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Ján Borśık, Mathematical Institute of Slovak Academy of Sciences,
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SUMS OF QUASICONTINUOUS
FUNCTIONS WITH CLOSED GRAPHS∗

Abstract

We prove that every real-valued B∗
1 function f defined on a separable

metric space X is the sum of three quasicontinuous functions with closed
graphs, and there is a B∗

1 function which is not the sum of two quasicon-
tinuous functions with closed graphs. Consequently, if X is a separable
metric space which is a Baire space in the strong sense, then the next
three properties are equivalent: (1) f is a B∗

1 function, (2) f is the sum
of (at least) three quasicontinuous functions with closed graphs, and
(3) f is a piecewise continuous function.

1 Introduction

Let X be a topological space. A function f : X → R is said to be quasi-
continuous (cliquish) at a point x ∈ X if for every neighborhood U of x and
every ε > 0 there is an open set G ⊆ U such that |f(x)− f(y)| < ε for each
y ∈ G (|f(y) − f(z)| < ε for each y, z ∈ G). A function f is quasicontinu-
ous (cliquish) if it is such at each point. A function f : X → R has closed
graph if the set {(x, f(x)) : x ∈ X} is a closed subset of X × R. A function
f : X → R is piecewise continuous if there are closed sets Xn ⊆ X, n ∈ N such
that X =

⋃∞
n=0Xn and the restriction f�Xn is continuous for each n ∈ N.

A function f : X → R is a function of the class B∗1 (Baire-one-star function)
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if for every closed set F ⊆ X there exists an open set G ⊆ X such that
F ∩G 6= ∅ and f�(F ∩G) is continuous ([5]).

If F ⊆ RX is a family of real functions, then we denote by G(F) the
group generated by F . Further, denote by Q, U , B∗1 , and P the families of all
quasicontinuous functions, closed graph functions, Baire-one-star functions,
and piecewise continuous functions (in RX), respectively.

Evidently, the sum of two quasicontinuous functions with closed graph need
not be such. In this paper we will characterize the group generated by real
quasicontinuous functions with closed graph. More precisely, we shall show
that

G(QU) = B∗1 = P = QU +QU +QU

for separable metric spaces which are Baire spaces in the strong sense, in
particular, for complete separable metric spaces. Further, we shall show that
QU +QU 6= B∗1 (in spite of the facts that every B∗1 function on a metric space
is the sum of two functions with closed graphs, [3], and that every cliquish
function, and thus also every B∗1 function, is the sum of two quasicontinuous
functions, [1]).

Recall that X is a Baire space in the strong sense (or totally nonmeager)
if every nonempty closed subspace of X is a Baire space ([4]).

We use the following notation in the paper. Let X be a metric space with
a metric function d : X ×X → [0,∞). For x ∈ X, A,B ⊆ X and ε > 0 we
define

diam(A) = sup{d(a, b) : a, b ∈ A},
dist(x,A) = inf{d(x, a) : a ∈ A},
dist(A,B) = inf{d(a, b) : a ∈ A& b ∈ B},

S(x, ε) = {y ∈ X : d(x, y) < ε},
S(A, ε) = {y ∈ X : dist(A, y) < ε}.

For a subset A of X, Cl(A) and Int(A) denote the closure and the interior
of A, respectively. The letters N, Q, and R stand for the set of natural, rational,
and real numbers, respectively. For a function f : X → R, D(f) denotes the set
of all discontinuity points of f . The quantifier ∀∞n abbreviates the quantifiers
(∃m)(∀n > m).

2 A Characterization of G(QU)

Lemma 2.1. Let X be a topological space and let f : X → R be a function.
The following implications hold:
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(1) If X is a Baire space, and f is piecewise continuous, then D(f) is no-
where dense.

(2) If f is a B∗1 function, then D(f) is nowhere dense.
(3) If f is a quasicontinuous function with closed graph, then D(f) is no-

where dense.
(4) f is a B∗1 function if and only if D(f�F ) is nowhere dense in F for every

closed set F in X.

