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Abstract

Using the conditions increasing∗ and decreasing∗, and Thomson’s
variational measure, we give an easy proof of the Denjoy-Lusin-Saks
Theorem [12, p. 230]. In Theorem 5.1 we extend (the function is not
assumed to be continuous) Thomson’s Theorems 44.1 and 44.2 of [13],
that are closely related to the Denjoy-Lusin-Saks Theorem. From this
extension we obtain another classical result: the Denjoy-Young-Saks
Theorem [5]. As consequences of the Denjoy-Lusin-Saks Theorem we
obtain two well-known results due to de la Vallée Poussin [12, p. 125,
127]. Then wee extend these results (the set E used there is not only
Borel, but also Lebesgue measurable) and give in Theorem 8.1 a de
la Vallée Poussin type theorem for V B∗G functions, that is in fact an
extension of a result of Thomson [13, Theorem 46.3]. Finally, we give
characterizations for Lebesgue measurable functions that are V B∗G ∩
(N), and for measurable functions that are V B∗G∩N+∞ on a Lebesgue
measurable set.

1 Introduction

Using the conditions increasing∗ and decreasing∗, and Thomson’s variational
measure, we give (see Corollary 5.1, (i), (iii)) an easy proof of the following
theorem of Saks:
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Theorem A. Let F : [a, b]→ R and E ⊂ [a, b]. If F is V B∗G on E, then F
is derivable a.e. on this set; and further if N =

{
x ∈ E : F ′(x) does not exist

(finite or infinite)
}

, then m
(
F (N)

)
= Λ

(
B(F ;N)

)
= 0.

Since for continuous functions, this result has been proved independently by
Denjoy and Lusin [12, p. 230], we call it the Denjoy-Lusin-Saks Theorem. In
Theorem 5.1 (see also Corollary 5.1 and Remark 5.2) we extend (the function
is not assumed to be continuous) Thomson’s Theorems 44.1 and 44.2 of [13],
that are closely related to Theorem A. From Theorem 5.1 we obtain another
classical result: the Denjoy-Young-Saks Theorem [5].

Using Theorem A we obtain the following results of de la Vallée Poussin.

Theorem B. ([12, p. 125]) For a function F : [a, b]→ R of bounded variation
we have

∣∣F ∗(N)
∣∣ = V ∗F (N) = m∗(N) = 0 and Λ

(
B(F ;N)

)
= 0, where VF is

the total variation of F and N =
{
x ∈ [a, b] : F is continuous at x, F ′(x)

does not exist (finite or infinite)
}

.

Note that in the book of Saks [12], the proof of the Denjoy-Lusin-Saks Theorem
is based on Theorem B.

Theorem C. ([12, p. 127]) If F : [a, b] → R, F ∈ V B. Let E+∞ =
{
x ∈

[a, b] : F ′(x) = +∞
}

, E−∞ =
{
x ∈ [a, b] : F ′(x) = −∞

}
, and let VF be the

total variation of F .

(i) If X is a Borel measurable subset of [a, b] and if F is continuous at each
point of X, then

F ∗(X) = F ∗
(
X ∩ E+∞

)
+ F ∗

(
X ∩ E−∞

)
+
∫
X

F ′(x) dt ,

and

V ∗F (X) = F ∗
(
X ∩ E+∞

)
+
∣∣F ∗(X ∩ E−∞)

∣∣+
∫
X

∣∣F ′(x)
∣∣ dx .

(ii) Let E =
{
x ∈ [a, b] : F is continuous at x, F ′ and V ′F exist (finite or

infinite), V ′F (x) = |F ′(x)|
}

. Then V ∗F
(
[a, b] \ E

)
= m∗

(
[a, b] \ E

)
= 0.

In fact Theorem 7.2, (vii), (viii), (ix) is an extension of Theorem C (because in
(vii) and (viii) the set E is not only Borel but also Lebesgue measurable). Note
also that in order to prove Theorem C, Saks uses the Lebesgue Decomposition
Theorem [12, p. 119], whereas our proof does not use this decomposition; it
is instead essentially based on Theorem 8.2 of [4] (see Lemma 3.2).



