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A NEW CARDINAL INVARIANT RELATED
TO ADDING REAL FUNCTIONS

Abstract

Let F ⊆ RR. The additivity of F , briefly A(F ), is the minimum
cardinality of a family G ⊆ RR with the property that h + G ⊆ F for
no h ∈ RR. In this paper we consider the notion of super-additivity
which we will denote by A∗. If F ⊆ RR, then A∗(F ) is the minimum
cardinality of a family of functions G with the property that for any
H ⊆ RR if |H| < A(F ), there is a g ∈ G such that g + H ⊆ F . We
calculate the super-additivities of the families of Darboux-like functions
and their complements.

1 Preliminaries

In what follows we will use standard terminology and notation as in [2]. In
particular, the set of all functions from a set X into a set Y will be denoted
by Y X . Given a set X and f, g ∈ XX we denote their composition by f ◦ g.
The characteristic function of a set A ⊆ R will be denoted by χA. The symbol
|X| will denote the cardinality of the set X. The successor of a cardinal κ
will be denoted by κ+. We denote by [X]<κ, [X]κ, and [X]≤κ the sets of all
subsets of X of cardinality less than κ, equal to κ, and less than or equal to
κ, respectively. The cardinality of the real numbers R will be denoted by c.
Given a cardinal number κ we let cf(κ) denote the cofinality of κ. We say
a cardinal κ is regular provided that cf(κ) = κ. For functions f, g ∈ RR let
[f = g] denote the set {x ∈ R : f(x) = g(x)}. We define [f < g] and [f ≤ g]
in a similiar way. Functions will be identified with their graphs. For a set
S ⊆ X × Y we let dom(S) = {x ∈ X : (∃y ∈ Y )(〈x, y〉 ∈ S)}.

We will need some cardinals which have combinatorial descriptions. For a
cardinal κ we define
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dκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(|[f = g]| = κ)},

eκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(|[f = g]| < κ)},

e1κ = min{|F | : F ⊆ κκ &
(
∀G ∈ [κκ]<eκ

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| = κ)},

d1
κ = min{|F | : F ⊆ κκ &

(
∀G ∈ [κκ]<dκ

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| <

κ)}.

2 Introduction

The cardinal function called additivity was orginally defined by Natkaniec [10]
for families F ∈ RR to be

A(F) = min({|F | : F ⊆ RR & (∀g ∈ RR)(∃f ∈ F )(f + g /∈ F)} ∪ {(2c)+}).

This cardinal function has been studied intensively and has been generalized
to include families in (Rm)Rn see [8], [10], and [3]. We will restrict the scope
of this paper to RR and consider a new cardinal function which is based on
the additivity function. Before continuing let us recall some basic facts about
additivity.

Proposition 1. [9, Proposition 1] Let P,F ⊆ RR. Then,

(i) F = ∅ if and only if A(F) = 1,

(ii) F = RR if and only if A(F) = |2c|+,

(iii) if F ⊆ P then A(F) ≤ A(P), and

(iv) if F 6= ∅ then 2 = A(F) if and only if F − F 6= RR.

Given F ⊆ RR the definition of additivity implies that RR has the property

(∗)
(
∀G ∈

[
RR]<A(F)

)
(∃f ∈ RR)(f +G ⊆ F).

A natural question that arises is wether or not RR is the only subset of RR to
satisfy (∗). In particular, one might want to find the smallest cardinality of a
family F ⊆ RR that satisfies (∗). This consideration leads to the definition of
super-additivity. If F ⊆ RR we define the super-additvity of F to be

A∗(F) = min{|F | : F ⊆ RR &
(
∀G ∈

[
RR]<A(F)

)
(∃f ∈ F )(f +G ⊆ F)}.

We list some basic facts about super-additivity
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Proposition 2. Let F , E ⊆ RR. Then,

(i) F ∈ {∅,RR} if and only if A∗(F) = 1 and

(ii) if A(F) = A(E) and F ⊆ E then A∗(F) ≥ A∗(E).

Proof. We show (i). If F = RR, then, by Proposition 1(ii), A(F) = (2c)+.

Let G ∈
[
RR]<(2c)+ . Clearly, χ∅ + G ⊆ RR = F . So, A∗(F) = 1. If F = ∅,

then, by Proposition 1(i), A(F) = 1. Since
[
RR]<1 = {∅} and χ∅ + ∅ ⊆ F ,

it follows that A∗(F) = 1. Suppose now that A∗(F) = 1. We show that
F ∈ {∅,RR}. Assume that F 6= ∅. By Proposition 1(i), A(F) > 1. Since
A∗(F) = 1, there is an h ∈ RR such that h + g ∈ F for any g ∈ RR. So,
F ⊆ RR = h+ RR ⊆ F . Thus, F = RR.

We show (ii). Let κ = A(F) = A(E). Suppose F ⊆ RR and |F | < A∗(E).
Then, there exists a G ∈

[
RR]<κ such that f + G is not contained in E for

every f ∈ F . But F ⊆ E ; so f + G is not contained in F for every f ∈ F .
Thus, A∗(F) ≥ A∗(E).

Next we point out a basic relationship between additivity and super-
additivity.