Proof. To obtain a contradiction (in the proofs of conditions (1)–(3)) let us
assume that there is an open set G 6= ∅ such that D(f) is dense in G.

(1) Let X =
⋃∞
n=0Xn where Xn is closed and f�Xn is continuous for each

n ∈ N. Since G =
⋃∞
n=0G ∩Xn is not meager, there is m ∈ N such that the

set G ∩Xm has nonempty interior H. Then f is continuous at every point
x ∈ H which is a contradiction because H ∩D(f) 6= ∅.

(2) Let F = Cl(G). Since f is a B∗1 function, there is an open set H ⊆ X
such that F ∩H 6= ∅ and f�(F ∩H) is continuous. Then also G ∩H 6= ∅ and
(G ∩H) ∩D(f) = ∅ which is a contradiction.

(3) Let us fix x ∈ G. Since f is quasicontinuous, there is an open set
H ⊆ G such that |f(x)− f(y)| < 1 for each y ∈ H. Then f�H is bounded and
has closed graph (in H × R). Therefore f�H is continuous and f is continuous
at every point x ∈ H which contradicts the choice of the set G.

(4) If f is a B∗1 function and F is closed in X, then f�F is a B∗1 function
in F and by condition (2) D(f�F ) is nowhere dense in F . Conversely, if f is
not a B∗1 function, then by the definition there exists a closed set F such that
D(f�F ) is dense in F .

Condition (3) in the previous lemma can be easily proved for cliquish func-
tions with closed graphs.

A natural question is what is the relation between these three generalized
continuity properties of functions. We can make several simple observations.

Lemma 2.2. If X is a topological space and f : X → R has closed graph,
then f is piecewise continuous.

Proof. The inverse images of compact subsets of R are closed subsets of X
and hence it is enough to take Xn = f−1([−n, n]).

In [5] it is shown that the inclusion B∗1 ⊆ P holds for metric spaces and
the inclusion P ⊆ B∗1 holds for all complete metric spaces. Next we will see
that the equality holds for Baire metric spaces in the strong sense while this
is not true for all Baire metric spaces.
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Lemma 2.3. If X is a Baire space in the strong sense, then every piecewise
continuous function f : X → R is a B∗1 function.

Proof. Let X =
⋃∞
n=0Xn where Xn is closed and f�Xn is continuous for

each n ∈ N. Let F ⊆ X be a closed set. Then F =
⋃∞
n=0(F ∩ Xn) and

since F is a Baire space there is an open set G in X and n ∈ N such that
∅ 6= F ∩G ⊆ Xn and f�(F ∩G) is continuous.

Remark 2.4. In spite of Lemma 2.1(3) and Lemma 2.3, it is not true that in
a Baire space every quasicontinuous function with closed graph is a B∗1 func-
tion.

Proof. Let Q = {rn : n ∈ N} and let A = {xn,m : n,m ∈ N} be a sequence
of distinct irrational numbers. We define a metric d on X = Q ∪A by

d(x, y) = |x− y| for x, y ∈ Q,
d(xn′,m, rn) = 1/(m+ 1) + |rn′ − rn| and

d(xn1,m1 , xn2,m2) = 1/(m1 + 1) + 1/(m2 + 1) + |rn1 − rn2 |.

Notice that {xn,m} is an open set in X, A is a discrete open dense subset of X,
and X is a Baire space. We define f : X → R by f(rn) = f(xn,m) = n. Then
f is a quasicontinuous function with closed graph and f is not a B∗1 function
because Q is closed in X and f�(Q ∩G) is not continuous for any open set G
in X such that Q ∩G 6= ∅.

The aim of the paper is the proof of the next theorem.

