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FUBINI PROPERTIES OF IDEALS

Abstract

Let I and J be σ-ideals on Polish spaces X and Y , respectively. We
say that the pair 〈I, J〉 has the Fubini Property (FP) if for every Borel
subset B of X × Y , if all its sections Bx = {y : 〈x, y〉 ∈ B} are in J ,
then its sections By = {x : 〈x, y〉 ∈ B} are in I, for every y outside
a set from J . We study the question, which pairs of σ-ideals have the
Fubini Property. We show, in particular, that:

– 〈MGR(X), J〉 satisfies FP, for every J generated by any family of
closed subsets of Y (MGR(X) is the σ-ideal of all meager subsets of X),

– 〈NULLµ, J〉 satisfies FP, whenever J is generated by any of the
following families of closed subsets of Y (NULLµ is the σ-ideal of all
subsets of X, having outer measure zero with respect to a Borel σ-finite
continuous measure µ on X):

(i) all closed sets of cardinality ≤ 1,

(ii) all compact sets,

(iii) all closed sets in NULLν for a Borel σ-finite continuous measure ν
on Y ,

(iv) all closed subsets of a Π1
1 set A ⊆ Y .

We also prove that 〈MGR(X),MGR(Y )〉 and 〈NULLµ,NULLν〉 are es-
sentially the only cases of FP in the class of σ-ideals obtained from
MGR(X) and NULLµ by the operations of Borel isomorphism, prod-
uct, extension and countable intersection.
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1 Preliminaries

This paper is a contribution to the study of σ-ideals on Polish spaces. Our
notation and terminology follow [9].

A σ-ideal on a metric space X is a family I ⊆ P(X) which is closed under
taking subsets and countable unions. We always assume that the underlying
space is uncountable, I is proper; i.e., X 6∈ I, contains all singletons and has
a basis consisting of Borel sets. The latter means that every set from I is
covered by a Borel set from I; i.e., for any A ∈ I there is B ∈ B(X) ∩ I with
A ⊆ B. If, moreover, every set from I is covered by a Σ0

2 set from I, then we
say that I is Σ0

2 supported. The most important example of a Σ0
2 supported

σ-ideal on X is MGR(X) = the collection of all meager subsets of X (provided
X /∈ MGR(X) and X has no isolated points, so that MGR(X) is proper and
contains all singletons).

The most important example of a σ-ideal on X which is not Σ0
2 supported

is
NULLµ = the collection of all subsets of X, having outer measure zero

with respect to a Borel σ-finite continuous measure µ on X.
Given σ-ideals I and J on Polish spaces X and Y , respectively, the pair

〈I, J〉 satisfies the Fubini Property (FP) if for every Borel subset B of X × Y ,
if all its vertical sections Bx = {y : 〈x, y〉 ∈ B} are in J , then its horizontal
sections By = {x : 〈x, y〉 ∈ B} are in I, for every y outside a set from J . Thus
the Fubini theorem and the Kuratowski–Ulam theorem (see [9], 8.41) assert, in
particular, that the pairs 〈NULLµ,NULLν〉 and 〈MGR(X),MGR(Y )〉 satisfy
FP. On the other hand, neither 〈MGR(X),NULLν〉 nor 〈NULLµ,MGR(Y )〉
satisfies FP (see Example 3.6).

The aim of this paper is to decide for a number of other pairs of σ-ideals
whether they satisfy FP. Special attention is given to the Σ0

2 supported σ-
ideals. This class includes such important members as:

[X]≤ℵ0 = the collection of countable subsets of X,
K∗σ= the σ-ideal generated by all compact subsets of a non-σ-compact X (if

X is the Baire space NN, then this is just the collection of σ-bounded subsets
of NN) (see [9], 21.24),
E = the σ-ideal generated by all closed measure zero subsets of the Cantor

space 2N (see [3], 2.6).
Note that the three σ-ideals above are generated by Π1

1 (in the Effros Borel
structure) hereditary families of closed sets (see [9], 35.G). This makes them
much easier to handle, as the following lemma shows.

Lemma 1.1. Let X and Y be Polish spaces and F a hereditary Π1
1 family

of closed subsets of Y . Let I be an arbitrary σ-ideal and J be the σ-ideal
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generated by F . Then the following conditions are equivalent:

(i) the pair 〈I, J〉 satisfies FP,

(ii) for every Borel set B ⊆ X × Y with all sections Bx in F , we have
{y : By 6∈ I} ∈ J .