Proposition 3. If F /∈ {RR, ∅}, then

max{A(F),A(RR \ F)} ≤ A∗(F).

Proof. We first show that A(RR \ F) ≤ A∗(F). Let F ⊆ RR be a witness to
the definition of A∗(F), i.e., |F | = A∗(F) and

(∀G ∈
[
RR]<A(F)

)(∃f ∈ F )(f +G ⊆ F).

Since A(F) ≥ 2 > 1, we see that F also satisfies

(∀g ∈ RR)(∃f ∈ F )(f + g ∈ F).

Since F = RR \ (RR \ F) we see that A∗(F) = |F | ≥ A(RR \ F).
We show that A(F) ≤ A∗(F). By way of contradiction assume A(F) >

A∗(F). Then there is an F ⊆ R such that |F | < A(F) and(
∀G ∈

[
RR]<A(F)

)
(∃f ∈ F )(f +G ⊆ F). (1)

Since F 6= RR, for every f ∈ F there is a gf ∈ RR such that f + gf /∈ F . Let
G = {gf : f ∈ F}. Notice that |G| ≤ |F | < A(F). By (1) there is an f ∈ F
such that f +G ⊆ F . In particular, f +gf ∈ F but this contradicts the choice
of gf . Thus, A(F) ≤ A∗(F).
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3 The Results

We will primarily be concerned with calculating the super-additivities of the
following families of functions from R into R and their complements. Some
combinatorial characterizations of these cardinals are also given. We give
general descriptions of these families that will work for any function from
one space to another where the spaces are assumed to have the appropriate
structure.

Dar: f ∈ Y X is a Darboux function if and only if f [C] is connected in Y for
every connected subset C of X.

Con: f ∈ Y X is a connectivity function if and only if the graph of f restricted
to C is connected in X × Y for every connected subset C of X.

AC: f ∈ Y X is an almost continuous function if and only if every open set
in X × Y containing f also contains some continuous function g ∈ Y X .

Ext: f ∈ Y X is an extendable function if and only if there is a connectivity
function g : X × [0, 1]→ Y such that f(x) = g(x, 0) for every x ∈ X.

PR: f ∈ RR is a perfect road function if and only if for every x ∈ R there is
a perfect set P ⊂ R such that x is a bilateral limit point of P and f |P
is continuous at x.

PC: f ∈ Y X is a peripherally continuous function if and only if for every
x ∈ X and pair of open sets U ⊂ X and V ⊂ Y such that x ∈ U and
f(x) ∈ V there is an open neighborhood W of x with cl(W ) ⊂ U and
f [bd(W )] ⊂ V , where cl(W ) and bd(W ) denote the boundary and the
closure of W , respectively.

SZ: f ∈ Y X is a Sierpiński-Zygmund function if and only if f |A is continuous
for no set A ⊆ X of cardinality c.

The diagrams below describe the relations between the above families in RR

except SZ. The symbol −→ denotes containment. All inclusions are proper.

Ext

AC

PR

Con Dar

PC
�
�
��

- -
Q
Q
Q
Qs

XXXXXXXXXXz ���
���

���
�:
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It is clear from the definition of super-additivity and Proposition 3 that it
would useful to know the additivities of these families. Fortunately, there is
good bit that we know about these values.

Proposition 4.

(i) (Ciesielski, Rec law [7]) A(Ext) = A(PR) = c+ and A(PC) = 2c;

(ii) (Ciesielski, Miller [5]) A(Dar) = A(Con) = A(AC) = ec;

(iii) (Ciesielski, Natkaniec [6]) A(SZ) = dc;

(iv) (Ciesielski [4](see[9])) A(¬PC) = ω1;

(v) (Jordan [9]) A(¬PR) = A(¬Ext) = 2c;

(vi) (Jordan [9]) If |[c]<c| = c, then A(¬SZ) = ec;

(vii) (Jordan [9]) If |[c]<c| = c, then dc = A(¬Dar) = A(¬Con) = A(¬AC).

We first calculate the super-additivies of the families of functions we are
concerned with.

Theorem 5. If F ∈ {Ext,PR,PC}, then A∗(F) = A∗(¬F) = 2c.

Theorem 6. A∗(AC) = A∗(Con) = A∗(Dar) = e1c .

Theorem 7. A∗(SZ) = d1
c .

Theorem 8. If |[c]<c| = c, then d1
c = A∗(¬Dar) = A∗(¬Con) = A∗(¬AC).

Theorem 9. If |[c]<c| = c, then e1c = A∗(¬SZ).

We also have a purely combinatorial result which will allow us to say
something about the values d1

c and e1c .

Theorem 10. If |c<c| = c and c = λ+, then dc ≤ ec = e1c = d1
c .

Finally, we quote two consistency results.

Proposition 11. (Ciesielski, Natkaniec [6]) Let λ ≥ κ ≥ ω2 be cardinals such
that cf(λ) > ω1 and κ is regular. Then it is relatively consistent with ZFC+CH
that 2c = λ and A(Dar) = A(SZ) = κ.

