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ON SERIES WITH ALTERNATING SIGNS
IN THE EUCLIDEAN METRIC

Abstract

This paper presents one of many interesting aspects of relatively
convergent series. Namely, given a sequence of elements of a Hilbert
space we consider all possible ways of placing plus or minus signs in
front of these elements to create an alternating sequence. In a convenient
metric it makes sense to ask what is the ‘size’ of the set of those choices
of + or − for which the resulting series converges. The term ‘size’ here
refers to either Baire category or Lebesgue measure of this set. It turns
out that especially the question of the Lebesgue measure of this set
is quite intriguing and leads to interesting results generalizing known
results for real-valued sequence.

1 Introduction

Relatively convergent series are studied in many monographs and articles. As
we mentioned in the abstract we study the convergence of the series

∞∑
n=1

(−1)anbn , (1)

where (an)n∈N is a sequence of zeros and ones and (bn)n∈N is a sequence of
elements of a real1 Hilbert space H. The inner product on H will be denoted
by 〈., .〉.
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1The fact that H is a real Hilbert space is not particularly important, since any complex

Hilbert space of dimension n can be also viewed as a real Hilbert space of dimension 2n
with modified inner product.
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For a fixed sequence (bn)n∈N we want to consider the sets

C = {(an)n∈N ∈ {0, 1}N ; the series (1) converges} and

B = {(an)n∈N ∈ {0, 1}N ;∃M > 0 ∀k
∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤M}.

The set C contains all sequences (an)n∈N for which series (1) converges and the
set B contains sequences (an)n∈N for which the series (1) has bounded partial
sums. Apparently, C ⊂ B. The question of what these sets are is definitely
nontrivial only if

there is (an)n∈N ∈ {0, 1}N such that
∞∑
n=1

(−1)anbn diverges, (2)

because otherwise the series (2) is convergent for any choice of (an)n∈N. (Later
we will formulate a sufficient condition on (bn)n∈N that guarantees (2)).

Denote by |.| the norm of the space H defined by |x| = 〈x, x〉 12 for x ∈ H.
Since we are working in the space {0, 1}N there are several choices of metrics
we can consider. Namely, we can equip this space either with the Frèchet or
Baire metric. In this paper we would like to consider yet another metric which
is closely connected with standard Euclidean metric on the real line. This will
allow us to study not only categorical ‘size’ of the sets C and B but also their
Lebesgue measure.

Consider therefore the map ϕ : {0, 1}N → [0, 1] defined as follows.

ϕ((an)n∈N) =
∞∑
n=1

an
2n

for (an)n∈N ∈ {0, 1}N.

This is definitely a surjective map but not bijective because the sequences

(a1, a2, .., an, 0, 1, 1, 1, . . . )
(a1, a2, .., an, 1, 0, 0, 0, . . . )

are mapped onto the same point.
Now we have two options. Either we define dE(a, b) = |ϕ(a) − ϕ(b)| ,

which is a pseudometric on the space {0, 1}N or we can make this space a
little smaller by dropping all sequences of the type (a1, a2, .., an, 0, 1, 1, 1, . . . )
or (a1, a2, .., an, 1, 0, 0, 0, . . . ). Let for example take

M = {0, 1}N \ {(a1, a2, . . . , an, 0, 1, 1, 1, . . . ); ai ∈ {0, 1} i = 1, 2, . . . , n}.
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Then (M, dE) is a complete metric space. All the material that follows work
for both options and therefore we will not emphasize explicitly which particular
space we have in mind. We rather formulate all theorems for ({0, 1}N, dE)
keeping in mind that it also works for (M, dE) and will call dE the Euclidean
metric (slightly abusing standard terminology).

A lot about the set C is known in case H = R. Namely, we know that for
sequences satisfying (2) this set is of first Baire category in ({0, 1}N, dE) and
moreover there is a beautiful theorem about the Lebesgue measure of the set
ϕ(C).

`2 theorem. The Lebesgue measure of the set ϕ(C) is one if and only if∑∞
n=1 |bn|2 < ∞, i.e., (b1, b2, . . . ) ∈ `2. Otherwise this set has Lebesgue mea-

sure zero.

This theorem is a consequence of Kolmogorov three series theorem (see
e.g. [Du] for a reference). Our aim will be to generalize this theorem for any
Hilbert space H where we mainly have in mind infinite dimensional spaces
since for Rn the extension of the `2 theorem is trivial using the theorem itself
on each coordinate.

