricted to $\mathbb{R}\setminus B$ equals g_n restricted to $\mathbb{R}\setminus B$ for every $n\in\mathbb{N}$, and $B\in\mathcal{I}$.

Corollary 4. Let \mathcal{I} be a σ -ideal. The following conditions are equivalent:

(1) there exists a residual subset E of \mathbb{R} such that f restricted to $E \cup \{0\}$ is continuous at 0,

(2) there exists a decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ such that the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) a.e. uniformly on [-1,1],

(3) for every decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ the sequence of functions $\{f_{t_n}\}_{n\in\mathbb{N}}$ converges to f(0) a.e. uniformly on [-1, 1].

Remark 1. The above Corollary gives us a characterization of continuity at a point of a real function with respect to *topology (Hashimoto topology) generated by the basis $\{U \setminus P : U \in \tau, P \in \mathcal{I}\}$, where τ is a natural topology on \mathbb{R} and \mathcal{I} is a σ -ideal (see [3], [5]).

In 1982, W. Wilczyński in his paper [8] formulated the following definition:

Definition 2. We say that the point 0 is an \mathcal{I} -density point of an \mathcal{S} -measurable set A if for any decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that $\chi_{\left\{\frac{1}{t_{n_m}}\cdot A\right\}\cap\left[-1,1\right]}$ converges to 1, \mathcal{I} -almost everywhere on [-1,1]. (Equivalently such that $\liminf_{k\to\infty}\left(\left(\frac{1}{t_{n_m}}\cdot A\right)\cap\left(\frac{1}{t_{n_m}}\cdot A\right)\right)$

[-1,1] = $[-1,1] \setminus P$ for some $P \in \mathcal{I}$)

We say that the point x is an \mathcal{I} -density point of an \mathcal{S} -measurable set A if 0 is an \mathcal{I} -density point of A - x.

If S is the σ -algebra of a Lebesgue measurable sets and \mathcal{I} is the σ -ideal of sets of measure zero, this defines the usual density point of Lebesgue measurable set. If S is the σ -algebra of sets having Baire property and \mathcal{I} is the σ -ideal of sets of the first category, this is a definition of an \mathcal{I} -density point of a Baire measurable set. The definition and all its consequences were deeply examined in a large number of papers - see [6], [7], and [1]. We adopt here their basic definitions. For $A \in S$, let $\Phi(A)$ denote the set of all density points of A. The family $\{A \in S, A \subset \Phi(A)\}$ is a topology on \mathbb{R} called the \mathcal{I} -density topology (Wilczyński topology) and is denoted $\tau_{\mathcal{I}}$. We say that S-measurable function f is topologically \mathcal{I} -approximate continuous at x, if and only if $f^{-1}(f(x) - a, f(x) + a)$ has x as its density point, for every positive a. The continuity of real functions with respect to $\tau_{\mathcal{I}}$ -topology was examined mainly for S the σ -algebra of a Lebesgue measurable sets and \mathcal{I} the σ -ideal of sets of first category.

Remark 2. We say that an S-measurable function f is restrictively \mathcal{I} -approximate continuous at point x, if and only if there is a $\tau_{\mathcal{I}}$ -open neighborhood U of x such that f restricted to U is continuous at x in the natural topology relativised to U. The restrictional continuity of S-measurable real function implies its topological continuity. In the case of S the σ -algebra of a Lebesgue measurable sets and \mathcal{I} the σ -ideal of sets of measure zero, \mathcal{I} -approximate restrictional continuity and topological \mathcal{I} -approximate continuity coincide (See [4].)

Remark 3. Observe that the definition of an \mathcal{I} -density point can be reformulated in the following form: We say that the point 0 is an \mathcal{I} -density point of an \mathcal{S} -measurable set A if for any sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers decreasing to zero there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that $\chi_A(t_{n_m} \cdot x)$ converges to 1, \mathcal{I} -almost everywhere on [-1, 1].