Theorem 2.5. Let X be a separable metric space which is a Baire space in
the strong sense and let f : X → R. The following conditions are equivalent:

(1) f is the sum of three quasicontinuous functions with closed graphs.
(2) f is the sum of at least three quasicontinuous functions with closed

graphs.
(3) f is piecewise continuous.
(4) f is of the class B∗1.

Proof. The implication (1)→ (2) is trivial, the implication (2)→ (3) is a con-
sequence of Lemma 2.2, and the equality P+P = P. The implication (3)→ (4)
is Lemma 2.3, and the implication (4)→ (1) is Theorem 4.1.

Remark 2.6. The assumption X is a Baire space in the strong sense can
be neither removed nor replaced by the assumption that X is a Baire space,
see Remark 2.4.
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Remark 2.7. The separability assumption is necessary for the proof of the
implication (4)→ (1), namely for the proof of Lemma 3.3.

Remark 2.8. The sum of three functions cannot be replaced by the sum of
two functions in condition (1) of Theorem 2.5. Namely, the function f defined
by f(x) = 1, if x = 0, and f(x) = 0, if x 6= 0, is a B∗1 function, but it is not
the sum of two quasicontinuous functions with closed graphs.

Proof. Assume that f = f1 + f2 where f1, f2 are quasicontinuous functions
with closed graphs. Then f1(x) = −f2(x) for every x 6= 0. As f1 is quasi-
continuous at 0, there exists a sequence {xn}∞n=0 convergent to 0 such that
limn→∞ f1(xn) = f1(0) and then limn→∞ f2(xn) = −f1(0). Then, as f2 has
closed graph, f2(0) = −f1(0) and we have this contradiction: 1 = f(0) =
f1(0) + f2(0) = 0.

Problem 2.9. Characterize the family QU +QU .

We will need the next easy property of quasicontinuous functions.

Lemma 2.10. If f : X → R, K is an open set, and x ∈ Cl(K) is such that
f� Cl(K) is quasicontinuous at x, then f is quasicontinuous at x.

3 Systems of Closed Nowhere Dense Sets

Lemma 3.1 ([1], Lemma 3.1). Let X be a metric space, F ⊆ X be a closed
nowhere dense set and let G ⊆ X be an open set such that F ⊆ Cl(G). Then
there is a family K =

⋃∞
n=0Kn of nonempty open subsets of X such that the

following conditions hold:

(i) The set En =
⋃
{Cl(K) : K ∈ Kn} is closed and En ⊆ S(F, 2/n)∩G \ F

for every n ∈ N.
(ii) (∀x ∈ X \ F )(∃V a neighburhood of x) |{K ∈ K : V ∩ Cl(K) 6= ∅}| ≤ 1.
(iii) (∀x ∈ F )(∀V a neighborhood of x)(∀∞n)(∃K ∈ Kn) Cl(K) ⊆ V .

In particular, Cl(
⋃∞
n=0En) =

⋃∞
n=0En ∪ F .

Proof. The construction is by induction on n ∈ N. Assume that Ki, i < n
have been constructed. Put

Tn = G ∩ S(F, 1/n) \ (F ∪
⋃
i<nEi),

αn(x) =
1
4
· dist(x, F ∪ (X \G) ∪

⋃
i<nEi).

Let Sn ⊆ Tn be a maximal set with the property that d(x, y) > 1/n for x 6= y
in Sn. We set Kn = {S(x, αn(x)) : x ∈ Sn}.
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The more detailed proof of the above lemma can be found in [1] and the
same arguments we use in the proof of Lemma 3.3 below. We need this result
for the next consequence.

Lemma 3.2. Let H0 be a nowhere dense subset of a metric space X and let
H be a countable family of closed subsets of H0 linearly ordered by inclusion ⊆.
Then there exists an order isomorphism ϕ from H onto a family of open subsets
of X \H0 such that H0 ∩ Cl(ϕ(H)) = H for every H ∈ H.