Proposition 12. (Ciesielski, Natkaniec [6]) Let λ > ω2 be a cardinal such
that cf(λ) > ω1. Then it is relatively consistent with ZFC+CH that 2c = λ,
and A(SZ) = c+ < 2c = A(Dar).
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Since, CH implies that |[c<c]| = c, Propositions 11, 12 and 4 together with
Theorem 10 imply that

Corollary 13. Let λ ≥ κ ≥ ω2 be cardinals such that cf(λ) > ω1 and κ is
regular. Then it is relatively consistent with ZFC+CH that 2c = λ and for
F ∈ {AC,Con,Dar,SZ} A(F) = A∗(F) = A(¬F) = A∗(¬F) = κ.

Corollary 14. Let λ > ω2 be a cardinal such that cf(λ) > ω1. Then it is
relatively consistent with ZFC+CH that 2c = λ, and for F ∈ {Dar,Con,AC}

A(SZ) = A(¬F) = c+ < 2c = A(F) = A∗(F)
= A∗(¬F) = A(¬SZ) = A∗(¬SZ) = A∗(SZ).

We prove Theorems 5 and 7 at this time. We will prove the other Theorems
in later sections since the proofs are somewhat long.

Proof of Theorem 5. Let F ∈ {Ext,PR,PC}. By (i) and (v) of Proposi-
tion 4, we have max{A(F),A(RR \F)} = 2c. Since F /∈ {RR, ∅} Proposition 3
implies that A∗(F) = 2c = A∗(RR \ F).

To begin the proof of Theorem 7 we quote a theorem about SZ functions
which may be found in [11].

Proposition 15. (Sierpiński, Zygumund [11]) f ∈ RR is in SZ if and only if
|[f = h]| < c for every continuous function h defined on a Gδ-set of cardinal-
ity c.

Proof of Theorem 7. We show that A∗(SZ) ≤ d1
c . Let H stand for the

family of all functions h ∈ RR such that h|A is continuous on a Gδ-set A of
cardinality c and equal to zero elsewhere. Note that |H| = c. Pick F ⊆ RR

such that |F | = d1
c and(
∀G ∈

[
RR]<dc

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| < c). (2)

We claim that F satisfies(
∀G ∈

[
RR]<A(SZ)

)
(∃f ∈ F )(f +G ⊆ SZ). (3)

Let G ∈
[
RR]<A(SZ) be arbitrary. By Proposition 4(iii) we have |G| < dc.

It is shown in [6] that dc > c. It follows that {h − g : g ∈ G & h ∈ H}
is a set of cardinality strictly less than dc. By (2) there is an f ∈ F such
|[f = h− g]| < c for every g ∈ G and h ∈ H. So, by Proposition 15, (f + g)|A
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is continuous for no set A of cardinality c for every g ∈ G. Thus, F satisfies
(3) and A∗(SZ) ≤ d1

c .
We show that d1

c ≤ A∗(SZ). Pick F ⊆ RR such that |F | = A∗(SZ) and(
∀G ∈

[
RR]<A(SZ)

)
(∃f ∈ F )(∀g ∈ G)(f + g ∈ SZ). (4)

Let F1 = {−f : f ∈ F}, notice |F1| = |F |. We show that F1 satisfies(
∀G ∈

[
RR]<dc

)
(∃f ∈ F1)(∀g ∈ G)(|[f = g]| < c). (5)

Let G ∈
[
RR]<dc be arbitrary. By Proposition 4(iii) we have |G| < A(SZ). By

(4) there is an f ∈ F such that f + g ∈ SZ for every g ∈ G. In particular,
|(f + g)−1({0})| < c for every g ∈ G. It follows that |[−f = g]| < c for every
g ∈ G. Thus, F1 satisfies (5) and d1

c ≤ A∗(SZ).

4 Proof of Theorem 6

Our first goal is to show that A∗(Dar) = A∗(Con) = A∗(AC). To do this
we will need to define the following family of functions. Let Dar1 denote the
collection of all f ∈ RR such that f [(a, b)] = R for every a < b. Clearly,
Dar1 ⊆ Dar.

Lemma 16. A∗(Dar) = A∗(Dar1).

Proof. It follows from [5, Theorem 2.4] that A(Dar) = A(Dar1). By Propo-
sition 2(ii) we have A∗(Dar) ≤ A∗(Dar1). We show that A∗(Dar1) ≤ A∗(Dar).
Let F ⊆ RR be such that |F | = A∗(Dar) and(

∀G ∈
[
RR]<A(Dar)

)
(∃f ∈ F )(f +G ⊆ Dar). (6)

We show that F also satisfies(
∀G ∈

[
RR]<A(Dar1)

)
(∃f ∈ F )(f +G ⊆ Dar1) (7)

which will complete the proof. Let G ∈
[
RR]<A(Dar1). Note that |G| <

A(Dar). Put G1 = G ∪ {g + r · χQ : g ∈ G & r ∈ R}. Since A(Dar) > c [5] we
have G1 < A(Dar). By (6) there is an f ∈ F such that f + G1 ⊆ Dar. We
claim that f +G ⊆ Dar1. By way of contradiction assume there is some g ∈ G
and a < b such that (f + g)[(a, b)] 6= R. Since (f + g)[(a, b)] is an interval, we
may assume without loss of generality that there is some M > 0 which is an
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upper bound for (f+g)[(a, b)]. Let q ∈ (a, b)∩Q and k = M−(f+g)(q). Now
f + g + (k+ 1) · χQ /∈ Dar, since (f + g + (k+ 1))[(a, b) \Q] is bounded above
by M but (f + g+ (k+ 1) ·χQ)(q) = M + 1. However, g+ (k+ 1) ·χQ ∈ G1 so
by the choice of f we have f + g + (k + 1) · χQ ∈ Dar giving a contradiction.
Thus, F satisfies (7).