This leads in the natural way to the following definition:

Definition 3. We say that an S-measurable function f has property (*) at a point 0, if and only if for any decreasing to zero sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that $f(t_{n_m} \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1, 1].

We say that an S-measurable function f has property (*) at point x, if the function g, g(y) = f(y - x), has property (*) at 0.

We shall show that for an S-measurable function, the property (*) at a point x is equivalent to its \mathcal{I} -approximate topological continuity.

Theorem 5. If the S-measurable function f has property (*) at a point x, then it is \mathcal{I} -approximate topologically continuous at this point.

PROOF. We shall restrict ourselves to the case x = 0 and additionally put f(0) = 0. Suppose that f is not \mathcal{I} -approximate topologically continuous at 0. Then there exists a > 0 such that the set $A = \{x : -a < f(x) < a\}$ has not 0 as its density point. It means that there exists a decreasing to zero

sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers such that for each subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ the sequence $\chi_{\left\{\frac{1}{t_{n_m}}\cdot A\right\}\cap[-1,1]}$ does not converge to 1, \mathcal{I} -almost everywhere on [-1,1]. This is equivalent to $\limsup_{k\to\infty} \left(\left(\frac{1}{t_{n_m}}\cdot A^c\right)\cap[-1,1]\right)\notin\mathcal{I}$.

For $x \in A^c$, we have $|f(x)| \ge a$, hence for $x \in \limsup_{k \to \infty} \left(\frac{1}{t_{n_m}} \cdot A^c\right)$ the sequence $f(t_{n_m} \cdot x)$ does not converge to f(0) = 0. It follows that there exists a decreasing to zero sequence $\{t_n\}_{n \in \mathbb{N}}$ of real numbers such that for each subsequence $\{t_{n_m}\}_{m \in \mathbb{N}}$, the sequence $f(t_{n_m} \cdot x)$ does not converge to f(0) = 0, \mathcal{I} -a.e. on [-1, 1]; this means that f does not have property (*) at the point 0.

Theorem 6. Let \mathcal{I} be a σ -ideal. If the S-measurable function f is \mathcal{I} -approximate topologically continuous at point x then it has property (*) at this point.

PROOF. We restrict ourselves again to the case x = 0 and additionally we put f(0) = 0. As f is \mathcal{I} -approximate topologically continuous at 0 then $A_{\varepsilon} =$ $f^{-1}((-\varepsilon,\varepsilon))$ has 0 as its density point, for every $\varepsilon > 0$. The latter can be stated equivalently that 0 is a density point of $A_k = f^{-1}\left(\left(-\frac{1}{k}, \frac{1}{k}\right)\right)$, for every $k \in N$. Let $\{t_n\}_{n \in \mathbb{N}}$ be a sequence of real numbers decreasing to zero and put k = 1. We may choose a subsequence $\left\{ t_n^{(1)} \right\}_{n \in \mathbb{N}}$ of $\{t_n\}_{n \in \mathbb{N}}$ such that $\chi_{\left\{\frac{1}{t_{*}^{(1)}}\cdot A_{1}\right\}\cap\left[-1,1\right]}$ converges to 1, \mathcal{I} -almost everywhere on $\left[-1,1\right]$. This means that there exists a set E_1 such that $[-1,1] - E_1 \in \mathcal{I}$ and for points from E_1 , $\chi_{\left\{\frac{1}{t_n^{(1)}} \cdot A_1\right\} \cap [-1,1]}$ converges to 1. Since $E_1 = \liminf_{m \to \infty} \left(\left\{\frac{1}{t_n^{(1)}} \cdot A_1\right\} \cap [-1,1]\right)$ we have $\limsup_{m \to \infty} \left| f\left(t_n^{(1)} \cdot x \right) \right| < 1$ for $x \in E_1$. Similarly we can find, for every natural k > 1, a set $E_k \subset E_{k-1}$ and a subsequence $\left\{ t_n^{(k)} \right\}_{n \in \mathbb{N}}$ of $\left\{ t_n^{(k-1)} \right\}_{n \in \mathbb{N}}$ such that $[-1,1] \setminus E_k \in \mathcal{I}$ and $\limsup_{m \to \infty} \left| f\left(t_n^{(k)} \cdot x \right) \right| < \frac{1}{k}$ for $x \in E_k$. Let $\{t_{n_p}\}_{p\in\mathbb{N}}$ be a diagonal subsequence of subsequences $\{t_n^{(k)}\}_{n\in\mathbb{N}}, k\in N$. We have $\limsup_{p \to \infty} |f(t_{n_p} \cdot x)| = 0$ for x from $\bigcap_{k=1}^{\infty} E_k$. Since \mathcal{I} is a σ -ideal and $[-1,1] \setminus E_k \in \mathcal{I}$ for every $k \in N$ then $[-1,1] \setminus \bigcap_{k=1}^{\infty} E_k \in \mathcal{I}$. So, for any sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers there exists a subsequence $\{t_{n_p}\}_{p\in\mathbb{N}}$ such that $f(t_{n_p} \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1, 1], i.e., function f has property (*) at point 0.