This work has also been motivated by very interesting results that have
appeared in works of V. László and T. Šalát. They studied the series

∞∑
n=1

anbn , (3)

where
∑∞
n=1 bn is a divergent real nonnegative series and (an)n∈N is a sequence

of zeros and ones. According to their work in [L-Š] and [Š] the set of sequences
(an)n∈N for which the series (3) converges (i.e. C) is of the first Baire category
on ({0, 1}N, dE) and the Lebesgue measure of ϕ(C) is zero.

2 Categorical Size of the Set of Convergent Sequences

In this section we present the discussion of the sets B and C defined above
in terms of their Baire category in the complete metric space ({0, 1}N, dE).
Before proving the main result of this section we need to do some preparatory
work.

Let D be the set of all sequences (an)n∈N ∈ {0, 1}N that correspond to
dyadic rationals, i.e.,

D = {(an)n∈N ∈ {0, 1}N;ϕ((an)n∈N) is a dyadic rational}.
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Lemma 2.1. Consider the complete metric space ({0, 1}N, dE). Let k be a
positive integer, c a real number and (b1, b2, . . . bk) a finite sequence of elements
of H. Let S be the set

S = {(an)n∈N ∈ {0, 1}N; |(−1)a1b1 + (−1)a2b2 + · · ·+ (−1)akbk| > c}.

Then there exists a countable set E ⊂ D such that the set S \ E is an open
subset of the space ({0, 1}N, dE).

Proof. It suffices to show the following claim.

a = (an)n∈N ∈ S \ D =⇒ a ∈ int S

Once we show this, then clearly the exceptional set E = S \ int S ⊂ D is
countable.

Consider therefore a sequence (an)n∈N ∈ S \ D. Denote by a and a two
real numbers with the following decimal dyadic expansion.

a = 0, a1a2 . . . ak000 · · · =
k∑
i=1

ai
2i

a = 0, a1a2 . . . ak111 · · · =
k∑
i=1

ai
2i

+
1
2k

.

(For clarity of our notation we used a decimal comma instead of a dot). The
assumption (an)n∈N /∈ D guarantees that a < ϕ((an)n∈N) < a. We put

ε = min{ϕ((an)n∈N)− a, a− ϕ((an)n∈N)} > 0 .

Now any sequence (cn)n∈N whose distance from (an)n∈N is less that ε must
have first k elements identical with (an)n∈N and therefore such (cn)n∈N is in
S. This means that the sequence (an)n∈N belongs to int S.

Now we are ready to prove that the both B and C are sets of first Baire
category in the complete metric space ({0, 1}N, dE) provided (2) holds.

Theorem 2.2. Consider the series
∞∑
n=1

(−1)anbn , (1)

where (bn)n∈N is a given sequence of elements of H. Assume that the condition
(2) holds, namely

there is (an)n∈N ∈ {0, 1}N such that
∞∑
n=1

(−1)anbn diverges.
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Then
C = {(an)n∈N ∈ {0, 1}N; the series (1) converges},

as well as,

B = {(an)n∈N ∈ {0, 1}N;∃M > 0 ∀k
∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤M}

are sets of first Baire category in the complete space ({0, 1}N, dE).

Proof. Since C ⊂ B, proving the theorem for the set B will suffice. B can be
written as

B =
∞⋃
M=1

∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤M}.

Let Fi be

Fi =
∞⋂
k=1

{
(an)n∈N;

∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤ i}.

We claim that the closure of Fi is nowhere dense. From this our theorem
follows. To establish this claim we should look more closely at the sets of the
form {

(an)n∈N;
∣∣∣ k∑
n=1

(−1)anbn
∣∣∣ ≤M}.

The complement of such a set is a set of the form S from the Lemma 2.1.
Consequently this lemma gives us that for each i ∈ N there is a countable set
Ei ⊂ D such that the closure of Fi is equal to Fi = Fi ∪Ei. Now we are ready
to prove that each Fi is nowhere dense. Take any (an)n∈N ∈ Fi. We want to
show that in any ε neighborhood of this sequence there is a sequence (cn)n∈N
which does not belong to Fi. Let (dn)n∈N ∈ {0, 1}N be a sequence for which∑∞
n=1(−1)dnbn diverges. Existence of such sequence follows from (2). If we

modify this sequence and denote the modified sequence again (dn)n∈N we can
achieve that

lim
k→∞

∣∣∣ k∑
n=1

(−1)dnbn
∣∣∣ =∞. (4)

If necessary, a further modification of the sequence (dn)n∈N can guarantee that
(dn)n∈N /∈ D.