We will need a result of K.Kellum [10, Theorem 1.2].

Proposition 17. There is a family B of closed subsets of R2 such that |B| = c,
dom(B) is a non-degenerate interval for every B ∈ B and f ∈ AC if and only
if f ∩B 6= ∅ for each B ∈ B.

Lemma 18. A∗(Dar) = A∗(Con) = A∗(AC).

Proof. By Proposition 4(ii) and Proposition 2(ii) we have

A∗(Dar) ≤ A∗(Con) ≤ A∗(AC).

So it is enough for us to show that A∗(AC) ≤ A∗(Dar). By Lemma 16 there
is an F ⊆ RR be such that |F | = A∗(Dar) and(

∀G ∈
[
RR]<A(Dar)

)
(∃f ∈ F )(f +G ⊆ Dar1). (8)

We claim that F also satisfies
(
∀G ∈

[
RR]<A(AC)

)
(∃f ∈ F )(f + G ⊆ AC)

which will complete the proof. Let B be as in Proposition 17. For each
B ∈ B let hB ∈ RR be such that hB |prx(B) ⊆ B and zero otherwise. Let
G ⊆ RR and |G| < A(AC) = A(Dar1). Let G1 = {g − hB : g ∈ G & B ∈ B}.
Since c < A(Dar) we have |G1| < A(Dar). By (8) there is an f ∈ F such that
f+G1 ⊆ Dar1. We claim that f+G ⊆ AC. Fix g ∈ G. Let B ∈ B be arbitrary.
Since f+(g−hB) ∈ Dar1 there is an r ∈ prx(B) such that f+(g−hB)(r) = 0.
So 〈r, (f + g)(r)〉 = 〈r, hB(r)〉 ∈ B. Thus, f + g ∈ AC.

To complete the proof of Theorem 6 it is enough to prove the following
lemma.

Lemma 19. A∗(Dar1) = e1c .

Proof. We show that A∗(Dar1) ≤ e1c . Let {Pα}α∈c be a partition of R such
that |Pα| = c for every α ∈ c and for every non-degenerate open interval U
there is an α ∈ c such that Pα ⊆ U . For each α ∈ c let {pα,β : β ∈ c} be an
injective enumeration of Pα. Let F ⊆ Rc be such that |F | = e1c and(

∀G ∈ [Rc]<ec
)

(∃f ∈ F )(|[f = g]| = c). (9)
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For each f ∈ F define f∗ ∈ RR by f∗(pα,β) = f(β). Let F ∗ = {f∗ : f ∈ F}.
Note that |F ∗| = |F | = e1c . It is enough to show that F ∗ satisfies(

∀G ∈
[
RR]<A(Dar1)

)
(∃f∗ ∈ F ∗)(f∗ +G ⊆ Dar1). (10)

Let G ∈
[
RR]<A(Dar1). By [5, Theorem 2.4] and Proposition 4(ii) A(Dar1) =

A(Dar) = ec. So |G| < ec. For each α ∈ c, g ∈ G, and r ∈ R let gα,r ∈ Rc be
defined by gα,r(β) = r − g(pα,β) for each β ∈ c. Let

G1 = {gα,r : r ∈ R & g ∈ G}.

Since ec > c,it follows that |G1| < ec. By (9) there is an f ∈ F such that
|[f = g1]| = c for every g1 ∈ G1. We claim that f∗ + g ∈ Dar1 for every
g ∈ G. Fix g ∈ G, r ∈ R, and a non-degenerate open interval U . We must
show that r ∈ (f∗ + g)[U ]. By the way we defined our partition there is an
α ∈ c such that Pα ⊆ U . Let β ∈ [f = gα,r]. Then f∗(pα,β) = r− g(pα,β). So,
(f∗ + g)(pα,β) = r and pα,β ∈ Pα ⊆ U . Thus, F ∗ satisfies (10) establishing
the inequality.

We now show that A∗(Dar1) ≥ e1c . Let F ⊆ RR be such that |F | =
A∗(Dar1) and (

∀G ∈
[
RR]<A(Dar1)

)
(∃f ∈ F )(f +G ⊆ Dar1). (11)

Let Θ ∈ RR be an additive function such that |Θ−1(r)| = c for every r ∈ R.
Let F1 = {Θ ◦ f : f ∈ F}, note that |F1| ≤ |F |. It is enough for us to show
that F1 satisfies(

∀G ∈
[
RR]<ec

)
(∃f1 ∈ F1)(∀g ∈ G)(|[f1 = g]| = c). (12)

Let G ∈
[
RR]<ec . For each g ∈ G pick g1 ∈ RR such that Θ ◦ g1 = −g. Let

G1 = {g1 : g ∈ G}. Notice that |G1| ≤ |G|. By (11) there is an f ∈ F such
that for every g1 ∈ G1 we have f + g1 ∈ Dar1. Put f1 = Θ ◦ f . By our choice
of Θ and the fact that (f + g1)[R] = R, we have

|(f1 − g)−1(0)| = |(Θ ◦ f + Θ ◦ g1)−1(0)| = |Θ ◦ (f + g1)−1(0)| = c.