If \mathcal{I} is a σ -ideal, Theorems 5 and 6 state that for the \mathcal{S} -measurable function f its \mathcal{I} -approximate topological continuity and property (*) are equivalent at point x.

Theorem 7. If the S-measurable function f is \mathcal{I} -approximate restrictively continuous at point x then it has property (*) at this point.

PROOF. Since the restrictional continuity implies the topological continuity, the theorem follows immediately. However, we would like to present the proof with the use of the property (*). We shall restrict our considerations to the case x = 0. From the assumption it follows that there exists an $\tau_{\mathcal{I}}$ -open neighborhood U of 0 such that f restricted to U is continuous at 0. As 0 is an \mathcal{I} -density point of U, for any sequence $\{t_n\}_{n\in\mathbb{N}}$ of real numbers decreasing to zero there exists a subsequence $\{t_{n_m}\}_{m\in\mathbb{N}}$ such that $\chi_{\left\{\frac{1}{t_{n_m}}\cdot U\right\}\cap\left[-1,1\right]}$ converges to 1, \mathcal{I} -almost everywhere on [-1,1]. This means that there exists a set E such that $[-1,1] - E \in \mathcal{I}$ and for points from E, $\chi_{\left\{\frac{1}{t_{n_m}}\cdot U\right\}\cap\left[-1,1\right]}$ converges to 1. Put

$$g\left(x\right) = \left\{ \begin{array}{ll} f\left(x\right) & x \in U \\ f\left(0\right) & x \notin U \end{array} \right.$$

By the assumption g is continuous at 0 and by Theorem 1 (3), $g(t_{n_m} \cdot x)$ converges to f(0) everywhere on [-1,1]. Therefore, $f(t_{n_m} \cdot x)$ converges to f(0) for points from E, i.e. \mathcal{I} -almost everywhere on [-1,1]. \Box

Now we shall give a definition closely related to Lemma 1 in [7].

Definition 4. We shall say that the pair $(\mathcal{S}, \mathcal{I})$ is of type I (is of type II), if for every increasing sequences $\{t_n\}_{n\in\mathbb{N}}, \{s_n\}_{n\in\mathbb{N}}$ of real numbers tending to infinity and such that

$$\lim_{n \to \infty} \frac{t_n}{s_n} = 1$$

and for every S-measurable set A such that $\liminf_{n\to\infty} (t_n \cdot A) \cap [-1,1]$ is residual in [-1,1] then also $\liminf_{n\to\infty} (s_n \cdot A) \cap [-1,1]$ is residual in [-1,1] (there exists a subsequence $\{n_m\}_{m\in\mathbb{N}}$ such that $\liminf_{m\to\infty} (s_{n_m} \cdot A) \cap [-1,1]$ is residual in [-1,1]).

