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ON DISCRETE LIMITS OF SEQUENCES OF
FUNCTIONS SATISFYING SOME SPECIAL

APPROXIMATE QUASICONTINUITY
CONDITIONS

Abstract

In this article we investigate some properties of discrete limits of se-
quences of functions satisfying some special approximate quasicontinuity
conditions.

Let R be the set of all reals. In article [2] the authors introduced the
notion of the discrete convergence of sequences of functions and investigated
the discrete limits in different families; for example, in the family C of all
continuous functions.

We will say that a sequence of functions fn : R→ R, n = 1, 2, . . ., discretely
converges to the limit f (f = d− limn→∞ fn) if

∀x∃n(x)∀n>n(x)fn(x) = f(x).

For any family P denote by Bd(P) the family of all discrete limits of sequences
of functions taken from the family P.

In [2] the class Bd(C) is described and the authors observe that every
strictly increasing function F whose set of discontinuity points is dense does
not belong to the discrete Baire system generated from C with discrete con-
vergence.

In this article we will investigate the discrete limits of sequences of functions
satisfying some special conditions introduced in [3].
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Recall that x is a density point of a set A ⊂ R if there is a measurable
(in the Lebesgue sense) set B ⊂ A such that

lim
h→0+

µ(B ∩ (x− h, x+ h))
2h

= 1,

where µ denotes Lebesgue measure in R.
The family

Td = {A ⊂ R;∀x∈A x is a density point of A}

is a topology called the density topology ([1] and [8]).
If Te denotes the Euclidean topology in R, then the continuity of functions

from (R, Td) to (R, Te) is called approximate continuity.
The following conditions were introduced in [3].
A function f : R→ R satisfies the condition:

(s1) for every positive real η for each point x and for each set U ∈ Td including
x there is point u ∈ U of continuity of f such that |f(u)− f(x)| < η;

(s2) for every positive real η for each point x and for each set U ∈ Td including
x there is an open interval I such that

U ∩ I 6= ∅, f(I ∩ U) ⊂ (f(x)− η, f(x) + η) and I ∩ U ⊂ C(f),

where C(f) denotes the set of all continuity points of f ;

(s3) for every positive real η for each point x and for each set U ∈ Td including
x there is a point u ∈ U of approximate continuity of f such that |f(u)−
f(x)| < η;

(s4) for every positive real η for each point x and for each set U ∈ Td including
x there is an open interval I such that

U ∩ I 6= ∅, f(U ∩ I) ⊂ (f(x)− η, f(x) + η) and I ∩ U ⊂ A(f),

where A(f) denotes the set of all points at which f is approximately
continuous.

In [3] it was observed that a function f satisfies condition (s1) if and only
if it is strongly quasicontinuous at each point x; i.e., for every positive real η
and for every set U ∈ Td including x there is an open interval I such that

I ∩ U 6= ∅ and f(I ∩ U) ⊂ (f(x)− η, f(x) + η),
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satisfies condition (s3) if and only if it is Td-quasicontinuous at each point x;
i.e., for every positive real η and for every set U ∈ Td including x there is a
nonempty set V ⊂ U belonging to Td such that f(V ) ⊂ (f(x)− η, f(x) + η).

The definition of strong quasicontinuity was introduced in [4], where it is
also proved that every strongly quasicontinuous function f is almost every-
where continuous. Td-quasicontinuous functions were investigated in [5].

It is obvious that condition (s2) implies condition (s4) and that condition
(s4) implies (s3) and (s1).

Remark 1. For a given nonempty set U ∈ Td and functions f, g : R→ R we
suppose that f and g satisfy condition (s1) and U ⊂ A(f). If there is a set
V ⊂ cl(U) dense in the closure cl(U) of the set U such that f(x) = g(x) for
each point x ∈ V , then f(x) = g(x) for each point x ∈ U .