In particular, for each g ∈ G we have |f1 = g| = c. Thus, F1 satisfies (12).
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5 Proofs of Theorems 8 and 9

Our first goal will be to prove Theorem 8. Towards this end we introduce two
more cardinals the first of which appears in [9].

d∗c = min{|F | : F ⊆ cc & (∀G ∈ [cc]c)(∃f ∈ F )(∀g ∈ G)(|[f = g]| = c)}.

κ1 = min{|F | : F ⊆ [cc]c
(
∀G ∈ [cc]<d

∗
c

)
(∃A ∈ F )(∀g ∈ G)

(∃f ∈ A)(|[f = g]| < c)}

Lemma 20. If |[c]<c| = c, then κ1 ≤ A∗(¬AC).

Proof. Let B be as in Proposition 17. Enumerate B injectively by {Bα : α ∈
c}. For each α ∈ c let hα ∈ RR be such that hα|prx(Bα) ⊆ Bα and zero
otherwise. Let {Pα}α∈c be a partition of R such that Pα ⊆ prx(Bα) and
|Pα| = c for every α ∈ c. For each α ∈ c let {pα,β : β ∈ c} be an injective
enumeration of Pα.

Let F ⊆ RR be such that |F | = A∗(¬AC) and(
∀G ∈

[
RR]<A(¬AC)

)
(∃f ∈ F )(f +G ⊆ ¬AC). (13)

For each f ∈ F and α ∈ c define fα ∈ Rc so that fα(β) = (hα − f)(pα,β).
For each f ∈ F let Af = {fα : α ∈ c}. Put F ∗ = {Af : f ∈ F}. Note that
|F ∗| ≤ |F | = A∗(¬AC) and F ∗ ⊆ [Rc]≤c. It is enough for us to show that F ∗

satisfies (
∀G ∈ [Rc]<d

∗
c

)
(∃A ∈ F ∗)(∀g ∈ G)(∃f ∈ A)(|[f = g]| < c). (14)

Let G ∈ [Rc]<d
∗
c . Since |[c]<c| = c, we have d∗c = dc by [9, Corollary 12]. It

follows from Proposition 4(vii) that |G| < A(¬AC). For every g ∈ G define
g∗ ∈ RR so that g∗(pα,β) = g(β). Since |{g∗ : g ∈ G}| ≤ |G| < A(¬AC), it
follows by (13) that there is an f ∈ F such that f + g∗ /∈ AC for every g ∈ G.
We show that Af ∈ F ∗ has the property that

(∀g ∈ G)(∃h ∈ Af )(|[h = g]| < c). (15)

Fix g ∈ G. By Proposition 17 there is an α ∈ c such that (f + g∗) ∩ Bα = ∅.
It follows that

(f + g∗)|Pα ∩ hα|Pα = ∅. (16)

Pick fα ∈ Af . By way of contradiction assume that fα(β) = g(β) for some
β ∈ c. Then (hα−f)(pα,β) = g(β) = g∗(pα,β) but this contradicts (16). Thus,
[fα = g] = ∅ so Af satisfies (15). Therefore, F ∗ satisfies (14).
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To continue the proof it will be useful for us to define the following families
of functions. Let Dar(c) stand for the set of all f ∈ RR with the property that
|f−1(y) ∩ (a, b)| = c for all a, b, y ∈ R such that a < b. Let Dar∗ denote the
set of Darboux functions f which are nowhere constant (i.e. if a < b, then
|f [(a, b)]| > 1).

Lemma 21. A∗(¬Dar) = A∗(¬Dar∗).

Proof. By [9, Lemma 25] A(¬Dar) = A(¬Dar∗). It follws by Proposition 2(ii)
that A∗(¬Dar∗) ≤ A∗(¬Dar).

We show the other inequality. Let I be the family of collections of mutually
disjoint non-degenerate open intervals. Since there are continuum many open
intervals and the cardinality of any disjoint collection of open intervals is at
most ω, it follows that |I| = c. For each I ∈ I pick hI ∈ Dar(c) such that
hI(x) = 0 if x is an endpoint of any i ∈ I. Let kI be defined by kI(x) =
χ∪I(x) · hI(x) for each x ∈ R. Let K = {kI : I ∈ I}. Note that |K| = c.
Suppose that F ⊆ RR and |F | < A∗(¬Dar). Then by definition of A∗(¬Dar)
there is a G ⊆ RR such that |G| < A(¬Dar) = A(¬Dar∗) and

(∀f ∈ F )(∃g ∈ G)(f + g ∈ Dar). (17)

Let G1 = {g + k : g ∈ G & k ∈ K} ∪ G. Note that |G1| < A(¬Dar∗) since
|K| = c < A(¬Dar∗). It is enough to show that G1 satisfies