Proof. To prove the non-trivial direction (ii) ⇒ (i), take an arbitrary Borel
set B ⊆ X × Y such that ∀x(Bx ∈ J). Then, the Burgess–Hillard theorem
(see [9], 35.43) tells us that B ⊆

⋃
nBn, with Bn Borel and ∀n∀x[(Bn)x ∈ F ].

By condition (ii), it follows that for each n we have {y : (Bn)y 6∈ I} ∈ J .
Finally,

{y : By 6∈ I} ⊆
⋃
n

{y : (Bn)y 6∈ I} ∈ J.

What makes it still easier to work with σ-ideals which are Σ0
2 supported

is the following basic structural result.

Theorem 1.2 (Kechris, Solecki [10]). Let I be a Σ0
2 supported σ-ideal on a

Polish space X. Then precisely one of the following possibilities holds.

(i) There is a countable family {Fn : n ∈ N} of closed uncountable subsets of
X such that, if for each n we put In = {B ⊆ X : B ∩ Fn ∈ MGR(Fn)},
then I =

⋂
n∈N In.

(ii) There is a homeomorphic embedding Φ : 2N ×NN−→X such that for any
α ∈ 2N we have Φ[{α} × NN] 6∈ I .

In fact, a revised form of the above will be especially useful for us.
We say that σ-ideals I and J on spaces X and Y , respectively, are Borel

isomorphic (I ≡B J) if there exists a Borel isomorphism f : X −→Y between
X and Y such that for A ∈ B(X), A ∈ I ⇐⇒ f [A] ∈ J ; in this case we
also write J = f∗(I). According to a theorem of Sikorski (see [9], 15.10),
if X and Y are uncountable Borel subsets of Polish spaces and both I and
J contain uncountable sets, then I ≡B J is equivalent to the fact that the
corresponding Boolean algebras B(X)/(I ∩B(X)) and B(Y )/(J ∩B(Y )) are
isomorphic. Recall that if X is an uncountable Polish space with no isolated
points, then the Boolean algebra B(X)/(MGR(X) ∩B(X)) is the unique, up
to an isomorphism, complete atomless Boolean algebra that contains a count-
able dense subset (see e.g. [8], 25.4). It follows that all σ-ideals of the form
MGR(B) for an uncountable Borel subset of a Polish space are pairwise Borel
isomorphic (tacitly assuming, of course, that B has no isolated points and
B /∈ MGR(B)). It is also well known that all σ-ideals of the form NULLµ
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for a σ-finite continuous Borel measure µ on an uncountable Polish space are
pairwise Borel isomorphic (see [9], 17.41).

We say that a σ-ideal I on a Polish space X fulfills the countable chain con-
dition (abbreviated is ccc), if there is no uncountable family of disjoint Borel
sets outside I. We say that I has property (M), if there exists (equivalently:
for every) uncountable Polish space Y there is a Borel function f : X −→Y
such that f−1[{y}] 6∈ I for each y ∈ Y (see [1]).

The revised form of the Kechris–Solecki theorem, announced above, is for-
mulated as follows

Proposition 1.3. Let I be a Σ0
2 supported σ-ideal on a Polish space X. Then

precisely one of the following possibilities holds.

(i) I is ccc and then it is Borel isomorphic to the σ-ideal MGR(2N).

(ii) I has property (M).

Proof. It is not difficult to see that the two possibilities above correspond
to the two clauses from 1.2. In case (ii) this is clear (see [1]). So it suffices
to show that if I =

⋂
n∈N In for a countable family {Fn : n ∈ N} of closed

uncountable subsets of X, where In = {B ⊆ X : B ∩Fn ∈ MGR(Fn)}, then I
is Borel isomorphic to the σ-ideal MGR(2N).

Clearly, for each n, the Boolean algebra B(X)/(In ∩B(X)) is isomorphic
to B(Fn)/MGR(Fn) and so also to the algebra B(2N)/MGR(2N). (Note that
since I contains all singletons, Fn has no isolated points.) Next note that the
function Φ([A]I) = 〈[A]In : n ∈ N〉 for A ∈ B(X) is a complete embedding
of B(X)/(I ∩ B(X)) into the product algebra

∏
n∈N

B(X)/(In ∩ B(X)) of the

algebras B(X)/(In ∩ B(X)). It then easily follows that B(X)/(I ∩ B(X))
is a complete atomless Boolean algebra with a countable dense subset and
thus it is also isomorphic to B(2N)/MGR(2N). Hence, by Sikorski’s theorem
mentioned above, I ≡B MGR(2N). (For a different proof see [2], 3.1).