Proof. Since the restricted functions f � V and g � V are equal, f(x) = g(x)
for each point x ∈ C(f) ∩ C(g) ∩ U . But f and g are almost everywhere
continuous; so f(x) = g(x) for almost all points x ∈ U . Assume, to the
contrary, that there is a point u ∈ U such that f(u) 6= g(u). Let 3η =
|f(u)− g(u)|. There is a closed set

A ⊂ U ∩ {x; |f(u)− f(x)| < η} ∩ {x; f(x) = g(x)}

such that u is a density point of A. Since g satisfies condition (s1), the point
u is not any density point of the interior int({x; |g(x)− g(u)| ≥ η}) of the set
{x; |g(x)−g(u)| ≥ η}. So u is a density point of the setA∩{x; |f(x)−f(u)| < η}
and u is not a density point of the set {x; |g(x)− g(u)| ≥ η}. Thus

A ∩ {x; |f(x)− f(u)| < η} ∩ {x; |g(x)− g(u)| < η} 6= ∅

and there is a point w ∈ A such that |f(w)− f(u)| < η and |g(w)− g(u)| < η.
Since f(w) = g(w), this implies

3η = |f(u)− g(u)| ≤ |f(u)− f(w)|+ |g(w)− g(u)| < 2η,

which is a contradiction and thus completes the proof.

Theorem 1. If a function f : R → R is the discrete limit of a sequence
of functions fn, n = 1, 2, . . ., satisfying condition (s1), then it satisfies the
following condition

(i1) for each nonempty set A ∈ Td there is an open interval I such that
I ∩ A 6= ∅, the restricted function f � (I ∩ A) is almost everywhere
continuous and for each positive real η and every point x ∈ I ∩ A there
is an open interval J ⊂ I ∩ (x− η, x+ η) for which

J ∩A 6= ∅ and f(J ∩A) ⊂ (f(x)− η, f(x) + η).
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Proof. Let A ∈ Td be a nonempty set. For n = 1, 2, . . . let

An = {x ∈ cl(A); fk(x) = f(x) for k ≥ n}.

Observe that cl(A) =
⋃∞
n=1An and An ⊂ An+1 for n ≥ 1. There is a positive

integer m such that the set Am is of the second category in cl(A). So there
is an open interval I with I ∩ Am 6= ∅ and I ∩ cl(A) ⊂ cl(I ∩ Am). Put
B =

⋂
k≥m C(fk) and observe that for k ≥ m and x ∈ I ∩ B ∩ cl(A) we

have fk(x) = f(x). Since the functions fn, n ≥ 1, are almost everywhere
continuous, the set (I ∩A) \B is of measure zero. But

f � (A ∩ I ∩B) = fk � (A ∩ I ∩B) for k ≥ m,

so the restricted function f � (I ∩A) is almost everywhere continuous.
Assume, to the contrary, that there is a positive real η and a point x ∈ I∩A

such that for every open interval J ⊂ I ∩ (x − η, x + η) such that J ∩ A 6= ∅
there is a point u ∈ J ∩A at which |f(u)−f(x)| ≥ η. Let j ≥ m be an integer
such that fk(x) = f(x) for k ≥ j. Since x ∈ (x−η, x+η)∩ I ∩A ∈ Td and the
function fj satisfies condition (s1), there is an open interval J ⊂ I∩(x−η, x+η)
such that

J ∩A 6= ∅ and fj(J ∩A) ⊂ (fj(x)− η

2
, fj(x) +

η

2
).

Let u ∈ J∩A be a point for which |f(u)−f(x)| ≥ η and let i ≥ j be an integer
such that fk(u) = f(u) for k ≥ i. Since the function fi satisfies condition (s1)
and since u ∈ J ∩A ∈ Td, there is an open interval K ⊂ J such that

K ∩A 6= ∅ and fi(K ∩A) ⊂ (f(u)− η

2
, f(u) +

η

2
).

But the restricted functions fi � (J ∩A) and f(J ∩A) are almost everywhere
equal; so there is a point w ∈ J ∩A∩B at which the equality f(w) = fi(w) =
fj(w) holds. Consequently,

η ≤ |f(u)− f(x)| ≤ |fi(u)− fi(w)|+ |fj(w)− fj(x)| < η

2
+
η

2
= η

and the contradiction completes the proof.