(∀f ∈ F )(∃g ∈ G)(f + g ∈ Dar∗). (18)

Let f ∈ F . By (17) there is a g ∈ G such that f + g ∈ Dar. If f + g ∈ Dar∗

there is nothing to do so assume f + g ∈ Dar \ Dar∗. The set of points at
which f + g is constant form a countable collection J of mutally disjoint non-
degenerate open intervals such that f + g is constant on each j ∈ J and is
nowhere-constant on R \

⋃
J . Since g + kJ ∈ G1, it is enough to show that

(f + kJ) + g ∈ Dar∗.
We first show that (f + kJ) + g is nowhere-constant. Let x ∈ R be ar-

bitrary. If x ∈ cl (
⋃
J), then any open nieghborhood U about x contains a

non-degenerate sub-interval i of some j ∈ J . Thus,

((f + g) + kJ)[U ] ⊇ ((f + g) + kJ)[i] = {r}+ kJ [i] = {r}+ R = R, (19)

where {r} = (f + g)[j]. So (f + kJ) + g is not constant at x. If x /∈ cl (
⋃
J),

then there is a neighborhood U ⊆ R \ cl (
⋃
J) of x such that kJ is equal to 0

on U , and (f + kJ + g)|U = (f + g)|U which is non-constant on U . So, f + g
is non-constant at x. Thus, (f + kJ) + g is nowhere-constant.
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We now must show that (f + kJ) + g is Darboux. Let i ⊆ R be a non-
degenerate open interval. If i∩j 6= ∅ for some j ∈ J , then i contains a non-trival
sub-interval of j, so, arguing as in (19), ((f + kJ) + g)[i] = R. If i ∩ j = ∅ for
all j ∈ J , then ((f + kJ) + g)[i] = (f + g)[i]. In either case ((f + kJ) + g)[i] is
an interval. Thus, (f + kJ) + g is Darboux. So, (f + kJ) + g ∈ Dar∗ and G1

satisfies (18) completing the proof.

Lemma 22. A∗(¬Dar(c)) = A∗(¬Dar).

Proof. By [9, Lemma 27] A(¬Dar) = A(¬Dar(c)). It follws by Proposi-
tion 2(ii) that A∗(¬Dar(c)) ≤ A∗(¬Dar).

We show the other inequality. By [9, Lemma 26] there is an additive
function Θ ∈ RR such that Θ◦h ∈ Dar(c) for every h ∈ Dar∗. Notice that Θ is
a surjection. Let F ⊆ RR and |F | < A∗(¬Dar). For each f ∈ F pick f1 ∈ RR

such that Θ◦f1 = f . Let F1 = {f1 : f ∈ F}. Note that |F1| ≤ |F | < A∗(¬Dar).
By the definition of A(¬Dar∗) and Lemma 21 there is a G ⊆ RR such that
|G| < A(¬Dar) and

(∀f1 ∈ F1)(∃g ∈ G)(f1 + g ∈ Dar∗). (20)

For each g ∈ G let g1 = Θ ◦ g. Put G1 = {g1 : g ∈ G}. Note that |G1| <
A(¬Dar(c)). We will be done if we show that G1 satisfies

(∀f ∈ F )(∃g1 ∈ G1)(f + g1 ∈ Dar(c)). (21)

Let f ∈ F . By (20) there is a g ∈ G such that f1 + g ∈ Dar∗. We now have
f + g1 = (Θ ◦ f1) + (Θ ◦ g) = Θ(f1 + g) ∈ Dar(c). Thus, G1 satisfies (21).

Lemma 23. If |[c]<c| = c, then A∗(¬Dar) ≤ d1
c .

Proof. By Lemma 22 it is enough to prove that A∗(¬Dar(c)) ≤ d1
c . Let

F ⊆ RR be such that |F | = d1
c and(

∀G ∈
[
RR]<dc

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| < c). (22)

It is enough for us to show that F satisfies(
∀G ∈

[
RR]<A(¬Dar(c))

)
(∃f ∈ F )(f +G ⊆ ¬Dar(c)). (23)

Let G ∈
[
RR]<A(¬Dar(c)). Since |[c]<c| = c we have, by [9, Lemma 27] and

Proposition 4(vii), that |G| < dc. By (22) there is an f ∈ F such that
|[f = −g]| < c for every g ∈ G. In particular, |(f + g)−1({0})| < c for each
g ∈ G. So f + g /∈ Dar(c) for every g ∈ G and so F satisfies (23).
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Proof of Theorem 8 We have shown that

κ1 ≤ A∗(¬AC) ≤ A∗(¬Con) ≤ A∗(¬Dar) ≤ d1
c .