Thomson’s Variational Measure and Some Classical Theorems523

In Theorem 8.1 we give a de la Vallée Poussin type theorem for V B∗G function,
that is in fact an extension of a result of Thomson [13, Theorem 46.3].
Finally, as consequences of the previous results, we give characterizations: for
Lebesgue measurable functions that are V B∗G ∩ (N), and for measurable
functions that are V B∗G ∩N+∞ on a Lebesgue measurable set.

2 Preliminaries

Let m∗(X) denote the outer measure of the set X and m(E) the Lebesgue mea-
sure of E, whenever E ⊆ R is Lebesgue measurable. For the definitions of V B,
V B∗, V B∗G and Lusin’s condition (N), see [12]. We denote by O(F ; [a, b])
the oscillation of the function F on the closed interval [a, b]. Let int(E) denote
the interior of the set E.

Definition 2.1. Let F : [a, b] → R, E ⊆ [a, b]. We denote by V ∗(F ;E) ={∑n
k=1O(F ; [ak, bk]) : {[ak, bk]}nk=1 is a finite set of nonoverlapping closed

intervals with ak, bk ∈ E
}

.

Definition 2.2. [12, p 64.] Let F : R → R be an increasing function. For
each set E ⊂ R, let

F ∗(E) = inf
{ ∞∑
i=1

(
F (bi)− F (ai)

)
: E ⊂ ∪∞i=1(ai, bi)

}
.

Lemma 2.1. [12] Let F ∗ be defined as in Definition 2.2, and let E ⊂ R.

(i) F ∗ is a metric outer measure (or with the notations of [12, p. 64], F ∗ is
an outer measure in the sense of Caratheodory).

(ii) All Borel measurable sets of R are F ∗-measurable; i.e.,

F ∗(X) = F ∗(X ∩B) + F ∗(X \B)

whenever B is a Borel set and X ⊂ R.

(iii) For every ε > 0, there is an open set G that contains E such that F ∗(G) ≤
F ∗(E) + ε.

(iv) F ∗(E) = inf
{
F ∗(G) : G is an open set that contains E

}
.

(v) If F is continuous at each point of E, then F ∗(E) = m∗(F (E)).

(vi) F ∗(A) = F (b−) − F (a+) for A = (a, b), and F ∗(A) = F (b+) − F (a−)
for A = [a, b].
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Proof. (i) See [12, p. 64].
(ii) See Theorem 7.4 of [12, p. 52].
(iii) See Theorem 6.5, (i) of [12, p. 68].
(iv) See (iii).
(v) See [12, p. 100].
(vi) This is evident.

Definition 2.3. Let F : [a, b]→ R. For x, y ∈ [a, b], x < y, let

∆F+
(
[x, y]

)
= max

{
F (y)− F (x), 0

}
and

∆F−
(
[x, y]

)
= max

{
F (x)− F (y), 0

}
.

Clearly ∣∣F (y)− F (x)
∣∣ = ∆F+

(
[x, y]

)
+ ∆F−

(
[x, y]

)
.

Definition 2.4. [8, p. 51–52].
Let F : [a, b]→ R. For each x ∈ (a, b] let

V (F ; [a, x]) = sup
{∑n

i=1 |F (xi)− F (xi−1)| : a = x0 < x1 < . . . < xn = x};

V (F ; [a, x]) = sup
{∑n

i=1 ∆F+([xi−1, xi]) : a = x0 < x1 < . . . < xn = x};

V (F ; [a, x]) = sup
{∑n

i=1 ∆F−([xi−1, xi]) : a = x0 < x1 < . . . < xn = x}.

Consider F : R→ R where F (x) = F (a) for x < a and F (x) = F (b) for x > b.
Let’s put

VF : R→ R , VF (x) =


0 if x ∈ (−∞, a]

V (F ; [a, x]) if x ∈ (a, b]

V (F ; [a, b]) if x ∈ (b,+∞)

V F : R→ R , V F (x) =


0 if x ∈ (−∞, a]

V (F ; [a, x]) if x ∈ (a, b]

V (F ; [a, b]) if x ∈ (b,+∞)

V F : R→ R , V F (x) =


0 if x ∈ (−∞, a]

V (F ; [a, x]) if x ∈ (a, b]

V (F ; [a, b]) if x ∈ (b,+∞)

Clearly V F = V −F .
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Remark 2.1. Note that

V (F ; [a, x]) = W (F ; [a, x]) = W1([a, x]) ,
V (F ; [a, x]) = −W (F ; [a, x]) = −W2([a, x]) and
V (F ; [a, x]) = W (F ; [a, x]) = W ([a, x])

where the “W” variants are those defined in [12, p 61].