Define (cn)n∈N by

cn =

{
an, for n = 1, 2, . . . , k,
dn, otherwise.
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Here k is chosen big enough to assure that the distance between (an)n∈N and
(cn)n∈N is less that given ε. Namely, we take k to be a positive integer such
that 1

2k
< ε.

It is clear now that the sequence (cn)n∈N does not belong to Fi since

∞∑
n=k+1

(−1)cnbn =
∞∑

n=k+1

(−1)dnbn ,

and according to (4) the sum on the right is unbounded in the norm of H.
Also since (dn)n∈N /∈ D we have that (cn)n∈N /∈ Ei. These two things together
imply that (cn)n∈N does not belong to Fi. This finishes the proof.

Remark. Close analysis of the Fi gives that it is a Gδ set. Therefore B is a
Borel set (in fact Gδσ). Similarly the set C is also Borel (Gδσδ) since

C =
∞⋂
m=1

∞⋃
K=1

∞⋂
k=K

∞⋂
l=1

{
(an)n∈N;

∣∣∣ k+l∑
n=k

(−1)anbn
∣∣∣ ≤ 1

m

}
.

It is also interesting to ask whether the above result about the sets B, C can
be strengthened by replacing first Baire category by porosity. We postpone
the discussion of this problem until we develop more material on the Lebesgue
measure of the sets ϕ(B) and ϕ(C).

3 Lebesgue Measure

As we indicated before, since the Euclidean metric dE on the space {0, 1}N is
defined via the map ϕ : {0, 1}N → [0, 1] given by

ϕ((an)n∈N) =
∞∑
n=1

an
2n

for (an)n∈N ∈ {0, 1}N,

it makes good sense to ask what is the Lebesgue measure of the images of
the sets C and B under the map ϕ. Said differently we want to compute the
numbers λ(ϕ(C)) and λ(ϕ(B)).

First we state a simple result which gives us that the measure of each of
these sets is either zero or one (i.e., the full measure on the interval [0, 1]). In
case H = R this is the famous Kolmogorov 0− 1 law. Here we closely follow
the paper [Š].

Definition 3.1. A measurable set E ⊂ (0, 1) (Here we can also admit the
closed interval [0, 1].) is called homogenous if there exists a number d ∈ [0, 1]
such that for any interval I ⊂ (0, 1) we have λ(I∩E)

λ(I) = d .
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As a consequence of the Lebesgue theorem we have the following result.

Proposition 3.2. If E is homogenous, then the number d in Definition 3.1
is either 0 or 1; i.e., λ(E) = 0 or λ(E) = 1.

Proposition 3.3. Let Q be a dense subset of the real line R. Let E be a
measurable subset of (0, 1). If for any interval I ⊂ (0, 1) and any q ∈ Q for
which

q + I = {q + i; i ∈ I} ⊂ (0, 1)

we have
λ(I ∩ E) = λ((q + I) ∩ E) ,

then the set E is homogenous, i.e., λ(E) = 0 or λ(E) = 1.

Proof. If λ(E) = 0 the proposition holds. Assume therefore that λ(E) > 0.
According to the Lebesgue theorem there exists a point z ∈ (0, 1) for which
we have

lim
I→z

λ(I ∩ E)
λ(I)

= 1. (5)

Here I → z means the limit over any sequence of intervals I containing z
whose diameter goes to zero.

Pick any x ∈ (0, 1). We show that limI→x
λ(I∩E)
λ(I) = 1. From this our

proposition follows immediately, because then each point of the interval (0, 1)
is a Lebesgue density point of E.

It is sufficient to show that given any sequence of intervals (In)n∈N for

which In → x we have limn→∞
λ(In ∩ E)
λ(In)

= 1. Obviously, for each n ∈ N

there is a number qn ∈ Q such that the interval Jn = qn + In contains z. This
also means that Jn → z and by (5) we then have

lim
n→∞

λ(In ∩ E)
λ(In)

= lim
n→∞

λ(Jn ∩ E)
λ(Jn)

= 1,

so the proposition is established.

Corollary 3.4. The sets ϕ(C) and ϕ(B) are homogenous. Therefore their
measure is either 0 or 1.