Proof. Without loss of generality we can assume that ∅, H0 ∈ H. Let n be the
cardinality ofH; i.e., either n is an integer or n = ω, and let {Hn : n < n} be an
enumeration of H such that H1 = ∅ (and H0 is the given nowhere dense set).
We define ϕ(Hn) by induction for n < n. Set ϕ(H0) = X \H0, ϕ(H1) = ∅ and
let us assume that n > 1 and the open sets ϕ(Hi) are defined for i < n. There
are j, k < n such that Hj ⊆ Hn ⊆ Hk and for every i < n either Hi ⊆ Hj

or Hk ⊆ Hi. Set F = Hn and G = ϕ(Hk) in Lemma 3.1 and let K be the
obtained system of open sets. Let V =

⋃
K. Then V ⊆ ϕ(Hk) and Cl(V ) =⋃∞

i=0Ei ∪Hn while
⋃∞
i=0Ei ⊆ ϕ(Hk) ⊆ X \H0. Therefore H0 ∩Cl(V ) = Hn.

Finally, Cl(V ∪ ϕ(Hj)) = Cl(V ) ∪ Cl(ϕ(Hj)) and H0 ∩ Cl(ϕ(Hj)) = Hj ⊆
Hn. Therefore we can set ϕ(Hn) = V ∪ ϕ(Hj).

Lemma 3.3. Let X be a metric space and let ξ be a countable ordinal number.
Let {Fα}α≤ξ be a sequence of closed nowhere dense sets such that Fξ = ∅ and
Fβ $ Fα for α < β ≤ ξ. There exists a system L =

⋃
α<ξ Lα of disjoint

nonempty open sets, where Lα =
⋃∞
n=0 Lαn is a disjoint union, such that

(1) (∀K ∈ L) Cl(K) ∩ F0 = ∅.
(2) (∀x ∈ X\F0)(∃V a neighbourhood of x) |{K ∈ L : V ∩ Cl(K) 6= ∅}| ≤ 1.
(3) (∀x ∈ F0 \ Fα)(∃V a neighbourhood of x)(∀K ∈

⋃
β≥α Lβ) V ∩ Cl(K) =

∅.
(4) (∀x ∈ Fα)(∀V a neighbourhood of x)(∀∞n)(∃K ∈ Lαn) Cl(K) ⊆ V .
(5) (∀x ∈ F0)(∀K ∈ L) Cl(K) ⊆ S(x, 2 dist(x,Cl(K))).

Proof. By Lemma 3.2 let us fix a descending sequence of open sets {Vα}α≤ξ
such that Vα ∩ F0 = ∅ and Fα = F0 ∩ Cl(Vα). Let (λ, ρ) : ω → ξ × ω be
a bijection such that

n ≤ m and λ(n) = λ(m) implies ρ(n) ≤ ρ(m).

By induction we define the families Lλ(n)
ρ(n) so that the following conditions hold:

(i) diam(K) < 1/(2n) for K ∈ Lλ(n)
ρ(n) .
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(ii) The set En =
⋃
{Cl(K) : K ∈ Lλ(n)

ρ(n)} is closed and even every set

En(A) =
⋃
{Cl(K) : K ∈ A} is closed for A ⊆ Lλ(n)

ρ(n) .
(iii) En ⊆ S(Fλ(n), 2/n) ∩ Vλ(n).
(iv) (∀x ∈ Fλ(n))(∃K ∈ L

λ(n)
ρ(n)) K ⊆ S(x, 2/n).

(v) (∀x ∈ F0)(∀K ∈ Lλ(n)
ρ(n)) Cl(K) ⊆ S(x, 2 dist(x,Cl(K))).

Assume that the families Lλ(i)
ρ(i) , i < n have been constructed. Put

Tn = S(Fλ(n), 1/n) ∩ Vλ(n) \ (F0 ∪
⋃
i<nEi),

αn(x) =
1
4
· dist(x, F0 ∪ (X \ Vλ(n)) ∪

⋃
i<nEi).