To realize the relevance of the dichotomy above to the study of FP for
Σ0

2-supported σ-ideals let us note the following lemma.

Lemma 1.4. Suppose that I1, I2, J1 and J2 are σ-ideals on Polish spaces
X1, X2, Y1 and Y2, respectively. If I1 ≡B I2 and J1 ≡B J2, then 〈I1, J1〉
satisfies FP if and only if 〈I2, J2〉 does also.

Proof. Straightforward.

Thus, from the point of view of FP, Borel isomorphic ideals are identical.
In particular, the dichotomy above says that there is essentially only one Σ0

2
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supported ccc σ-ideal, which will be referred to as the category σ-ideal and
denoted simply by MGR.

In the first part of the paper we examine FP for pairs 〈I, J〉 of σ-ideals, at
least one of which is Σ0

2 supported. The main results are:
– if J is Σ0

2 supported, then 〈MGR, J〉 satisfies FP (theorem 2.4).
– if J is one of the σ-ideals [Y ]≤ℵ0 , K∗σ, E , then 〈NULL, J〉 satisfies FP

(theorems 2.1.(i) and 2.5). Here NULL stands for the measure σ-ideal; i.e.
any of the Borel isomorphic σ-ideals of the form NULLµ.

In the second part we concentrate on ccc σ-ideals. We try to find a pair
of ccc σ-ideals which satisfies FP but is different from the obvious examples:
〈MGR,MGR〉 and 〈NULL,NULL〉. We show that there is no such pair in the
class of σ-ideals obtained from MGR and NULL by the operations of Borel
isomorphism, product, extension and countable intersection (Theorem 3.9).
The only examples we give require some additional set-theoretic assumptions
(Theorem 3.10).

2 Fubini Property for Σ0
2 Supported σ-Ideals.

Let us first deal with the simplest Σ0
2 supported σ-ideal; namely the one formed

by countable sets. The idea of the proof of (i) below has been borrowed from
[7] (see [7], 1.2).

Theorem 2.1. Let X and Y be Polish spaces.

(i) If I is an arbitrary ccc σ-ideal on X, then 〈I, [Y ]≤ℵ0〉 satisfies FP.

(ii) If J is any σ-ideal on Y , then 〈[X]≤ℵ0 , J〉 does not satisfy FP.

Proof. (i) Let B ⊆ X × Y be a Borel set with all sections Bx countable.
Then, by the Lusin-Novikov Theorem (see [9], 18.10), B can be written as⋃
nBn, where each Bn is the graph of a partial Borel function fn. Note that
{y : By 6∈ I} =

⋃
n{y : (Bn)y 6∈ I}. But for each n, (Bn)y = f−1

n [{y}]; so
|{y : (Bn)y 6∈ I}| ≤ ℵ0, by the ccc property of I. Thus |{y : (B)y 6∈ I}| ≤ ℵ0.

(ii) It’s easy to find a Borel function f : X −→Y with ∀y ∈ Y |f−1[{y}]| >
ℵ0. Let B be the graph of f and note that B violates FP for 〈[X]≤ℵ0 , J〉.

Note that in proving 2.1 (ii) we use only the fact that [X]≤ℵ0 has property
(M). Thus we have

Proposition 2.2. Let X and Y be Polish spaces. If I is a σ-ideal on X with
property (M) and J is an arbitrary σ-ideal on Y , then the pair 〈I, J〉 does not
satisfy FP.



570 Ireneusz Rec law and Piotr Zakrzewski

Combining this with Proposition 1.3 immediately gives the following.

Theorem 2.3. Let X and Y be Polish spaces. Let I be a Σ0
2 supported σ-ideal

on X. If I is not ccc, then the pair 〈I, J〉 does not satisfy FP for any σ-ideal
J on Y .

Now let us turn to the case when I is ccc.

Theorem 2.4. Let X and Y be Polish spaces. Let I and J be Σ0
2 supported

σ-ideals on X and Y , respectively. If I is ccc, then the pair 〈I, J〉 satisfies FP.

Proof. By Proposition 1.3 and Lemma 1.4 we can assume that I = MGR(X).
Now suppose, to the contrary, that a Borel set B ⊆ X×Y is a counterexample
to FP for 〈MGR(X), J〉; i.e. ∀x Bx ∈ J but Y ′ = {y : By 6∈ MGR(X)} 6∈ J .
Since Y ′ is Borel (see [9], 16.1), we can extend the topology τ on Y to a new
Polish topology τ ′ with the same Borel sets in which Y ′ is clopen; so Polish
(in the relative topology – see [9], 13.1).