Proof. Clearly both sets are Lebesgue measurable. This follows from the
previous section where we have shown that B is a Gδσ and C is a Gδσδ set
in ({0, 1}N, dE). Same argument shows that ϕ(B) and ϕ(C) are of the corre-
sponding types on [0, 1].
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Let Q =
{
k
2n ; k, n ∈ N

}
. According to the previous theorem it suffices to

show that for any I ⊂ (0, 1) and any q ∈ Q for which q + I ⊂ (0, 1) we have

λ(I ∩ E) = λ((q + I) ∩ E). (6)

(Here E stands for ϕ(C) and ϕ(B), respectively.) However, (6) is quite obvious.
If we take any x ∈ E its dyadic expansion is ϕ−1(x) = {a1, a2, a3, . . . } where
an ∈ {0, 1}. By adding any number q ∈ Q whose dyadic expansion has tail
{. . . , 0, 0, 0, . . . } to x we alter the first k digits of the dyadic expansion of x
but the tails of dyadic expansions of x and x+ q are the same; i.e.,

ϕ−1(x+ q) = {b1, b2, . . . , bk, ak+1, ak+2, . . . }.

This means that

x ∈ ϕ(C)⇐⇒ x+ q ∈ ϕ(C),
x ∈ ϕ(B)⇐⇒ x+ q ∈ ϕ(B).

because the convergence (boundedness) of the series (1) depends only on the
tail of the dyadic expansion of x and x+ q respectively. Thus we have

I ∩ ϕ(C) = (q + I) ∩ ϕ(C)
I ∩ ϕ(B) = (q + I) ∩ ϕ(B).

This result gives us that the sets ϕ(C), ϕ(B) have measure zero or one, but
it is not obvious which option applies. As we will see later there are sequences
(bn)n∈N for which λ(ϕ(C)) = λ(ϕ(B)) = 1, and there are others for which
λ(ϕ(C)) = λ(ϕ(B)) = 0. If fact we get the necessary and sufficient condition
extending the `2 theorem. It will also follows that there is no sequence (bn)n∈N
for which λ(ϕ(C)) = 0 but λ(ϕ(B)) = 1.

The rest of this section requires some use of probability methods. There-
fore in all that follows our probability space will be the interval [0, 1) with
probability measure P = λ the Lebesgue measure on [0, 1).

First we introduce our notation. Let x ∈ [0, 1). Then x =
∑∞
n=1

an(x)
2n is

the dyadic expansion of the number x. (To avoid the ambiguity in case of a
dyadic rational we always in such situation take the terminal dyadic expansion
of number x; i.e., with tail {. . . , 0, 0, 0, . . . }). Then each n = 1, 2, . . .

an : [0, 1)→ {0, 1}

is a real function, i.e., a random variable. Moreover we have

ϕ({a1(x), a2(x), a3(x), . . . }) = x for all x ∈ [0, 1).

It is a simple exercise to show the following.
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Proposition 3.5. The random variables a1(x), a2(x), a3(x), . . . are indepen-
dent. This means that for any integer n ∈ N and any n-tuple k1, k2, . . . , kn we
have

P (a1(x) = k1, a2(x) = k2, . . . , an(x) = kn) =
n∏
i=1

P (ai(x) = ki).

For any n ∈ N define Sn : [0, 1) → H by Sn(x) =
∑n
i=1(−1)ai(x)bi. The

reason the Kolmogorov result does not extend immediately to our case is
that the function Sn is no longer a random variable since it takes values in
H. Nevertheless |Sn|2 = 〈Sn, Sn〉 still takes values is R; i.e., it is a random
variable. This leads to the following lemma.

Lemma 3.6. If ε > 0, then P (max1≤i≤n |Si| ≥ ε) ≤ 1
ε2

∑n
i=1 |bi|2 for n =

1, 2, 3, . . . .

Proof. Denote by Ai the sets

Ai = {x ∈ [0, 1); |Si| ≥ ε but |Sj | < ε for j < i}.

Apparently, Ai are disjoint and

E(|Sn|2) =
∫ 1

0

〈Sn(x), Sn(x)〉 dx ≥
n∑
i=1

∫
Ai

〈Sn(x), Sn(x)〉 dx

=
n∑
i=1

∫
Ai

〈Si(x), Si(x)〉+ 2〈Si(x), Sn(x)− Si(x)〉

+ 〈Sn(x)− Si(x), Sn(x)− Si(x)〉 dx

≥
n∑
i=1

∫
Ai

|Si|2dx+
n∑
i=1

∫ 1

0

2〈SiχAi , Sn(x)− Si(x)〉 dx.