Let Sn ⊆ Tn be a maximal set with the property that d(x, y) > 1/n for x 6= y
in Sn. We set

Lλ(n)
ρ(n) = {S(x, αn(x)) : x ∈ Sn}.

Now we verify conditions (i)–(v).
(i) For x ∈ Sn we have dist(x, Fλ(n)) < 1/n because x ∈ Tn, and hence

αn(x) < 1/(4n). Therefore diam(S(x, αn(x))) < 1/(2n).
(ii) For any x 6= y in Sn, d(x, y) > 1/n and αn(x), αn(y) < 1/(4n). There-

fore dist(S(x, αn(x)), S(y, αn(y))) ≥ d(x, y)− αn(x)− αn(y) > 1/(2n).
(iii) By definition of αn(x) we can see that Cl(S(x, αn(x))) ⊆ Vλ(n) for

x ∈ Sn. Moreover, since x ∈ S(Fλ(n), 1/n),

Cl(S(x, αn(x))) ⊆ S(Fλ(n), 1/n+ αn(x)) ⊆ S(Fλ(n), 2/n).

(iv) Let x ∈ Fλ(n). Since Fλ(n) is nowhere dense and disjoint from
⋃
i<nEi,

there is y ∈ S(x, 1/(2n)) \ (Fλ(n) ∪
⋃
i<nEi). Notice that

Sn ∩ S(x, 1/(2n) + 1/n) 6= ∅

since otherwise y could be added to Sn contradicting the maximality of Sn.
Now, for y ∈ Sn ∩ S(x, 1/(2n) + 1/n) we have

S(y, αn(y)) ⊆ S(x, 1/(2n) + 1/n+ αn(y)) ⊆ S(x, 2/n).

(v) Let x ∈ F0 and K ∈ Lλ(n)
ρ(n) , K = S(y, αn(y)). Then

αn(y) ≤ dist(y, F0)/4 ≤ d(y, x)/4.

Therefore dist(x,K) ≥ d(y, x)− αn(y) > 2αn(y) and

K ⊆ S(x, dist(x,K) + 2αn(y)) ⊆ S(x, 2 dist(x,K)).



686 Ján Borśık, Jozef Doboš and Miroslav Repický

Now we show that conditions (1)–(5) are satisfied. Conditions (1), (4)
and (5) are consequences of conditions (iii), (iv) and (v), respectively.

(2) Let x ∈ X \ F0, dist(x, F0) > 4/k for some k. If n ≥ k, then by (iii)
En ⊆ S(Fλ(n), 2/n) ⊆ S(F0, 2/k). It follows that S(x, 2/k) ∩

⋃
n≥k En =

∅. Now there are two possibilities: Either, x ∈ Cl(K0) for some K0 ∈ L
and then the set V = S(x, 2/k) \

⋃
n<k(En \ Cl(K0)) is open, x ∈ V , and

V ∩K 6= ∅ if and only if K = K0 for K ∈ L. Or, x /∈
⋃
n<k En, and then

V = S(x, 2/k) \
⋃
n<k En is open, x ∈ V , and V ∩K = ∅ for every K ∈ L.

(3) Let α ≤ β ≤ ξ and let x ∈ F0 \ Fα. Then, by the choice of the set Vα,
x ∈ X \ Cl(Vα) ⊆ X \ Cl(Vβ), and by (iii), Cl(K) ⊆ Vβ for every K ∈ Lβ .

4 Main Result

Theorem 4.1. Let X be a separable metric space. Then every B∗1 function
f : X → R is the sum of three quasicontinuous functions with closed graphs.

Remark 4.2. As we already mentioned every B∗1 function is piecewise contin-
uous. However in Theorem 4.1 B∗1 can’t be replaced by piecewise continuous
because for X = Q every function is piecewise continuous while there exists
a function which is not cliquish and hence not every function is a sum of
quasicontinuous functions.