Theorem 2.1. [8, p. 52] Let F : [a, b]→ R, F ∈ V B. Then for x ∈ [a, b] we
have

F (x)− F (a) = V (F ; [a, x])− V (F ; [a, x]) and

V (F ; [a, x]) = V (F ; [a, x]) + V (F ; [a, x]) .

Thus, if one of the three numbers V (F ; [a, x]), V (F ; [a, x]), V (F ; [a, x]) is fi-
nite, then the other two are also finite.

Definition 2.5. [12, p. 64]. Let F : R→ R, F ∈ V B on [a, b], F is constant
on (−∞, a] and on [b,+∞). For each E ⊂ R, let

F ∗(E) = V
∗
F (E)− V ∗F (E).

Lemma 2.2. Let F1, F2 : R → R be increasing functions, and let E ⊂ R.
Then

(F1 + F2)∗(E) = F ∗1 (E) + F ∗2 (E) .

In particular, we have V ∗F (E) = V
∗
F (E) + V ∗F (E).

Proof. If A = (a, b), then by Lemma 2.1, (vi) we have

(F1 + F2)∗(A) = (F1 + F2)(b−) + (F1 + F2)(a+) =

F1(b−)− F1(a+) + F2(b−)− F2(a+) = F ∗1 (A) + F ∗2 (A) .

Now by Lemma 2.1, (ii), if B is an open set we have

(F1 + F2)∗(B) = F ∗1 (B) + F ∗2 (B) .

Let G1 and G2 be open sets containing E, and let G = G1 ∩G2. Then

(F1 + F2)∗(E) ≤ (F1 + F2)∗(G) = F ∗1 (G) + F ∗2 (G) ≤ F ∗1 (G1) + F ∗2 (G2) ,

and by Lemma 2.1, (iv), it follows that (F1 +F2)∗(E) ≤ F ∗1 (E) +F ∗2 (E). Let
D be an open set that contains E. Then

F ∗1 (E) + F ∗2 (E) ≤ F ∗1 (D) + F ∗2 (D) = (F1 + F2)∗(D) .

Again by Lemma 2.1, (iv), we obtain that F ∗1 (E)+F ∗2 (E) ≤ (F1+F2)∗(E).
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3 Thomson’s Variational Measure

Definition 3.1. Let F : R→ R, E ⊂ R, δ : E → (0,+∞) and

β∗δ (E) =
{(
〈x, y〉, x

)
: x ∈ E , y ⊂

(
x− δ(x), x+ δ(x)

)}
.

A set π =
{(
〈xi, yi〉, xi

)}n
i=1

, with int 〈xi, yi〉∩ int 〈xj , yj〉 = ∅ for i 6= j, is said
to be a partition. Let

V ∗δ (F ;E) = sup
{ n∑
i=1

|F (yi)− F (xi)| : π =
{(
〈xi, yi〉, xi

)}n
i=1

is a partition, π ⊂ β∗δ (E)
}
,

and let µ∗F (E) = infδ V ∗δ (F ;E). Note that µ∗F is in fact Thomson’s variational
measure So-µF defined in [13].

Lemma 3.1. Let E ⊂ R. With the notations of Definition 3.1 we have:

(i) µ∗F is a metric outer measure.

(ii) All Borel measurable sets of R are µ∗F -measurable; i.e.

µ∗F (X) = µ∗F (X ∩B) + µ∗F (X \B)

whenever B is a Borel set and X ⊂ R.

(iii) If F is increasing on R and F is continuous at each point of E, then
µ∗F (E) = m∗(F (E)).

(iv) For each x ∈ E we have

µ∗F
(
{x}
)

= lim sup
t→0+

∣∣F (x+ t)− F (x)
∣∣+ lim sup

t→0−

∣∣F (x+ t)− F (x)
∣∣ .

So, if F is increasing in a neighborhood of x, then

µ∗F
(
{x}
)

= F (x+)− F (x−) .