In Lemma 1 in [7] it is proved that the pair (S, \mathcal{I}) where S is the σ -algebra of sets having Baire property and \mathcal{I} the σ -ideal of sets of the first category is of type I. It is not difficult to show that in measure case the pair (S, \mathcal{I}) , where S is the σ -algebra of Lebesgue measurable sets and \mathcal{I} the σ -ideal of sets of measure zero, is of type II. **Lemma 8.** Let \mathcal{I} be a σ -ideal. Suppose a pair $(\mathcal{S}, \mathcal{I})$ is of type I (is of type II) and $\{t_n\}_{n\in\mathbb{N}}, \{s_n\}_{n\in\mathbb{N}}$ are sequences of real numbers decreasing to zero such that

$$\lim_{n \to \infty} \frac{t_n}{s_n} = 1.$$

If for a real S-measurable function f, $f(t_n \cdot x)$ converges to f(0) I-almost everywhere on [-1,1] then $f(s_n \cdot x)$ converges to f(0) I-almost everywhere on [-1,1]. (There is a subsequence $\{s_{n_m}\}_{m\in\mathbb{N}}$ of $\{s_n\}_{n\in\mathbb{N}}$ such that $f(s_{n_m} \cdot x)$ converges to f(0), I-a.e. on [-1,1].)

PROOF. Put $A_k = \left\{x \in [-1,1] : |f(x)| < \frac{1}{k}\right\}$. For every decreasing to zero sequence $\{u_n\}_{n \in \mathbb{N}}$ of real numbers we have

$$\begin{split} \bigcup_{p} \bigcap_{n \ge p} \left(\frac{1}{u_n} \cdot A_{k+1} \right) \cap [-1, 1] &= \bigcup_{p} \bigcap_{n \ge p} \left\{ x \in [-1, 1] : |f(u_n \cdot x)| < \frac{1}{k+1} \right\} \\ &= \left\{ x \in [-1, 1] : \exists_p \forall_{n \ge p} |f(u_n \cdot x)| < \frac{1}{k+1} \right\} \\ &\subset \left\{ x \in [-1, 1] : \limsup_{n} |f(u_n \cdot x)| \le \frac{1}{k+1} \right\} \\ &\subset \left\{ x \in [-1, 1] : \limsup_{n} |f(u_n \cdot x)| < \frac{1}{k} \right\} \\ &\subset \left\{ x \in [-1, 1] : \exists_p \forall_{n \ge p} |f(u_n \cdot x)| < \frac{1}{k} \right\} \\ &= \bigcup_{p} \bigcap_{n \ge p} \left\{ x \in [-1, 1] : |f(u_n \cdot x)| < \frac{1}{k} \right\} \\ &= \bigcup_{p} \bigcap_{n \ge p} \left(\frac{1}{u_n} \cdot A_k \right) \cap [-1, 1]. \end{split}$$

Put $B_k = \bigcup_p \bigcap_{n \ge p} \left(\frac{1}{u_n} \cdot A_k\right) \cap [-1, 1]$. Now we have

$$B_{k+1} = \bigcup_{p} \bigcap_{n \ge p} \left(\frac{1}{u_n} \cdot A_{k+1} \right) \cap [-1, 1] \subset \left\{ x \in [-1, 1] : \limsup_{n} |f(u_n \cdot x)| < \frac{1}{k} \right\}$$
$$\subset \bigcup_{p} \bigcap_{n \ge p} \left(\frac{1}{u_n} \cdot A_k \right) \cap [-1, 1] = B_k, \text{ and}$$

$$\bigcap_{k} \left\{ x \in [-1,1] : \limsup_{n} |f(u_{n} \cdot x)| < \frac{1}{k} \right\} = \bigcap_{k} \bigcup_{p} \bigcap_{n \ge p} \left(\frac{1}{u_{n}} \cdot A_{k} \right) \cap [-1,1]$$
$$= \bigcap_{k} B_{k}.$$