In the last step we used the fact that |Sn(x)− Sk(x)|2 ≥ 0. Here χAi denotes
the indicator function of the set Ai. Our claim is that the integral in the second
sum is zero for any i ∈ {1, 2, . . . , n}. To see this we have to realize that SiχAi
is only a function of the random variables a1, . . . , ai whereas Sn(x)− Si(x) is
a function of the random variables ai+1, . . . , an. Naturally, these two sets of
random variables are independent. Put

Di1,i2,...,in = {x ∈ [0, 1); ak(x) = ik for k = 1, 2, . . . n } where ik ∈ {0, 1}.
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Then the sets Di1,i2,...,in are disjoint, they cover the interval [0, 1), each has
measure 1

2n , and therefore the integral in the above sum can be written as∫ 1

0

〈SkχAk , Sn(x)− Sk(x)〉 dx

=
1
2n

∑
i1,i2,...,in∈{0,1}

〈f(i1, . . . , ik), g(ik+1, . . . , in)〉,
(7)

where

f(i1, . . . , ik) =


∑k
j=1(−1)ij bj if |

∑k
j=1(−1)ij bj | ≥ ε but

|
∑l
j=1(−1)ij bj | < ε for l < k

0 otherwise

g(ik+1, . . . , in) =
n∑

j=k+1

(−1)ij bj .

Now for any i1, i2, . . . , in if we let

jl =

{
1− il for 1 ≤ l ≤ k
il otherwise,

we can see that

〈f(i1, . . . , ik), g(ik+1, . . . , in)〉+ 〈f(j1, . . . , jk), g(jk+1, . . . , jn)〉 = 0.

Thus the terms in the sum (7) can be grouped into pairs whose sum is zero.
Therefore the whole sum (7) has to be zero. If we use this and the fact that
on each of the set Ai we have |Si| ≥ ε we get

E(|Sn|2) ≥
n∑
i=1

∫
Ai

|Si|2dx ≥
n∑
i=1

ε2P (Ai) = ε2P

(
max

1≤i≤n
|Si| ≥ ε

)
.

Hence if we establish

E(|Sn|2) =
n∑
i=1

|bi|2 (8)

we are done. To see this compute

〈Sn, Sn〉 =
n∑
i=1

|bi|2 + 2
∑

1≤i<j≤n

〈(−1)ai(x)bi, (−1)aj(x)bj〉. (9)
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We need to show that the expected value of each term in the second sum
is zero. This follows from the fact that ai and aj are independent random
variables plus a similar argument to the one we have used for the second term
in (7). This concludes our proof.

Define now
Kn(x) =

∑
1≤i<j≤n

(−1)ai(x)+aj(x)〈bi, bj〉.

The following lemma, similar to the previous one, will be also needed.

Lemma 3.7. If ε > 0, then

P

(
max

1≤i≤n
|Ki| ≥ ε

)
≤ 1
ε2

∑
1≤i<j≤n

|〈bi, bj〉|2, n = 1, 2, 3, . . ..

Proof. We proceed as before.

Ai = {x ∈ [0, 1); |Ki| ≥ ε but |Kj | < ε for j < i}.

Apparently, the sets Ai are disjoint and

E(K2
n) =

∫ 1

0

Kn(x)2dx ≥
n∑
i=1

∫
Ai

Kn(x)2 dx

=
n∑
i=1

∫
Ai

Ki(x)2 + 2Ki(x)(Kn(x)−Ki(x)) + (Kn(x)−Ki(x))2 dx

≥
n∑
i=1

∫
Ai

|Ki|2dx+
n∑
i=1

∫ 1

0

2(Ki
χ
Ai)(Kn(x)−Ki(x)) dx.

(10)

In the last step we used the fact that (Kn(x)−Kk(x))2 ≥ 0. Here χAi as before
means the indicator function of the set Ai. Our claim is that the integral in
second sum is zero for any i ∈ {1, 2, . . . , n}. Consider the sets Di1,i2,...,in
defined in previous lemma. The integral in the last sum can be written as∫ 1

0

(Kk
χ
Ak)(Kn(x)−Kk(x)) dx

=
1
2n

∑
i1,i2,...,in∈{0,1}

f(i1, . . . , ik)g(i1, i2, . . . , ik, ik+1, . . . , in),
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where

f(i1, . . . , ik) = χ
Ak

( ∑
1≤j<l≤k

(−1)ij+il〈bj , bl〉
)

g(i1, . . . , ik, ik+1, . . . , in) =
∑

1≤j<l≤n
k<l

(−1)ij+il〈bj , bl〉.