(v) If F is V B on [a, b] and constant on each of the intervals (−∞, a] and
[b,+∞), then µ∗F (E) = µ∗VF

(E) .

(vi) m∗(F (E)) ≤ µ∗F (E).
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Proof. (i) See [13, p. 40].
(ii) See Theorem 7.4 of [12, p. 52].
(iii) This follows easily.
(iv) See [13, p. 87].
(v) See [13, p. 92]
(vi) See [13, p. 101].

We denote by CF the set of continuity points of the function F .

Lemma 3.2. [4, Theorem 8.2]. Let F : [a, b] → R and let E be a Lebesgue
measurable subset of [a, b]. If F ∈ V B∗G ∩ (N) on E, then

µF (E ∩ CF ) = (L)
∫
E

∣∣F ′(t)∣∣ dt .
Lemma 3.3. [4, Corollary 6.1]. Let F,G : [a, b] → R, E ⊆ [a, b]. If F,G ∈
V B∗ on E and F = G on E, then

µ∗F (E ∩ CF ∩ CG) = µ∗G(E ∩ CF ∩ CG) .

Lemma 3.4. Let F : [a, b] → R and E ⊆ [a, b]. If F is increasing on [a, b],
then µ∗F (E ∩ CF ) = m∗(F (E ∩ CF )) .

Proof. This follows immediately by Lemma 3.1, (iii).

4 The Conditions increasing∗, decreasing∗ and VB∗

Definition 4.1. ([7], [2, p. 47]) Let F : [a, b] → R, E ⊂ [a, b], c = inf E,
d = supE. F is said to be increasing∗ (respectively decreasing∗) on E if
F (x) ≤ F (y) (respectively F (x) ≥ F (y)) whenever c ≤ x < y ≤ d and
{x, y}∩E 6= ∅. F is said to be increasing∗G (respectively decreasing∗G) on E
if there is a sequence of sets {En} such that E = ∪nEn and F is increasing∗

(respectively decreasing∗) on each En. Note that the condition increasing∗ was
introduced by Krzyzewski. See also the related condition “increasing around
a set” of Thomson [13, p. 122].

Remark 4.1. Let F : [a, b]→ R, E ⊂ [a, b], c = inf E, d = supE. Note that
if F is increasing∗ on E, then V ∗(F ;E) ≤ F (d)− F (c), so F ∈ V B∗ on E.

Lemma 4.1. Let F : R→ R, and let E be a bounded set, c = inf E, d = supE.
The following assertions are equivalent.

(i) F ∈ V B∗ on E;



528 Vasile Ene

(ii) sup
{∑n

i=1 |F (di)− F (ci)| : {[ci, di]}ni=1 is a finite set of nonoverlapping
closed intervals contained in [c, d], {ci, di} ∩ E 6= ∅

}
< +∞;

(iii) sup
{∑n

i=1 ∆F+([ci, di]) : {[ci, di]}ni=1 is a finite set of nonoverlapping
closed intervals contained in [c, d], {ci, di} ∩ E 6= ∅

}
< +∞;

(iv) sup
{∑n

i=1 ∆F−([ci, di]) : {[ci, di]}ni=1 is a finite set of nonoverlapping
closed intervals contained in [c, d], {ci, di} ∩ E 6= ∅

}
< +∞;

(v) There exist F1, F2 : [c, d]→ R increasing∗ on E such that F = F1 − F2.

Proof. (i) ⇒ (ii) Let {[ci, di]}ni=1 be a finite set of nonoverlapping closed
subintervals of [c, d], with {ci, di} ∩ E 6= ∅. Let A1 = {i : ci ∈ E} and
A2 = {i : ci /∈ E}. Suppose that A1 = {i1, i2, . . . , ip}, p ≤ n and ci1 < ci2 <
. . . < cip . Then

∑
i∈A1

∣∣F (di)− F (ci)
∣∣ ≤ p−1∑

k=1

O
(
F ; [cik , cik+1 ]

)
+O

(
F ; [cip , d]

)
≤ V ∗(F ;E) .