Proof. Let f ∈ B∗1 . Let us introduce the following notation:

f+ = max{f, 0}, f− = min{f, 0},

and for a closed set A ⊆ X let hA : X \A→ R be defined by

hA(x) = 1/ dist(x,A), if A 6= ∅, and hA(x) = 0, if A = ∅.

By induction we define the following sequence of closed nowhere dense subsets
of X:

F0 = Cl(D(f)),
Fα+1 = Cl(D(f�Fα)),

Fα =
⋂
β<α

Fβ for α a limit ordinal.

By Lemma 2.1(4) the set F0 is nowhere dense and Fα+1 is nowhere dense
in Fα. As X is separable every descending sequence of closed sets in X must
be countable. Let ξ < ω1 be the least ordinal for which Fξ = ∅. If ξ = 0, then
f is continuous and f = f + 0 + 0 is the sum of three continuous functions.
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Therefore let us assume that ξ > 0. By Lemma 3.3 there exists a system
L =

⋃
α<ξ Lα of disjoint nonempty open sets satisfying conditions (1)–(5).

For α < ξ and K ∈ Lα let us fix bK ∈ K and aK ∈ Fα \ Fα+1 such that 0 <
d(bK , aK) < 2 dist(bK , Fα \ Fα+1). This is possible because Cl(K) ∩ F0 = ∅.
By condition (2) of Lemma 3.3 the set D = F0 ∪

⋃
{Cl(K) : K ∈ L} is closed.

We define quasicontinuous functions f1, f2, f3 : X → R with closed graphs as
follows:

For x ∈ Fα \ Fα+1, α < ξ,

f1(x) = f+(x) + hFα+1(x),
f2(x) = hFα+1(x),
f3(x) = f−(x)− 2hFα+1(x).

For x ∈ Cl(K), K ∈ Lα3n, n ∈ N, α < ξ,

f1(x) = f+(aK) + hFα+1(aK),
f2(x) = f+(x) + hFα(x),
f3(x) = f−(x)− hFα(x)− f+(aK)− hFα+1(aK).

For x ∈ Cl(K), K ∈ Lα3n+1, n ∈ N, α < ξ,

f1(x) = f+(x) + hFα(x),
f2(x) = hFα+1(aK),
f3(x) = f−(x)− hFα(x)− hFα+1(aK).

For x ∈ Cl(K), K ∈ Lα3n+2, n ∈ N, α < ξ,

f1(x) = f+(x) + hFα(x)− f−(aK) + 2hFα+1(aK),
f2(x) = f−(x)− hFα(x),
f3(x) = f−(aK)− 2hFα+1(aK).

For x ∈ X \D,

f1(x) = f+(x) + hD(x),
f2(x) = hD(x),
f3(x) = f−(x)− 2hD(x).

Easily we can verify that f = f1 + f2 + f3. We prove that the functions f1,
f2, f3 are quasicontinuous and have closed graphs.

The functions f and hFα are continuous on the open set X \ F0 and hence
the functions f+, f−, hFα are continuous at every point of x ∈ X \D and at
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every point x ∈ Cl(K) for K ∈ L, α < ξ. Further, the function hD is contin-
uous on the open set X \D. The functions f1, f2, f3 are constructed from
these functions in such a way that the restrictions fi� Cl(K) and fi�(X \D) for
K ∈ L and i = 1, 2, 3 are continuous. Since X \ F0 = (X \D)∪

⋃
K∈L Cl(K),

by Lemma 2.10 it follows that the functions f1, f2, f3, are quasicontinuous at
every x ∈ X \ F0.