Since the functions satisfying condition (s1) are almost everywhere contin-
uous, for the function f from the last theorem there is an Fσ-set E of measure
zero such that the restricted function f � (R \ E) is the discrete limit of a
sequence of continuous functions on R \ E ([6]).

The next result follows from the proof of the last theorem.
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Corollary 1. If the function f : R→ R is the discrete limit of a sequence of
functions fn, n ≥ 1, satisfying condition (s1), then the set

Dsq(f) = {x; f is not strongly quasicontinuous at x}

is nowhere dense.

Proof. Let I be an open interval. As in the proof of the last theorem, we
find an open interval J ⊂ I a set E ⊂ J of measure zero and a positive integer
m such that fk(x) = f(x) for x ∈ J \ E and k ≥ m. The reasoning used in
the proof of the last theorem shows that f is strongly quasicontinuous at each
point x ∈ J .

Theorem 2. If a function f : R → R is the discrete limit of a sequence of
functions fn, n ≥ 1, satisfying condition (s4), then it satisfies the following
condition.

(i2) For every nonempty set A ∈ Td there are an open interval I and a
positive integer m such that

A(f) ⊃ I ∩A 6= ∅ and fk(x) = f(x) for ;x ∈ A ∩ I and k ≥ m.

Proof. As in the proof of Theorem 1, we find a positive integer m and an
open interval I such that ∅ 6= I ∩ A ⊂ A(fm) and

⋂
k≥m{x ∈ I ∩ A; fk(x) =

f(x)} is dense in I ∩A. Now we use Remark 1 and observe that fk(x) = f(x)
for x ∈ I ∩A and k ≥ m.

As an immediate consequence we obtain the following corollary.

Corollary 2. For the function f from Theorem 2 the set Dsq(f)∩ (R \A(f))
is nowhere dense.

Theorem 3. If a function f : R → R is the discrete limit of a sequence
of functions fn, n = 1, 2, . . ., satisfying condition (s2), then it satisfies the
following condition.

(i3) For each nonempty set A ∈ Td there is an open interval I such that
I ∩A 6= ∅ and the restricted function f � (I ∩A) is continuous.

Proof. The proof is completely analogous to that of Theorem 2.

As an immediate consequence we obtain the following.

Corollary 3. If a function f : R → R is the discrete limit of a sequence of
functions fn, n ≥ 1, satisfying condition (s2), then the set R\C(f) is nowhere
dense.
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Let f : R → R be an increasing function whose set of discontinuities is
dense. If for all discontinuities x of f we suppose that

f(x) =
limt→x+ f(t) + limt→x− f(t)

2
,

then f is not in the Baire system generated by the family of all functions
satisfying condition (s1) and discrete convergence.

Of course, for every quasicontinuous function g the set {x; f(x) 6= g(x)}
is residual, so the graph of the function f can not covered by a countable
family of the graphs of quasicontinuous functions, and consequently f does
not belong to the above Baire system.

However if for all discontinuity points x of f we have f(x) = limt→x+ f(t),
then f satisfies condition (s1), but is not the discrete limit of any sequence of
functions satisfying condition (s4), because the set R \A(f) is dense.

Every almost everywhere continuous function h : R → R which is every-
where approximately continuous and discontinuous on a dense set, satisfies
condition (s4), but is not the discrete limit of any sequence of functions satis-
fying condition (s2), because its set of discontinuities is dense.

Theorem 4. A function f : R → R is the discrete limit of a sequence of
functions satisfying condition (s3) if and only if it is measurable.

Proof. The necessity is evident, since all functions satisfying condition (s3)
are measurable. The proof of the sufficiency is the repetition of the proof for
the pointwise limits from [7] or [5].