From now on let us work with the topology τ ′. Note that J remains Σ0
2

supported.
Let {Vn : n ∈ N} be an open basis for Y . Consider the space Z =

Y ′ \
⋃
{Vn : Vn ∈ J}. Note that Z is closed and Z 6∈ J (in fact Y ′ \ Z ∈ J);

so Z is a nonempty Polish space. Moreover, for any open subset U of Y if
U ∩ Z 6= ∅, then U ∩ Z 6∈ J .

Let C = B∩(X×Z). Then ∀z ∈ Z Cz 6∈ MGR(X); so, by the Kuratowski-
Ulam theorem applied to the product X × Z, there is an x0 ∈ X such that
Cx0 6∈ MGR(Z). But Cx0 ∈ J ; so there is F ∈ J ∩Σ0

2 with Cx0 ⊆ F . Then
F ∩ Z is a non-meager Σ0

2 subset of Z (in the relative topology). It follows
that there is an open subset U of Y such U ∩Z 6= ∅ and U ∩Z ⊆ F . But this
implies that F 6∈ J which contradicts the choice of F .

This completes our discussion of FP for pairs in which both σ-ideals are
Σ0

2 supported. We now consider the case, when I is the measure ideal NULL.
Of course, we cannot hope to obtain the full analogue of Theorem 2.4, since
we have the counterexample 〈NULL,MGR〉 (see 3.6). Nevertheless, some im-
portant cases of Theorem 2.4 are still valid.

Theorem 2.5. Let X and Y be Polish spaces and let µ be a σ-finite Borel
continuous measure on X. Then the pair 〈NULLµ, J〉 satisfies FP whenever
J is the σ-ideal generated by any of the following families of closed subsets of
Y :

(i) all compact sets (In this case Y is assumed to be non-σ-compact.) More-
over, if B ⊂ X × Y is a Borel set with Bx ∈ K∗σ for each x ∈ X, then
there exists a set Z ∈ K∗σ such that Bx ⊆ Z for µ-almost all x ∈ X.
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(ii) all closed sets in NULLν for a σ-finite Borel continuous measure ν on
Y ,

(iii) all closed subsets of a Π1
1 set A ⊆ Y, A 6= Y .

Proof. First note that in all three cases J is generated by a hereditary Π1
1

family F of closed subsets of Y ; so, by Lemma 1.1, it is enough to consider
Borel sets B with all sections Bx in F . We can also assume that the measure
µ is finite.

(i) It clearly suffices to prove the “moreover” part. So let B ⊂ X × Y
be a Borel set with Bx ∈ K(Y ) for each x ∈ X and consider the function
ϕ : X −→K(Y ) defined by ϕ(x) = Bx for x ∈ X, where by K(Y ) we denote
the space of all compact subsets of Y equipped with the Vietoris topology.

Since ϕ is Borel, Lusin’s theorem (see [9], 17.12) implies there are compact
sets Fn ⊆ X, n ∈ N, such that ∀n ϕ|Fn is continuous and µ(X \

⋃
n Fn) =

0. Then ∀n ϕ[Fn] ∈ K(K(Y )); so by the continuity of the mapping
⋃

:
K(K(Y ))−→K(Y ) (see [9], 4.29),

⋃
ϕ[Fn] ∈ K(Y ) and it suffices to define

Z =
⋃
n(
⋃
ϕ[Fn]).

(ii) and (iii) are easy consequences of the following result.

Lemma 2.6 (folklore?). If B ⊆ X × Y is a Borel set such that every section
Bx is closed, then {y : µ(By) > 0} is Σ0

2.

Proof. (of 2.6) This seems to be essentially known but for the sake of com-
pleteness we shall sketch a simple argument, suggested by the referee. We may
assume that µ(X) is finite. It is enough to prove that in this case the sets
Ya = {y : µ(By) ≥ a} are closed for every a > 0. Let yn ∈ Ya, limn yn = y.
Then By contains every point belonging to infinitely many of the sets Byn ,
since the vertical sections of B are closed. That is, By contains

⋂
k

⋃
n≥k B

yn ,
which implies µ(By) ≥ a and y ∈ Ya.

Finally note that the part of 2.5.(i) stating FP for 〈NULLµ,K∗σ〉 is a special
case of Theorem 2.5 (iii), since every Polish space is a Π0

2; so Π1
1, subset of

the Hilbert cube.