Let x ∈ F0, i.e., x ∈ Fα \ Fα+1 for some α < ξ. Let U be a neighbourhood
of x and let ε > 0 be arbitrary. Since the functions f�Fα (and also f+�Fα,
f−�Fα) and hFα+1�Fα are continuous at x, there exists V ⊆ U , a neighborhood
of x, such that

max{|f+(x)− f+(y)|, |f−(x)− f−(y)|, |hFα+1(x)− hFα+1(y)|} < ε/3 (4.1)

for each y ∈ V ∩ Fα. Let δ > 0 be such that S(x, 3δ) ⊆ V . By condition (4)
of Lemma 3.3 there exists n ∈ N and K1 ∈ Lα3n, K2 ∈ Lα3n+1, K3 ∈ Lα3n+2

such that Cl(Ki) ⊆ S(x, δ) for i = 1, 2, 3. Then dist(bKi , Fα \ Fα+1) < δ and
hence d(bKi , aKi) < 2δ. It follows that aKi ∈ V ∩ Fα because d(x, aKi) ≤
d(x, bKi) + d(bKi , aKi) < δ + 2δ = 3δ. Now applying the second case in the
definition of f1, the third case in the definition of f2, and the fourth case in
the definition of f3 we obtain

|f1(x)− f1(y)| ≤ |f+(x)− f+(aK1)|+ |hFα+1(x)− hFα+1(aK1)| for y ∈ K1,
|f2(x)− f2(y)| ≤ |hFα+1(x)− hFα+1(aK2)| for y ∈ K2,

|f3(x)− f3(y)| ≤ |f−(x)− f−(aK3)|+ 2|hFα+1(x)− hFα+1(aK3)| for y ∈ K3,

and since aKi ∈ V ∩ Fα, using the inequality (*) we get |fi(x)− fi(y)| < ε
for all y ∈ Ki and i = 1, 2, 3. Therefore, the functions f1, f2, f3 are quasi-
continuous also at every x ∈ F0 and we have proved that these functions are
quasicontinuous everywhere.

It remains to prove that graphs of functions f1, f2, f3 are closed subsets
of X × R. It is enough to prove (see [2]) that for every x ∈ X and i = 1, 2, 3

C(fi, x) =
⋂
{Cl(f(U)) : U is a neighbourhood of x} = {fi(x)}.

For x ∈ X \D, C(fi, x) = {fi(x)} because fi’s are continuous on X \D.
For every x ∈ D we find a sequence Vm, m ∈ N of neighborhoods of x such
that

fi(y) ∈ (−∞,−m) ∪ (fi(x)− 1/m, fi(x) + 1/m) ∪ (m,∞). (4.2)

for each m ∈ N, y ∈ Vm and i = 1, 2, 3. This will end the proof since
∞⋂
m=0

Cl(fi(Vm)) = {fi(x)} = C(fi, x), for i = 1, 2, 3.
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Let x ∈ D. There are two cases:

Case 1. x ∈ Cl(K) for some K ∈ Lαn with α < ξ and n ∈ N. By condition (2)
of Lemma 3.3 there exists a neighborhood V of x such that Cl(L) ∩ V = ∅
for every L ∈ L \ {K}. As fi� Cl(K) are continuous, we can find neighbor-
hoods Wm of x for m ∈ N such that |fi(x)− fi(y)| < 1/m for y ∈Wm ∩ Cl(K)
and i = 1, 2, 3. Let r ∈ N be such that dist(x, F0) > 1/r. Then the sets
Vm = Wm ∩ V ∩ S(x, 1/(r +m)) for m ∈ N are neighborhoods of x disjoint
from F0 and

Vm = (Vm ∩ Cl(K)) ∪ (Vm \D).

For y ∈ Vm ∩ Cl(K) we have |fi(x)− fi(y)| < 1/m. For y ∈ Vm \D we have
dist(y,D) ≤ dist(y, x) < 1/(r +m) because x ∈ D and hence hD(y) > m.
Since f+(y) ≥ 0, f−(y) ≤ 0, by the fifth cases of the definitions of functions
f1, f2, f3 we get f1(y) > m, f2(y) > m, and f3(y) < −2m.