Hence,

$$\left\{x \in [-1,1] : \lim_{n} f(u_{n} \cdot x) = 0\right\} = \left\{x \in [-1,1] : \limsup_{n} |f(u_{n} \cdot x)| = 0\right\}$$
$$= \bigcap_{k} \left\{x \in [-1,1] : \limsup_{n} |f(u_{n} \cdot x)| < \frac{1}{k}\right\} = \bigcap_{k} \bigcup_{p} \bigcap_{n \ge p} \left(\frac{1}{u_{n}} \cdot A_{k}\right) \cap [-1,1].$$

By the assumption $f(t_n \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1, 1], therefore $\left\{x \in [-1, 1] : \lim_{n} f(t_n \cdot x) = 0\right\}$ is residual on [-1, 1] and consequently $\bigcap_k \bigcup_p \bigcap_{n \ge p} \left(\frac{1}{t_n} \cdot A_k\right) \cap [-1, 1]$ is residual on [-1, 1]. As \mathcal{I} is a σ -ideal, the countable intersection of sets is residual, if and only if every set is residual and the latter implies that $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{t_n} \cdot A_k\right) \cap [-1, 1]$ is residual on [-1, 1], for every $k \in N$.

Now, if a pair $(\mathcal{S},\mathcal{I})$ is of type I then also $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{s_n} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1], for every $k \in N$ and $\bigcap_k \bigcup_p \bigcap_{n \ge p} \left(\frac{1}{s_n} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1]. By the last statement $\left\{x \in [-1,1] : \lim_n f(s_n \cdot x) = 0\right\}$ is residual on [-1,1] and $f(s_n \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1,1].

Suppose now that a pair $(\mathcal{S},\mathcal{I})$ is of type II. Then for k = 1 the set $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{t_n} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1] and we may choose a subsequence $\left\{s_n^{(1)}\right\}_{n \in \mathbb{N}}$ of $\{s_n\}_{n \in \mathbb{N}}$ such that $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{s_n^{(1)}} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1]. For k = 2, the set $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{t_n^{(1)}} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1] and we may choose a subsequence $\left\{s_n^{(2)}\right\}_{n \in \mathbb{N}}$ of $\left\{s_n^{(1)}\right\}_{n \in \mathbb{N}}$ such that $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{s_n^{(2)}} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1]. Similarly, we can find for every natural k > 1 a subsequence $\left\{s_n^{(k)}\right\}_{n \in \mathbb{N}}$ of $\left\{s_n^{(k-1)}\right\}_{n \in \mathbb{N}}$ such that $\bigcup_p \bigcap_{n \ge p} \left(\frac{1}{s_n^{(k)}} \cdot A_k\right) \cap [-1,1]$ is residual on [-1,1]. Let $\{s_{n_m}\}_{m \in \mathbb{N}}$ be a diagonal subsequence of subsequences $\left\{s_n^{(k)}\right\}_{n \in \mathbb{N}}$, $k \in \mathbb{N}$. The set $\bigcup_p \bigcap_{m \ge p} \left(\frac{1}{s_{n_m}} \cdot A_k\right) \cap \left($

876

 $[-1,1] \text{ is residual on } [-1,1] \text{ for every } k \in \mathbb{N} \text{ so the set } \bigcap_k \bigcup_p \bigcap_{m \ge p} \left(\frac{1}{s_{n_m}} \cdot A_k\right) \cap [-1,1] \text{ is also residual on } [-1,1] \text{ and } f(s_{n_m} \cdot x) \text{ converges to } f(0), \mathcal{I} \text{ -a.e. on } [-1,1].$

Theorem 9. Let \mathcal{I} be a σ -ideal. Suppose a pair (S, \mathcal{I}) is of type I or II. If for the real S-measurable function f, $f(s_n \cdot x)$ converges to f(0) \mathcal{I} -almost everywhere on [-1,1] for some decreasing to zero sequence $\{s_n\}_{n\in\mathbb{N}}$ of real numbers such that $s_{k+1} > r \cdot s_k$, for some r > 0 then f has the property (*)at 0.