So it is enough to show that d1
c ≤ κ1. Let W =

⋃
{cα : α < c}. Note that

|W | = c by our assumption that |[c]<c| = c. Let V = {〈α, ξ〉 : ξ ≤ α < c}. Let
F ⊆ [cV ]c be such that |F | = κ1 and(

∀G ∈
[
cV
]<d∗c) (∃A ∈ F )(∀g ∈ G)(∃f ∈ A)(|[f = g]| < c). (24)

For each A ∈ F let A = {fβ : β ∈ c}. For each A ∈ F let fA ∈ W c be such
that fA(α) ∈ cα and fA(α)(β) = fβ〈α, β〉. Let F ∗ = {fA : A ∈ F}. Note that
|F ∗| ≤ |F | = κ1. It is enough for us to show that F ∗ satisfies(

∀G ∈ [W c]<dc

)
(∃f ∈ F ∗)(∀g ∈ G)(|[f = g]| < c). (25)

Let G ⊆ W c and |G| < dc. For every g ∈ G let g1 ∈ cV be defined by
g1〈α, β〉 = g(α)(β) for all β ∈ dom(g) and zero otherwise. Let G1 = {g1 : g ∈
G} and notice that |G1| < dc ≤ d∗c . By (24) there is an A ∈ F such that

(∀g1 ∈ G1)(∃f ∈ A)(|[f = g1]| < c). (26)

We claim that |[fA = g]| < c for every g ∈ G. Fix g ∈ G. There is an fβ ∈ A
such that |[g1 = fβ ]| < c. Thus, for all but strickly less than c-many α > β we
have g(α)(β) = g1〈α, β〉 6= fβ〈α, β〉 = fA(α)(β). It follows that |[g = fA]| < c.
So, by (26) the claim is proved. Therefore, F ∗ satisfies (25).

We now work to prove Theorem 9. Towards this end we define some other
cardinals.

e∗c = min{|F | : F ⊆ cc &
(
∀G ∈ [cc]c

)
(∃f ∈ F )(∀g ∈ G)(|[g = f ]| < c)}.

κ2 = min{|F | : F ⊆ [cc]c &
(
∀G ∈ [cc]<e

∗
c

)
(∃A ∈ F )

(∀g ∈ G)(∃f ∈ A)(|[f = g]| = c)}.

Lemma 24. If |[c]<c| = c, then κ2 ≤ A∗(¬SZ) ≤ e1c .

Proof. Let H stand for the family of all functions h ∈ RR such that h|A
is continuous for some Gδ set A of cardinality c and equal to zero elsewhere.
Note that |H| = c.

We show that κ2 ≤ A∗(¬SZ). Let F ⊆ RR be such that |F | = A∗(¬SZ)
and (

∀G ∈
[
RR]<A(¬SZ)

)
(∃f ∈ F )(f +G ⊆ ¬SZ). (27)
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For each f ∈ F let Af ∈ [RR]c be defined by {h − f : h ∈ H}. Let F ∗ =
{Af : f ∈ F}. Notice that |F ∗| ≤ |F | = A∗(¬SZ). It is enough for us to show
that F ∗ satisfies(

∀G ∈
[
RR]<e∗c) (∃A ∈ F ∗)(∀g ∈ G)(∃f ∈ A)(|[f = g]| = c). (28)

Let G ⊆ RR be such that |G| < e∗c . Since |[c]<c| = c, we have by [9, Corollary
13] e∗c = A(¬SZ). So |G| < A(¬SZ). By (27) there is an f ∈ F such that
f + G ⊆ ¬SZ. So for each g ∈ G there is, by Proposition 15, an h ∈ H such
that |[f + g = h]| = c. It follows that for every g ∈ G there is a k ∈ Af such
that |[k = g]| = c. Thus, F ∗ satisfies (28).

We now show that A∗(¬SZ) ≤ e1c . Let F ⊆ RR be such that |F | = e1c and(
∀G ∈

[
RR]<ec

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| = c). (29)

It is enough for for us to show that F satisfies(
∀G ∈

[
RR]<A(¬SZ)

)
(∃f ∈ F )(∀g ∈ G)(f + g ∈ ¬SZ). (30)

Let G ⊆ RR and |G| < A(¬SZ). Notice that since |[c]<c| = c we have, by [9,
Corollary 13], |G| < ec. By (29) there is an f ∈ F such that |[f = −g]| = c for
all g ∈ G. So |(f + g)−1({0})| = c which implies that f + g ∈ ¬SZ. Therefore,
F satisfies (30).

To finish the proof of Theorem 9 it is enough, by Lemma 24, to prove the
following lemma

Lemma 25. If |[c]<c| = c, then e1c = κ2.

Proof. First notice that Lemma 24 provides the inequality κ2 ≤ e1c . We show
that e1c ≤ κ2. Let W =

⋃
{cα : α < c}. Note that |W | = c by our assumption

that |[c]<c| = c. Let V = {〈α, ξ〉 : ξ ≤ α < c}. Let F ⊆ [W c]c be such that
|F | = κ2 and(

∀G ∈ [W c]<e
∗
c

)
(∃A ∈ F )(∀g ∈ G)(∃f ∈ A)(|[f = g]| = c). (31)

For each A ∈ F let A = {fα : α ∈ c} and define fA ∈ cV by fA〈α, β〉 =
fβ(α)(β) if β ∈ dom(fβ(α)) and zero otherwise. Let F ∗ = {fA : A ∈ F}.
Notice that |F ∗| ≤ |F | = κ2. It is enough for us to show that F ∗ satisfies(