3 Fubini Property for ccc σ-Ideals.

The two most frequently encountered ccc σ-ideals are the category σ-ideal
MGR and the measure σ-ideal NULL. They also provide two classical cases,
〈MGR,MGR〉 and 〈NULL,NULL〉, of the Fubini Property phenomenon. Are
there any other natural examples of pairs of ccc σ-ideals satisfying FP? In this
section we negatively answer this question restricted to the realm of σ-ideals
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cooked up from MGR and NULL with the help of the operations of extension,
countable intersection, Borel isomorphism and product.

Recall that given σ-ideals I on X and J on Y their product I⊗J is defined
as the σ-ideal with the Borel basis consisting of Borel sets B ⊆ X × Y such
that {x : Bx 6∈ J} ∈ I. Notice that the pair 〈I, J〉 has the Fubini property
if and only if, for every Borel set B ⊂ X × Y, B ∈ I ⊗ J implies B∗ ∈ J ⊗ I,
where B∗ = {(y, x) : (x, y) ∈ B}.

Since all measure (category, resp.) σ-ideals are Borel isomorphic, MGR⊗
MGR ≡B MGR and NULL ⊗ NULL ≡B NULL. Let K and L denote the
σ-ideals of meager subsets in R and of Lebesgue measure zero subsets of R,
respectively. Gavalec [6] proved that if I1, . . . , In ∈ {K,L}, then it makes
sense to write I = I1 ⊗ . . .⊗ In, without brackets, and call I the product of n
factors I1, . . . , In.

The next proposition summarizes some general properties of the product
operation which will be needed in the sequel. The proofs are routine.

Proposition 3.1. Let X, X ′, Y, Y ′ be Polish spaces. If I, Ī and In, n ∈ N,
are σ-ideals on X, J, J̄ and Jn, n ∈ N, are σ-ideals on Y , I ′ is a σ-ideal on
X ′ and J ′ is a σ-ideal on Y ′, then

(i) I ≡B I ′ ∧ J ≡B J ′ → I ⊗ J ≡B I ′ ⊗ J ′,

(ii) (
⋂
n In)⊗ J =

⋂
n(In ⊗ J),

(iii) I ⊗ (
⋂
n Jn) =

⋂
n(I ⊗ Jn),

(iv) I ⊆ I ′ → I ⊗ J ⊆ I ′ ⊗ J ,

(v) J ⊆ J ′ → I ⊗ J ⊆ I ⊗ J ′.

Let S be the smallest class of σ-ideals on Polish spaces such that:
(i) K, L ∈ S,
(ii) for any σ-ideals I1, I2, (I1 ∈ S ∧ I1 ≡B I2)→ I2 ∈ S,
(iii) for any σ-ideals In ∈ S, n ∈ N, on a space X,

⋂
n In ∈ S,

(iv) for any σ-ideals I, J ∈ S, I ⊗ J ∈ S.
(v) for any σ-ideals I, Ī, (I ∈ S ∧ I ⊆ Ī)→ Ī ∈ S.
Let S be the smallest class of σ-ideals satisfying conditions (i)–(iv) above.

Since the operations involved in (ii)–(iv) are monotone, we have

Ī ∈ S ⇐⇒ ∃I ∈ S I ⊆ Ī

The elements of S can be represented in a useful normal form. Let Pn denote
the family of all σ-ideals I on Rn which are the products of n factors taken
from {K,L}.
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Proposition 3.2. If I ∈ S is a σ-ideal on a Polish space X, then there are:
positive integers nk, Borel isomorphisms ϕk between Rnk and X, and σ-ideals
Ik ∈ Pnk

on Rnk , k ∈ N, such that I =
⋂
k(ϕk)∗(Ik).

Proof. It is enough to show that the class of σ-ideals of the above form is
closed under the operations involved in the definition of S. In the case of
countable intersection this is obvious. If ψ : X −→X ′ is a Borel isomorphism
between X and another Polish space X ′, then ψ∗(I) = ψ∗

(⋂
k(ϕk)∗(Ik)

)
=⋂

k(ψ ◦ ϕk)∗(Ik).
Finally, let J =

⋂
l(ψl)∗(Jl), where for each l, Jl is the product of ml

factors from {K,L} and ψl are Borel isomorphisms between Rml and Y . Then
by 3.1 (i)–(iii),

I ⊗ J =
(⋂
k

(ϕk)∗(Ik)
)
⊗
(⋂
l

(ψl)∗(Jl)
)

=
⋂
k,l

(
(ϕk)∗(Ik)⊗ (ψl)∗(Jl)

)
=
⋂
k,l

(ϑk,l)∗(Ik ⊗ Jl),

where for each k, l, ϑk,l is a certain Borel isomorphism between Rnk+ml and
X × Y .