What is troubling here is the dependence of the function g on indices i1, . . . , ik.
Fortunately the situation is not that bad. If we fix i1, . . . , ik and run the above
sum for all combination ik+1, . . . , in, we can observe that

g(i1, . . . , ik, ik+1, . . . , in) + g(i1, . . . , ik, 1− ik+1, . . . , 1− in)
= G(ik+1, . . . , in) +G(1− ik+1, . . . , 1− in)

where G is defined by G(ik+1, . . . , in) =
∑

k+1≤j<l≤n

(−1)ij+il〈bj , bl〉. Thus we

get∫ 1

0

(Kk
χ
Ak)(Kn(x)−Kk(x)) dx =

1
2n

∑
i1,i2,...,in∈{0,1}

f(i1, . . . , ik)G(ik+1, . . . , in),

replacing small g by capital G. This solves our problem because now we can
write∫ 1

0

(Kk
χ
Ak)(Kn(x)−Kk(x)) dx

=
1
2n

 ∑
i1,...,ik∈{0,1}

f(i1, . . . , ik)

 ∑
ik+1,...,in∈{0,1}

G(ik+1, . . . , in)

 .

The final point finishing our argument is that clearly∑
ik+1,...,in∈{0,1}

G(ik+1, . . . , in) = 0.

Thus our integral vanishes. If we substitute this result into (10) and the fact
that on set Ai |Ki| ≥ ε we get

E(K2
n) ≥

n∑
i=1

∫
Ai

|Ki|2 dx ≥
n∑
i=1

ε2P (Ai) = ε2P

(
max

1≤i≤n
|Ki| ≥ ε

)
.
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Hence if we establish

E(K2
n) =

∑
1≤i<j≤n

|〈bi, bj〉|2 (11)

we are done. To see this compute

K2
n =

∑
1≤i<j≤n

|〈bi, bj〉|2 +
∑

1≤i<j≤n
1≤k<l≤n
(i,j) 6=(k,l)

(−1)ai+aj+al+ak〈bi, bj〉〈bk, bl〉.

We need to show that the expected value of the last term is zero. However,
this can be proved using techniques that have already appeared several times
in this paper.

Now we are ready to prove the main theorem of this section, the generalized
`2 theorem for any Hilbert space H. As we will see this proof does not use
any “heavy artillery” of probability theory as is the case of the proof of the
Kolmogorov three series theorem where a quite complicated variant of the
central limit theorem is used. We will instead use the measure theory as our
main tool.

Theorem 3.8. [Generalized `2 theorem] Let (bn)n∈N be any sequence of ele-
ments of a Hilbert space H. Then the Lebesgue measure of the sets ϕ(C) and
ϕ(B) is one if and only if

∞∑
n=1

|bn|2 <∞. (12)

If (12) does not hold these sets have Lebesgue measure zero.

As a corollary we get the following.

Corollary 3.9. Condition (2) holds if
∑∞
n=1 |bn|2 =∞.

Remark. Further generalization of Theorem 3.8 by replacing the Hilbert
space H by a Banach space in the statement of the Theorem 3.8 fails. There
are many examples (e.g., `p, p 6= 2) where the analogous theorem for such
spaces fails.

Proof of Theorem 3.8 We first prove that if (12) holds, then the Lebesgue
measure of the set ϕ(C) is one (and therefore same is true about ϕ(B)). The
key is to use Lemma 3.6. According to it for any positive integers M , N we
have
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P

(
max

M≤i≤N
|Si − SM | ≥ ε

)
≤ 1
ε2

N∑
i=M+1

|bi|2 .

Letting N →∞ we get

P

(
max
M≤i
|Si − SM | ≥ ε

)
≤ 1
ε2

∞∑
i=M+1

|bi|2 .

Now we also let M → ∞. The right side tends to zero and therefore if we
denote by wM the number wM = supm,n≥M |Sm−Sn|, we obtain that wM → 0
almost everywhere as M →∞ since

P (wM ≥ 2ε) ≤ P
(

max
M≤i
|Si − SM | ≥ ε

)
→ 0.

This means the sequence (SM )M∈N of partial sums of the series (1) is Cauchy
almost everywhere and thus convergent in our Hilbert space.

To establish the converse we have to do a little more work. Assume that
(12) does not hold; i.e., this series has sum infinity. Define the functions
fn : [0, 1)→ R by

fn(x) =
|Sn(x)|2∑n
i=1 |bi|2

for n = 1, 2, . . . .