PROOF. Let $\{t_n\}_{n\in\mathbb{N}}$ be any sequence of real numbers decreasing to zero. Choose subsequences $\{s_{k_p}\}_{p\in\mathbb{N}}$ and $\{t_{n_p}\}_{p\in\mathbb{N}}$ such that $t_{n_p} \in (s_{k_p+1}, s_{k_p}]$. We have $0 < r \cdot s_{k_p} < s_{k_p+1} < t_{n_p} \leq s_{k_p}$ and $0 < r < \frac{t_{n_p}}{s_{k_p}} \leq 1$. We choose again subsequences $\{s_{k_{pm}}\}_{m\in\mathbb{N}}$ and $\{t_{n_{pm}}\}_{m\in\mathbb{N}}$ such that the sequence $\{\frac{t_{n_{pm}}}{s_{k_{pm}}}\}_{m\in\mathbb{N}}$ converges to some a, where $0 < r \leq a \leq 1$. The sequence $\{\frac{t_{n_{pm}}}{a \cdot s_{k_{pm}}}\}_{m\in\mathbb{N}}$ converges to 1 and clearly $f(a \cdot s_{k_{pm}} \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1, 1]. Directly from Lemma 8 there exists a subsequence $\{t_{n_{pm_v}}\}_{v\in\mathbb{N}}$ of $\{t_{n_{pm_v}}\}_{m\in\mathbb{N}}$ such that $f(t_{n_{pm_v}} \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1, 1]. As $\{t_{n_{pm_v}}\}_{v\in\mathbb{N}}$ is a subsequence of $\{t_n\}_{n\in\mathbb{N}}$, f has the property (*) at 0.

Theorem 10. Let S be any algebra containing the Borel sets and \mathcal{I} be an ideal. If $\{s_n\}_{n\in\mathbb{N}}$ is a sequence of real numbers decreasing to zero such that $\liminf_n \frac{s_{n+1}}{s_n} = 0$, then there exists an S-measurable function f such that $f(s_n \cdot x)$ converges to f(0), \mathcal{I} -almost everywhere on [-1, 1] and f has not the property (*) at 0.

PROOF. The example from the necessary part of the Theorem 1 in [9] is good here. $\hfill \Box$

As the consequence of Theorems 9 and 10, we have the following generalization of Theorem 1 in [9] and Theorem 1 in [2].

Corollary 11. Let S be any algebra containing the Borel sets and I a σ ideal. Suppose a pair (S, I) is of type I or II. Then for every decreasing to zero sequence $\{s_n\}_{n\in\mathbb{N}}$ the condition that $s_{k+1} > r \cdot s_k$, for some r > 0, is for every real function f equivalent to the fact that I-almost everywhere on [-1, 1]convergence of $f(s_n \cdot x)$ to f(0) implies that f has the property (*) at 0.

References

- K. Ciesielski, L. Larson, K. Ostaszewski, *I-Density Continuous Functions*, Mem. Amer. Math. Soc. 515(1994).
- J. Foran, Sequence conditions which imply approximate continuity, Real. Anal. Exchange 17(1991–92), 728–736.
- [3] H. Hashimoto, On the *topology and its application, Fund. Math. 91(1976), 5–10.
- [4] J. M. Jędrzejewski, On limit numbers of real function, Fund. Math. 83(1974), 269–281.
- [5] D. Janković, R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)1990.
- [6] W. Poreda, E. Wagner-Bojakowska and W. Wilczyński, A category analogue of the density topology, Fund. Math. 125(1985), 167–173.
- [7] W. Poreda, E. Wagner-Bojakowska and W. Wilczyński, *Remarks on I-density and I-approximately continuous functions*, Comm. Math. Univ. Carolinae 26(3)(1986), 263–277.
- [8] W. Wilczyński, A generalization of the density topology, Real. Anal. Exchange 8(1)(1982–83), 16–20.
- [9] W. Wilczyński, Sequence conditions which imply *I*-approximate continuity, Tatra Mountains Math. Publ., 2(1993), 135–139.