Similarly
∑
i∈A2

∣∣F (di)− F (ci)
∣∣ < V ∗(F ;E). Thus

n∑
i=1

∣∣F (di)− F (ci)
∣∣ ≤ 2V ∗(F ;E) 6= +∞

(see [12, p. 229]), so we have (ii).
(ii) ⇒ (iii) and (ii) ⇒ (iv) are evident, because∣∣F (di)− F (ci)

∣∣ = ∆F+
(
[ci, di]

)
+ ∆F−

(
[ci, di]

)
.

(iii) ⇒ (v) Let F1 : [c, d]→ R, F1(c) = 0, and for each x ∈ (c, d], let

F1(x) = sup
{ n∑
k=1

∆F+([ak, bk]) : {[ak, bk]}nk=1 is a finite set of nonoverlapping

closed intervals with {ak, bk} ∩ E 6= ∅ and [ak, bk] ⊂ [c, x]
}
.

Let F2 : [c, d] → R, F2(x) = F1(x) − F (x). Consider x, y ∈ [c, d], x < y with
{x, y} ∩ E 6= ∅. Then

F1(y)− F1(x) ≥ ∆F+
(
[x, y]

)
≥ F (y)− F (x) ,

so F1(y) − F1(x) ≥ 0 and F2(y) − F2(x) ≥ 0. Therefore F1 and F2 are
increasing∗ on E and F = F1 − F2 on [c, d].

(iv) ⇒ (v) The proof is similar to that of (iii) ⇒ (v).
(v)⇒ (i) By Remark 4.1, F1 and F2 are V B∗ on E, so F is V B∗ on E.
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Lemma 4.2. Let F : [a, b] → R, E ⊂ [a, b], c = inf E, d = supE. Then F
is increasing∗ on E if and only if there exist H1, H2 : [c, d] → R increasing
on [c, d] such that H1(x) ≤ F (x) ≤ H2(x) for each x ∈ [c, d], and H1(x) =
H2(x) = F (x) for each x ∈ E.

Moreover, let [p, q] ⊂ [c, d]:

• If p ∈ E, then H1(q) − H1(p) ≤ F (q) − F (p) and H2(q) − H2(p) =
supy∈[p,q] F (y)− F (p).

• If q ∈ E, then H1(q)−H1(p) = F (q)−infy∈[p,q] F (y) and H2(q)−H2(p) ≤
F (q)− F (p).

• If F is continuous and xo ∈ E, then both, H1 and H2 are continuous at
xo.

Proof. “⇒” Let H1, H2 : [c, d]→ R,

H1(x) = inf
y∈[x,d]

F (y) and H2(x) = sup
y∈[c,x]

F (y) .

Clearly H1, H2 are increasing on [c, d] and H1(x) ≤ F (x) ≤ H2(x) for each
x ∈ [c, d] and H1(x) = H2(x) = F (x) for each x ∈ E.

“⇐” Let x, y ∈ [c, d], x < y. If x ∈ E, then F (x) = H1(x) ≤ H1(y) ≤ F (y).
If y ∈ E, then F (y) = H2(y) ≥ H2(x) ≥ F (x). Thus F is increasing∗ on E.

Corollary 4.1. [5, Proposition 2]. Let F : [a, b]→R, E⊂ [a, b], F increasing∗

on E. Then F is derivable a.e. on E. Moreover, if F is V B∗ on E, then F
is derivable a.e. on E.

Corollary 4.2. Let F : [a, b] → R, E ⊂ [a, b]. If F is increasing∗ on E and
F is continuous at each point of E, then

µ∗F (E) = m∗
(
F (E)

)
.

Proof. Let for example H1 : [a, b] → R be the function defined in Lemma
4.2. Then by Lemma 3.3 and Lemma 3.4 we obtain

µ∗F (E) = µ∗H1
(E) = m∗

(
H1(E)

)
= m∗

(
F (E)

)
.

Lemma 4.3. Let F : [a, b]→ R and E ⊂ [a, b] such that DF (x) > 0 for each
x ∈ E. Then F is increasing∗G on E.
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Proof. Let

En =
{
x ∈ E :

F (t)− F (x)
t− x

> 0 , 0 < |t− x| ≤ 1
n

}
, n = 1, 2, . . . .

Let Eni = [ in ,
i+1
n ] ∩ En, i = 0,±1,±2, . . .. Then E = ∪Eni and F is

increasing∗ on each Eni.