Using (8) we get for any n ∈ N
∫
fn(x) dx = 1.

Consider the function f : [0, 1) → R given by f(x) = limn→∞ fn(x). We
claim that

∫
f(x) dx > 0. Assume to the contrary that f = 0 almost every-

where. We will show that this leads to a contradiction. For any 0 < ε < 1
3

and n ∈ N consider the set Aεn = {x; fn(x) > ε}. It follows that λ(Aεn) → 0
as n→∞. Indeed, if this is not true, then the set

⋂∞
n=1

⋃∞
k=nA

ε
k would have

positive measure. Also for any x in this set f(x) > 0 contrary to the fact that
f = 0 almost everywhere.

Find an k ∈ N for which we have λ(Aεn) < ε for all n ≥ k. Let Bεn =
{x; fn(x) ≤ ε} and Cn = {x; fn(x) ≥ 1}. We have that λ(Bεn) > 1 − ε and
λ(Cn) < ε. Since

∫
fn dx = 1, we get that∫

Cn

fn dx = 1−
∫

[0,1]\(Cn∪Bεn)

fn dx−
∫
Bεn

fn dx ≥ 1− 2ε .

Consequently
∫
Cn

(fn − 1) dx ≥ 1− 3ε. Using Hölder’s inequality we get

1− 3ε ≤
∫
Cn

(fn − 1) dx ≤
(∫

Cn

1 dx
)1/2(∫

Cn

(fn − 1)2 dx
)1/2

.
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From this
∫
Cn

(fn − 1)2 dx ≥ (1−3ε)2

ε . If we let ε→ 0+, we conclude that

lim
n→∞

∫
(fn − 1)2 dx ≥ lim

n→∞

∫
Cn

(fn − 1)2 dx =∞ . (13)

On the other hand a direct computation gives us (fn − 1)2 = 4Kn(x)2

(Pn
i=1 |bi|2)

2 ,

where Kn(x) is defined as before. By (11) we get∫
(fn − 1)2 dx =

4
∑

1≤i<j≤n |〈bi, bj〉|2

(
∑n
i=1 |bi|2)2

≤
2
∑

1≤i 6=j≤n |bi|2|bj |2

(
∑n
i=1 |bi|2)2

≤ 2

(∑n
i=1 |bi|2

)2
(
∑n
i=1 |bi|2)2

= 2.

However, this contradicts (13). Therefore we cannot have f = 0 almost every-
where.

Now we can continue our proof. Clearly, since
∫
f dx > 0 and f(x) ≥ 0

there is ε > 0 such that λ(A) > 0 where A = {x ∈ [0, 1); f(x) > ε}. We claim
is that the set

B = {x ∈ [0, 1); lim
n→∞

|Sn(x)|2 =∞}

has measure one. To see this is not difficult. First of all we show that A ⊂ B
and therefore B has positive measure. This and the obvious fact that the set
B is homogenous (by Proposition 3.3) give us (by Proposition 3.2) that the
measure of the set B must be one.

Pick any x ∈ A. Then there is an infinite increasing sequence of integers
(ni)i∈N such that

fni(x) > ε ; i.e., |Sni(x)|2 > ε

ni∑
j=1

|bj |2 →∞ as i→∞.

Therefore x ∈ B, so A ⊂ B is established.
Finally, if x ∈ ϕ(B), then x /∈ B. The complement of B has measure zero

which is also the measure of the set ϕ(B). Since C ⊂ B also λ(ϕ(C)) = 0. This
finishes our proof.

Remark. [Remark about “almost” orthogonality] If we look at the second
part of the proof of Theorem 3.8, we see that the measure of the set

B = {x ∈ [0, 1); lim
n→∞

|Sn(x)|2 =∞}
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is one. One might ask whether this claim cannot be improved; i.e., we would
like to show that the measure of the set

C = {x ∈ [0, 1); lim
n→∞

|Sn(x)|2 =∞}

is one. Unfortunately this claim is not true. Let us take H = R. We will show
that the set

D = {x ∈ [0, 1); lim
n→∞

Sn(x) =∞ and lim
n→∞

Sn(x) = −∞}

has measure one; i.e., almost everywhere the sequence of partial sums (Sn)n∈N
of the series (1) is oscillatory. Therefore if for example |bn| ≤ K; i.e. the
sequence (bn)n∈N is bounded in absolute value by K it follows that for almost
any x ∈ [0, 1) and any n ∈ N there is k ∈ N, k ≥ n such that |Sk(x)| ≤ K.
Thus x /∈ C.