Case 2. x ∈ F0 and hence x ∈ Fα \ Fα+1 for some α < ξ. The functions
f�Fα and hFα+1 are continuous at x; so we can find neighborhoods Wm of x
such that

max{|f+(x)−f+(y)|, |f−(x)−f−(y)|, |hFα+1(x)−hFα+1(y)|} < 1/(3m) (4.3)

for each y ∈ Wm ∩ Fα and m ∈ N. Let 0 < δm < 1/(6m) be such that
S(x, 6δm) ⊆ Wm. By condition (3) of Lemma 3.3 there exists an open
neighborhood V of x such that V ∩ Cl(K) = ∅ for K ∈

⋃
β>α Lβ . The sets

Vm = V ∩ S(x, δm) \ Fα+1 for m ∈ N are neighborhoods of x and Vm =
(Vm \D)∪ (Vm ∩Fα \Fα+1)∪ (Vm ∩F0 \Fα)∪ (Vm ∩

⋃
β≤α

⋃
K∈Lβ

Cl(K)). So for
y ∈ Vm we have four subcases:

Case 2a. y ∈ Vm \D. Then hD(y) > m, because x ∈ D and d(x, y) < 1/m,
and hence f1(y) > m, f2(y) > m, and f3(y) < −2m.

Case 2b. y ∈ Vm ∩ (Fα \ Fα+1). Then by the choice of Wm

|f1(x)− f1(y)| ≤ |f+(x)− f+(y)|+ |hFα+1(x)− hFα+1(y)| < 1/m,
|f2(x)− f2(y)| = |hFα+1(x)− hFα+1(y)| < 1/m,

|f3(x)− f3(y)| ≤ |f−(x)− f−(y)|+ 2|hFα+1(x)− hFα+1(y)| < 1/m.

Case 2c. y ∈ Vm ∩ (F0 \ Fα). There is β < α such that y ∈ Fβ \ Fβ+1. As
x ∈ Fα ⊆ Fβ+1, we have dist(y, Fβ+1) ≤ d(x, y) < 1/m and hFβ+1(y) > m.
Therefore f1(y) > m, f2(y) > m, and f3(y) < −2m.
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Case 2d. y ∈ Vm ∩ Cl(K) for some K ∈ Lβ3n+j , j ∈ {0, 1, 2}, n ∈ N, and
β ≤ α. As x ∈ Fα ⊆ Fβ , dist(y, Fβ) ≤ d(y, x) ≤ δm < 1/m. Therefore
hFβ (y) > m and hence

f1(y) > m, if j = 1, 2, f2(y) > m, if j = 0, f3(y) < −m, if j = 0, 1.
f2(y) < −m, if j = 2,

As dist(x,Cl(K)) ≤ d(x, y) ≤ δm and Cl(K) ⊆ S(x, 2 dist(x,Cl(K))) ⊆
S(x, 2δm) by condition (5) of Lemma 3.3, we have

d(x, aK) ≤ d(x, bK) + d(bK , aK) < 2δm + 4δm = 6δm.

So if β = α, aK ∈Wm ∩ Fα and by (4.3),

if j = 0, then
|f1(x)− f1(y)| ≤ |f+(x)− f+(aK)|+ |hFα+1(x)− hFα+1(aK)| < 1/m,

if j = 1, then
|f2(x)− f2(y)| = |hFα+1(x)− hFα+1(aK)| < 1/m,

and if j = 2, then
|f3(x)− f3(y)| ≤ |f−(x)− f−(aK)|+ 2|hFα+1(x)− hFα+1(aK)| < 1/m.

If β < α, then x ∈ Fα ⊆ Fβ+1 and hence dist(aK , Fβ+1) ≤ d(aK , x) < 6δm <
1/m. Then hFβ+1(aK) > m and hence

f1(y) > m, if j = 0, f2(y) > m, if j = 1, f3(y) < −2m, if j = 2.

In all cases we have proved the property (4.2) and so the proof of Theo-
rem 4.1 is complete.
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