5 The Denjoy-Lusin-Saks Theorem and an Extension of
Two Theorems of Thomson

Definition 5.1. [5, p. 415] Let ω, F : [a, b] → R, ω strictly increasing on
[a, b]. We define the lower and upper derivatives of F with respect to ω at a
point x ∈ [a, b] as by

DωF (x) = lim inf
y→x

F (y)− F (x)
ω(y)− ω(x)

and DωF (x) = lim sup
y→x

F (y)− F (x)
ω(y)− ω(x)

.

F is said to be derivable with respect to ω at x if DωF (x) = DωF (x) ∈ R.
The derivative with respect to ω of F at x will be their common value and
will be denoted by F ′ω(x).

Definition 5.2. [5, p. 416] Let F : [a, b] → R. A set E ⊂ [a, b] is said to be
F -null if E = C ∪N , with C an at most countable set and µ∗F (N) = 0. If F
is the identity function, then the set E is said to be m-null.

Lemma 5.1. Let F : [a, b]→ R, E ⊂ [a, b], c = inf E, d = supE. If F is V B∗

on E, then there exists a strictly increasing function H : [c, d] → R such that
µ∗F (A) ≤ µ∗H(A), whenever A ⊂ (c, d) ∩ E. Particularly, if A ⊆ E is H-null,
then A is F -null.

Proof. By Lemma 4.1 there exist F1, F2 : [c, d]→ R such that F = F1 − F2

and F1, F2 are increasing∗ on E. Let G : [c, d]→ R, G = F1 + F2. Then G is
increasing∗ on E and for x, y ∈ [c, d] with x < y and {x, y} ∩ E 6= ∅ we have∣∣F (y)− F (x)

∣∣ ≤ F1(y)− F1(x) + F2(y)− F2(x) = G(y)−G(x) .

By Lemma 4.2 there exist two increasing functions H1, H2 : [c, d] → R such
that H1(t) ≤ G(t) ≤ H2(t) for t ∈ [c, d] and H1(t) = H2(t) = G(t) for t ∈ E.
Let H : [c, d]→ R, H(t) = H1(t) +H2(t) + t. If x ∈ E, then∣∣F (y)− F (x)

∣∣ ≤ G(y)−G(x) ≤ H2(y)−H2(x) < H(y)−H(x) .
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If y ∈ E, then∣∣F (y)− F (x)
∣∣ ≤ G(y)−G(x) ≤ H1(y)−H1(x) < H(y)−H(x) .

Thus ∣∣F (y)− F (x)
∣∣ < H(y)−H(x) . (1)

Let A ⊂ (c, d) ∩ E. By (1) it follows immediately that µ∗F (A) ≤ µ∗H(A).
We show the second part. Let D = {x ∈ (c, d) ∩ E : H is discontinuous

at x}. By (1), F is continuous on E \D. Thus, if A ⊆ E is H-null, then A is
also F -null.

Lemma 5.2. Let ω, F : [a, b] → R, E ⊂ [a, b], ω strictly increasing on [a, b]
and F ∈ V B∗ on E. Then there exists a set A ⊂ E such that F is derivable
with respect to ω on E \A, and A is an ω-null set.

Proof. Let c = inf E, d = supE. Since F ∈ V B∗ on E, it follows that
F ∈ V B∗ on E (see [12, p. 229]). We may suppose without loss of generality
that F is increasing∗ on E (see Lemma 4.1). Then this is [5, Proposition
4].

Lemma 5.3 (Faure). [5] Let ω, F : [a, b] → R, ω strictly increasing. If
F ′ω(x) = 0 on A ⊂ [a, b], then µ∗F (A) = 0.

Lemma 5.4. Let ω, F : [a, b] → R, ω strictly increasing, E ⊂ [a, b]. If
F ∈ V B∗ on E, then the set A = {x ∈ E : DωF (x) 6= DωF (x)} is F -null.
Thus F ′ω(x) exists (finite or infinite) on E \A.

Proof. By Lemma 5.1, for F there is a strictly increasing function H :
[c, d] → R, c = inf E, d = supE, such that if B ⊆ E is H-null, then B is
also F -null. Then the proof continues as in [5, Proposition 6].