Gavalec [6] proved that ∀n > 0, every σ-ideal I ∈ Pn is ccc. Combining
this with Proposition 3.2 and taking into account that the ccc property is
preserved by Borel isomorphisms, countable intersections and extensions, we
immediately get the following

Proposition 3.3. Every σ-ideal I ∈ S is ccc.

Our next auxiliary result concerns extensions of ccc σ-ideals. We say that
σ-ideals I1, I2 on X are orthogonal and write I1 ⊥ I2, if there is no common
extension of I1, I2 to a (proper!) σ-ideal on X. This is equivalent to the
existence of a Borel set in I1 whose complement is in I2.

If I is a σ-ideal on X and A ∈ B(X) \ I, then the restriction of I to A,
denoted by I|A, is the σ-ideal on X given by

I|A = {C ⊆ X : C ∩A ∈ I}.

Clearly, I ⊆ I|A for any A ∈ B(X) \ I and if I is, moreover, ccc, then every
σ-ideal Ī on X extending I is of this form. (It suffices to let A = X \

⋃
R,

where R is any maximal family of pairwise disjoint Borel sets in Ī \ I.)

Proposition 3.4. Let In, n ∈ N, and Ī be ccc σ-ideals on a Polish space X.
If
⋂
n In ⊆ Ī, then there exists a nonempty set T ⊆ N such that

⋂
n∈T In ⊆ Ī

and In 6⊥ Ī for each n ∈ T .
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Proof. Put I =
⋂
n In and find A ∈ B(X) \ I such that Ī = I|A. Let

T = {n : A 6∈ In}. Since A 6∈ I, T 6= ∅. We have⋂
n∈T

In ⊆ (
⋂
n∈T

In)|A = I|A = Ī .

Finally, take n ∈ T . Since A 6∈ In, In|A is a proper σ-ideal on X. But
In ⊆ In|A and Ī = I|A = (

⋂
n∈T In)|A =

⋂
n∈T (In|A) ⊆ In|A; so In|A

witnesses that In 6⊥ Ī.

The special role played by the σ-ideals MGR and NULL in the class S, as
far as the Fubini Property is concerned, strongly depends on closure conditions
which are summarized in the following proposition.

Proposition 3.5 (folklore?). (i) The countable intersection of category (mea-
sure, resp.) σ-ideals is a category (measure, resp.) σ-ideal. More precisely, if
X is an uncountable Polish space and σ-ideals In, n ∈ N, on X are Borel iso-
morphic to MGR(2N) (are of the form NULLµn

for certain probability Borel
continuous measures µn on X, resp.), then the σ-ideal I =

⋂
n In is of the

same form.
(ii) The product of finitely many category (measure, resp.) σ-ideals is a

category (measure, resp.) σ-ideal.
(iii) The extension of a category (measure, resp.) σ-ideal is a category

(measure, resp.) σ-ideal.

Proof. (i). The category case has essentially been dealt with in the course
of proving Proposition 1.3. In the measure case it is enough to define µ by

µ(A) =
∑
n

1
2n+1

· µn(A) for A ∈ B(X),

to get
⋂
n NULLµn

= NULLµ.
(ii). This follows from the fact that the product of n copies of K (L, resp)

is the σ-ideal of meager (Lebesgue measure zero, resp.) subsets of Rn.
(iii). Let J be a σ-ideal on R and I ⊆ J , where I ∈ {K,L}. Find A ∈

B(R) \ I with J = I|A. Then the Boolean algebras B(R)/
(
I|A ∩B(R)

)
and

B(R)/
(
I ∩B(R)

)
are isomorphic.

We return to the question of which pairs 〈I, J〉 of members of S have the
Fubini Property. Let us first deal with the special case when I ∈ Pn and
J ∈ Pm for some fixed positive integers n, m. It will turn out that if 〈I, J〉
does not satisfy FP, then in fact FP is violated in a very strong sense. Here is
a general formulation of the relevant definition.
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Given σ-ideals I and J on Polish spaces X and Y , respectively, we say
that a Borel set B ⊆ X × Y is a 0-1 counterexample to FP for 〈I, J〉, if
∀x ∈ X Bx ∈ J and ∀y ∈ Y (X \By) ∈ I. It is straightforward to prove, that
with regard to the existence of 0-1 counterexamples to FP, Borel isomorphic
ideals are identical. Also note, that if B is a 0-1 counterexample to FP for
〈I, J〉, then {〈y, x〉 : 〈x, y〉 ∈ (X × Y ) \ B} is a 0-1 counterexample to FP
for 〈J, I〉. Thus the existence of such a B contradicts FP for both 〈I, J〉 and
〈J, I〉.