If the function f is measurable, then the set B = R \ A(f) is of measure
zero. Let E ⊃ B be a Gδ-set of measure zero. There are ([7]) measurable sets
Bn,k, k, n = 1, 2, . . ., such that

Bn,k ∩Bm,l = ∅ if (n, k) 6= (m, l) and R \ E =
⋃∞
k,n=1Bn,k;

if x ∈ Bn,k ∪ E, then x is not a density point of the set R \ Bn,k \ E,
k, n = 1, 2, . . ..

Let (wn) be an enumeration of all rationals such that wn 6= wm for n 6= m.
For n ≥ 1 define fn by

fn(x) =

{
wk if x ∈ Bn,k for k = 1, 2, . . .
f(x) otherwise on R.

Then each function fn, n ≥ 1, satisfies condition (s3) and the sequence (fn)
discretely converges to f .
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If C is a Cantor set of positive measure such that for each open interval I
with I ∩C 6= ∅ the set I ∩C is of positive measure and if B ⊂ C is a countable
set such that every point x ∈ B is a density point of C and cl(B) = C, then the
function f equal 1 on B and zero otherwise on R does not satisfy condition
(i1). So, it is not the discrete limit of any sequence of functions satisfying
condition (s1).

Evidently f is the discrete limit of a sequence of almost everywhere con-
tinuous functions.

Theorem 5. Let f : R → R be a function. Suppose that there are pairwise
disjoint closed sets An of measure zero and functions gn : R→ R, n = 1, 2, . . .,
satisfying condition (sj), where j ∈ {1, 2, 4}, on the sets R \An, such that the
restricted function f � (R \

⋃∞
n=1An) is the discrete limit of the sequence of

restricted functions gn � (R \
⋃∞
k=1Ak) and is not a point x ∈

⋃∞
k=1Ak being

a density point of the closure cl(
⋃∞
k=1Ak). Then f is the discrete limit of a

sequence of functions satisfying condition (sj).

Proof. Evidently the set A =
⋃∞
n=1An, is nowhere dense. We find pairwise

disjoint closed intervals In,k,m = [an,k,m, bn,k,m], k, n,m = 1, 2, . . ., such that:

In,k,m ∩ cl(A) = ∅ for m,n, k ≥ 1;

all endpoints an,k,m, bn,k,m are continuity points of gn, k,m, n = 1, 2, . . .;

if x is an accumulation point of the set {an,k,m, bn,k,m; k,m = 1, 2 . . .},
then x ∈ An, n ≥ 1;

if x ∈ An an (mi)i is a strictly increasing sequence of positive integers,
then x is not a density point of the set R \

⋃∞
i=1 In,k,mi for k, n ≥ 1.

In the interior of each interval Ik,n,m, k,m, n ≥ 1, we find a closed interval
Jn,k,m such that for every point x ∈ An and for every strictly increasing
sequence of positive integers mi, i = 1, 2, . . ., x is not a density point of a set
R \

⋃∞
i=1 Jn,k,mi

for k, n ≥ 1. For a nonempty set X ⊂ R and for x ∈ R let

dist(x,X) = inf{|t− x|; t ∈ X}.

Let (wk)k be an enumeration of all rationals. We will define functions fn,
n = 1, 2, . . ., as follows. Fix a positive integer n. If x ∈ Ji,k,m, i ≤ n,
k,m = 1, 2, . . ., and if

max(dist(ai,k,m,
⋃
i≤n

Ai,dist(bi,k,m,
⋃
i≤n

Ai) <
1
n

(∗),
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then fn(x) = wk, for k,m, n ≥ 1. If dist(x,
⋃
i≤nAi) ≥

1
n or if x ∈ R \⋃

i≤n
⋃
k,m≥1 int(Ii,k,m) or if x ∈ In,k,m and condition (∗) does not hold, then

fn(x) = gn(x). If i ≤ n and the triple (i, k,m) satisfies condition (∗), then fn
is linear on the components of the set Ii,k,m \ int(Ji,k,m). Then the functions
fn, n ≥ 1, satisfy condition (sj) and the sequence (fn) discretely converges to
f .
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