∀G ∈
[
cV
]<ec

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| = c). (32)
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Let G ⊆ cV be such that |G| < ec. For each g ∈ G define g1 ∈ W c by
g1(α)(β) = g〈α, β〉 where dom(g1(α)) = α + 1. Let G1 = {g1 : g ∈ G} and
notice that |G1| ≤ |G| < ec ≤ e∗c . By (31) there is an A ∈ F such that

(∀g ∈ G1)(∃f ∈ A)(|[f = g]| = c). (33)

We claim that fA ∈ F ∗ has the property that |[fA = g]| = c for every g ∈ G.
Fix g ∈ G. By (33) there is an β ∈ c such that |[g1 = fβ ]| = c. In particular,

c =|{α > β : fβ(α) = g1(α)}|
≤|{α > β : fβ(α)(ξ) = g1(α)(ξ) for all ξ < α}|
≤|{α > β : fβ(α)(β) = g1(α)(β)}|
≤|{α > β : fA〈α, β〉 = g〈α, β〉}|
≤|[fA = g]|.

Thus, F ∗ satisfies (32) which implies that e1c ≤ κ2.

6 Proof of Theorem 10

To prove Theorem 10 we will need a few lemmas and some more cardinals.

Dc = min{|F | : F ⊆ cc & (∀g ∈ cc)(∃f ∈ F )(|[f ≤ g]| < c)},
bc = min{|F | : F ⊆ cc & (∀g ∈ cc)(∃f ∈ F )(|[g ≤ f ]| = c)}.

The numbers bc and Dc are analogs of the bounding number b = bω and the
dominating number D = Dω. We will use the following proposition from [9,
Lemma 31] a number of times thoughout this section.

Proposition 26. If c = λ+, then the set {〈α, β〉 ∈ c2 : β ≤ f(α)} is the union
of λ-many functions in cc for every f ∈ cc.

Our first goal will be to show that under the assumption of |[c]<c| = c and
c = λ+ we have ec = e1c = Dc.

Lemma 27. If c = λ+, then Dc = e∗c ≥ κ2.

Proof. By [9, Lemma 33] e∗c = Dc under the assumption of c = λ+ so it is
enough for us to show that κ2 ≤ Dc. Let F ⊆ cc be such that |F | = Dc and

(∀g ∈ cc)(∃f ∈ F )(|[f ≤ g]| < c). (34)
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For each f ∈ F we may find, using Proposition 26, an Af ∈ [cc]λ such that
{〈α, β〉 ∈ c2 : β ≤ f(α)} =

⋃
Af . Let F ∗ = {Af : f ∈ F}. Notice that

|F ∗| ≤ |F | = Dc. It is enough for us to show that F ∗ satisfies(
∀G ∈ [cc]<e

∗
c

)
(∃A ∈ F ∗)(∀g ∈ G)(∃f ∈ A)(|[f = g]| = c). (35)

Let G ⊆ cc and |G| < e∗c = Dc. Since |G| < Dc there is an h ∈ cc such that
|[g ≤ h]| = c for every g ∈ G. By (34) there is an f ∈ F such that |[f ≤ h]| < c
so |[g ≤ f ]| = c for every g ∈ G. We claim that Af has the property that

(∀g ∈ G)(∃h ∈ Af )(|[h = g]| = c). (36)

Let g ∈ G. By the choice of f we have |g ∩ (
⋃
Af )| = c. Since |Af | = λ it

follows that |[g = h]| = c for some h ∈ Af . Thus, Af satisfies (36). Therefore,
F ∗ satisfies (35).

Lemma 28. If |[c]<c| = c and c = λ+, then ec = e1c = Dc.

Proof. By [9, Theorem 10] and [9, Lemma 33] ec = Dc. By Lemmas 25 and
27 and Theorem 6 we have ec = A(Dar) ≤ A∗(Dar) = e1c ≤ Dc.

Lemma 29. If |[c]<c| = c and c = λ+, then ec = d1
c = Dc.

Proof. By Lemma 28 it is enough for us to show that Dc = d1
c . Since c ≤ dc

it is easy to check that e∗c ≤ d1
c . So by Lemma 28 we have Dc ≤ d1

c . All we
must do now is show that d1

c ≤ Dc.
Let F ⊆ cc be such that |F | = Dc and

(∀g ∈ cc)(∃f ∈ F )(|[f ≤ g]| < c). (37)

It is enough for us to show that F satisfies(
∀G ∈ [cc]<dc

)
(∃f ∈ F )(∀g ∈ G)(|[f = g]| < c). (38)

Let G ⊆ cc and |G| < dc. By [9, Lemma 33] dc = bc. Since |G| < bc there is
an h ∈ cc such that |[h ≤ g]| < c for all g ∈ G. By (37) there is an f ∈ F such
that |[f ≤ h]| < c. It follows that |[f ≤ g]| < c for every g ∈ G. In particular,
we have that |[f = g]| < c for every g ∈ G. Thus, F satisfies (38).

Proof of Theorem 10 Lemmas 28 and 29 yield the equalities ec =
e1c = d1

c . The inequality dc ≤ d1
c is a consequence of Proposition 4(iii) and

Theorem 7.
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