The following construction is well-known.

Example 3.6. Let C ∈ B(R) be such that C ∈ L and R \ C ∈ K. Then the
set B ⊆ R× R defined by

B = {〈x, y〉 ∈ R× R : x+ y ∈ C},

is a 0-1 counterexample to FP for 〈K,L〉.

It is known that there exists a 0-1 counterexample to FP for 〈K⊗L,K⊗L〉
(see [7], 2.1). These facts generalize to

Lemma 3.7. If I ∈ Pn and J ∈ Pm, then the following conditions are equiv-
alent:

(i) 〈I, J〉 does not satisfy FP,
(ii) neither I ≡B J ≡B MGR nor I ≡B J ≡B NULL,
(iii) there is a 0-1 counterexample to FP for 〈I, J〉.

Proof. Only (ii)→ (iii) requires proof. Let

I = I1 ⊗ . . .⊗ In and J = J1 ⊗ . . .⊗ Jm,

with each Ik, Jl ∈ {K,L}. It follows, from Proposition 3.5, that we can find
integers k and l such that Ik 6= Jl. Assume, w.l.o.g., that k < l, Ik = K and
Jl = L. Put r = max{n+ l − k,m}. Let I ′, J ′ ∈ Pr be the σ-ideals obtained
by substituting for Ik (Jl, resp.) the product of r−n copies of K (r−m copies
of L, resp.). Then

I ′ = I ′1 ⊗ . . .⊗ I ′r and J ′ = J ′1 ⊗ . . .⊗ J ′r,

with I ′l = K and J ′l = L. Moreover, I ≡B I ′ and J ≡B J ′; so it suffices to find
a 0-1 counterexample to FP for 〈I ′, J ′〉.

First note that I ′ ⊥ J ′. For that purpose take a Borel set A ⊆ R such that
A ∈ L and R \A ∈ K. Define a Borel set C ⊆ Rr by

C = {(x1, . . . , xr) : xl ∈ A}.



576 Ireneusz Rec law and Piotr Zakrzewski

It is not difficult to prove that C ∈ J ′ and (Rr \ C) ∈ I ′.
We complete the proof exactly as in 3.6. Namely, the set B ⊆ Rr × Rr

defined by B = {〈x̄, ȳ〉 ∈ Rr ×Rr : x̄+ ȳ ∈ C}, (+ is the ordinary addition in
Rr) is a 0-1 counterexample to FP for 〈I ′, J ′〉.

Our last auxiliary fact concerns the question of what happens to FP when
we pass to larger σ-ideals.

Proposition 3.8. Let I, Ī and J, J̄ be σ-ideals on Polish spaces X and Y ,
respectively.

(i) If I ⊆ Ī, then FP for 〈I, J〉 implies FP for 〈Ī , J〉,
(ii) If I ⊆ Ī , J ⊆ J̄ and J is, moreover, ccc, then FP for 〈I, J〉 implies

FP for 〈Ī , J̄〉.

Proof. (i) follows immediately from the fact, that for any B ∈ B(X × Y ),
{y : By 6∈ Ī} ⊆ {y : By 6∈ I}.

(ii). By (i), we can assume that Ī = I. Fix A ∈ B(Y ) \ J such that
J̄ = J |A.

Take an arbitrary Borel set B ⊆ X×Y with ∀x Bx ∈ J̄ . Let D = B∩(X×
A) and note that ∀x Dx = Bx ∩ A ∈ J . By FP for 〈I, J〉, {y : Dy 6∈ I} ∈ J .
But {y : Dy 6∈ I} = {y : By 6∈ I} ∩A; so {y : By 6∈ I} ∈ J̄ .

We are now ready to state the main result of this section.

Theorem 3.9. For every σ-ideals I, J ∈ S the following conditions are equiv-
alent:

(i) 〈I, J〉 satisfies FP,
(ii) either I ≡B J ≡B MGR or I ≡B J ≡B NULL.