To see why D has measure one we write B as

B = {x ∈ [0, 1); lim
n→∞

Sn(x) =∞} ∪ {x ∈ [0, 1); lim
n→∞

Sn(x) = −∞}.

Let us call the sets on the right side B1 and B2, respectively. Since the
mapping x 7→ 1 − x maps B1 onto B2 and vice versa, these sets have same
measure. Their union set B has measure one; i.e., B1 and B2 have measure
at least 1

2 . Moreover they are homogenous and therefore their measure must
be one. Now the set D can be written as B1 ∩B2 which means its measure is
also one.

A different situation might happen if the space H is infinite dimensional.
We will call the elements b1, b2, . . . “almost” orthogonal if

∞∑
1≤i<j

〈bi, bj〉2 = K <∞. (14)

In this case by limiting n→∞ in the Lemma 3.7 we get

P

(
max
i∈N
|Ki| ≥ ε

)
≤ 1
ε2

∞∑
1≤i<j

|〈bi, bj〉|2 =
1
ε2
K .

Take ε =
√

2K. We get for the set E =
{
x ∈ [0, 1); maxi∈N |Ki(x)| ≥

√
2K
}

that P (E) ≤ 1
2 ; i.e., P (Ec) = P ([0, 1) \ E) ≥ 1

2 .
Now our claim is that the set C has positive measure. In fact we have that

Ec ⊂ C (from (9)). For any x ∈ Ec we get that

|Sn|2 =
n∑
i=1

|bi|2 + 2Kn ≥
n∑
i=1

|bi|2 − 2
√

2K →∞ .
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So the measure of the set C is positive. Again since C is homogenous it
must have measure one. One trivial example of “almost” orthogonal sequence
b1, b2, b3, . . . might be the sequence

b1 =(1, 0, 0, 0, . . . ) ∈ `2,

b2 =(0, 1, 0, 0, . . . ) ∈ `2,

b3 =(0, 0, 1, 0, . . . ) ∈ `2, etc.

In fact this sequence is orthogonal in H = `2. Now the sum (14) is finite (equal
to zero) and therefore the set C has measure one; i.e. almost all Sn(x) tends
to infinity in norm. (For this trivial example one can show directly that for
any x: |Sn(x)|2 = n) We formulate the observation above into the following
proposition.

Proposition 3.10. If the elements b1, b2, b3, · · · ∈ H are “almost” orthogonal,
i.e.,

∑∞
1≤i<j〈bi, bj〉2 <∞ and

∑∞
n=1 |bn|2 =∞, then the set

{x ∈ [0, 1); lim
n→∞

∣∣∣∣∣
n∑
i=1

(−1)ai(x)bi

∣∣∣∣∣ =∞}

has measure one.

We finish with a very nice example illustrating Theorem 3.8 in the case
H = R:

Example 3.11. Consider the series
∑∞
n=1(−1)an 1

nβ
. For 1

2 < β ≤ 1 we get
that this series converges almost everywhere and for 0 < β ≤ 1

2 this series
diverges almost everywhere.

4 Porosity

In this section we briefly discuss the question whether the Theorem 2.2 could
strengthened by replacing words “of the first Baire category” by words “porous”
or “σ-porous”. In other words we ask whether the sets C and B are porous
(σ-porous) in the complete metric space ({0, 1}N, dE).

The results from the Section 3 implies that in general the answer is no, since
porosity or σ-porosity of the set C would imply porosity (σ-porosity) of the set
ϕ(C) on the real interval [0, 1]. But such set ϕ(C) has Lebesgue measure zero.
On the other hand we saw that there are many sequences (bn)n∈N for which
corresponding set ϕ(C) is of full Lebesgue measure. Nevertheless it is possible
that there exists certain restrictive condition on the sequence (bn)n∈N for which
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we get desired porosity. Unfortunately, we were not able to find it, our best
result (by following the proof of Theorem 2.2) yielded limn→∞ |bn| > 0, which
has questionable value, since for such a sequence the set C is empty. This
might lead to a conjecture that in fact for any sequence (bn)n∈N for which
limn→∞ bn = 0 the set C cannot be σ−porous. We were not able to prove this
conjecture nor find any counterexample. Naturally, a similar question makes
sense also for the set B.

Acknowledgement The author wishes to thank the referee for a careful re-
view of the paper, in particular for the detection of a couple of miscalculations
and several misprints.
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