Proof. Only the implication (i)→ (ii) requires proof. So assume that I, J ∈
S and 〈I, J〉 satisfies FP. By 3.2,⋂

k

(ϕk)∗(Ik) ⊆ I and
⋂
l

(ψl)∗(Jl) ⊆ J

for certain positive integers nk, ml, Borel isomorphisms ϕk : Rnk −→X, ψl :
Rml −→X and σ-ideals Ik ∈ Pnk

, Jl ∈ Pml
, respectively. By Propositions 3.3

and 3.4, there are nonempty sets T, W ⊆ N such that ∀k ∈ T (ϕk)∗(Ik) 6⊥ I,
∀l ∈W (ψl)∗(Jl) 6⊥ J and⋂

k∈T

(ϕk)∗(Ik) ⊆ I and
⋂
l∈W

(ψl)∗(Jl) ⊆ J.

Now suppose, towards a contradiction, that neither I ≡B J ≡B MGR nor
I ≡B J ≡B NULL. By Proposition 3.5, we may find integers k ∈ T and
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l ∈ W such that neither Ik ≡B Jl ≡B MGR nor Ik ≡B Jl ≡B NULL.
Since (ϕk)∗(Ik) 6⊥ I ((ψl)∗(Jl) 6⊥ J , resp.), let Ī (J̄ , resp.) be a σ-ideal
extending (ϕk)∗(Ik) and I ((ψl)∗(Jl) and J , resp.). Then, by 3.7, there is
a 0-1 counterexample B to FP for 〈(ϕk)∗(Ik), (ψl)∗(Jl)〉. Clearly, B is also
a 0-1 counterexample to FP for 〈Ī , J̄〉. But on the other hand, since 〈I, J〉
satisfies FP, so does 〈Ī , J̄〉, by 3.8.(ii) and 3.3. This contradiction completes
the proof.

Finally we present the promised examples of pairs of ccc σ-ideals which
satisfy FP but are different from 〈MGR,MGR〉 and 〈NULL,NULL〉. Recall
that a cardinal κ is called quasi-measurable if it is uncountable and there is a
proper ω1-saturated (i.e., there is no uncountable family of disjoint subsets of κ
outside the ideal) κ-additive ideal of P(κ) containing singletons (see [4], 9C). It
is well-known that “ZFC + Martin’s Axiom + there is a quasi-measurable car-
dinal κ < c” is equiconsistent with “ZFC + there is a two-valued-measurable
cardinal” (see [4], 9G).

The σ-ideal J below has previously been considered by several authors (see
e.g. [5] and [7]).

Theorem 3.10. Assume Martin’s Axiom + there is a quasi-measurable car-
dinal κ < c. Let A ⊆ R be a set of cardinality κ and let J be a proper,
ω1-saturated κ-additive ideal on A containing singletons. If J is the σ-ideal
on R with the basis consisting of Borel sets B ⊆ R such that B ∩A ∈ J , then:

(i) J is ccc,
(ii) the pairs 〈K, J〉 and 〈L, J〉 satisfy FP,
(iii) the pairs 〈J,K〉 and 〈J,L〉 satisfy FP,
(iv) J 6≡B MGR and J 6≡B NULL.

Proof. (i) immediately follows from the ω1-saturation of J .
(ii). Let I ∈ {K,L}. Suppose, to the contrary, that there is a Borel set

B ⊆ R × R which is a counterexample to FP for 〈I, J〉; i.e., ∀x Bx ∈ J but
Y ′ = {y : By 6∈ I} 6∈ J . Since Y ′ is Borel (see [9], 16.1 and 17.25), Y ′∩A 6∈ J .
Let D =

⋃
q∈Q(B + 〈q, 0〉). Then ∀x ∈ R Dx ∈ J and ∀y ∈ Y ′ R \ Dy ∈ I,

since Dy =
⋃
q∈Q(By + q) and By ∈ B(R) \ I. Let C = Y ′ ∩ A. The rest of

the argument is well-known. Since |C| ≤ κ < c and ∀y ∈ C (R \ Dy) ∈ I,
MA implies that

⋂
y∈C D

y 6= ∅. But if x ∈
⋂
y∈C D

y, then C ⊆ Dx ∈ J ,
contradicting the fact that C 6∈ J .

(iii) Let I ∈ {K,L}. Let B ⊆ R × R be a Borel set with ∀x Bx ∈ I. Set
E =

⋃
x∈ABx. We have {y : By 6∈ J} ⊆ E, since for each y, By 6∈ J →

By ∩A 6= ∅. But |A| = κ < c; so MA implies that E ∈ I.
(iv) follows from (ii) and 3.6.
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Of course the result above is not a satisfactory solution to the problem of
finding a new pair of natural ccc σ-ideals with FP or, even better, a single ccc
σ-ideal I having FP with itself and such that MGR 6≡B I 6≡B NULL. The
latter is apparently open even if the word “natural” is omitted.
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