Theorem 5.1. (An extension of Thomson’s Theorems 44.1 and 44.2 of [13]).
Let ω, F : [a, b] → R, ω strictly increasing, and let E ⊂ [a, b]. If F ∈ V B∗G
on E, then F ′ω(x) exists and is finite on E except an ω-null set A , and F ′ω(x)
exists (finite or infinite) on E except a F -null subset B of A.

Proof. The first part follows by Lemma 5.2. The second part follows by
Lemma 5.4 and the fact that the union of countable many ω-null sets is also
an ω-null set.

Lemma 5.5. Let Z be a subset of [a, b] such that m∗(Z) = µ∗F (Z) = 0. Then
Λ(B(F ;Z)) = 0.
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Proof. Note that m∗(Z) = µ∗ω(Z), where ω is the identity function. Let
ε > 0. Since m∗(Z) = µ∗F (Z) = 0, there exists δ : Z → (0,+∞) such that
V ∗δ (ω,Z) < ε

4 and V ∗δ (F,Z) < ε
4 . By the covering lemma of [9, p. 143], there

exists a sequence
{

(〈xi, yi〉, xi)
}
i
⊂ β∗δ (Z) such that

{
(〈xi, yi〉, xi)

}n
i=1

is a
partition for all n and Z ⊂ ∪i〈xi, yi〉. For each i let ci = inf F

(
〈xi, yi〉

)
and

di = supF
(
〈xi, yi〉

)
. Then we have

B(F,Z) ⊂ ∪i
(
〈xi, yi〉 × [ci, di]

)
.

For each i let zi ∈ 〈xi, yi〉 such that di − ci < 3
∣∣F (zi)− F (xi)

∣∣. Clearly

diam
(
〈xi, yi〉 × [ci, di]

)
< |yi − xi|+ 3

∣∣F (zi)− F (xi)
∣∣

and ∑
i

diam
(
〈xi, yi〉 × [ci, di]

)
≤ V ∗δ (ω,Z) + 3V ∗δ (F,Z) < ε .

It follows that Λ
(
B(F,Z)

)
≤ ε, and Λ

(
B(F,Z)

)
= 0 since ε is arbitrary.

Remark 5.1. Lemma 5.5 is asserted by Faure in [5, p. 417] without proof.

Lemma 5.6. Let F : [a, b]→ R, and let Z be a subset of [a, b] with m∗(Z) = 0,
such that F ∈ V B∗G on Z. Then the following assertions are equivalent.

(i) Z is F -null.

(ii) Λ
(
B(F ;Z)

)
= 0.

(iii) m∗(F (Z)) = 0.

Proof. (i) ⇒ (ii) See Lemma 5.5 and note that Λ(B(F ;A)) = 0 whenever A
is a countable set.

(ii) ⇒ (iii) This is evident (see for example [12, p. 269] or [6, p. 31]).
(iii) ⇒ (i) Let D = {x ∈ Z : F is discontinuous at x}. By [3, Theorem 8],

it follows that µ∗F (Z \D) = 0. Thus Z is F -null.

Corollary 5.1. Let F : [a, b]→ R, and let E be a subset of [a, b] such that F
is V B∗G on E. Let Z = {x ∈ E : F ′(x) does not exist (finite or infinite)}.
Then:

(i) F is derivable a.e. on E;

(ii) Z is F -null;
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(iii) Λ
(
B(F ;Z)

)
= 0;

(iv) m∗(F (Z)) = 0.

Moreover, (ii), (iii) and (iv) are equivalent.

Proof. (i), (ii) follow from Theorem 5.1. The other parts follow by Lemma 5.6.

Remark 5.2.
Corollary 5.1, (i) is identic with Thomson’s Theorem 44.1 of [13, p. 103].
Corollary 5.1, (ii) extends Thomson’s Theorem 44.2 of [13, p. 104]. (Note
that F is not assumed to be continuous.)
Corollary 5.1, (i), (iii) is in fact Theorem A. Since for continuous functions,
this result has been proved independently by Denjoy and Lusin [12], we call
it the Denjoy-Lusin-Saks Theorem.

6 The Denjoy-Young-Saks Theorem

Theorem 6.1 (Denjoy-Young-Saks). ([5, Theorem 7] Let ω, F : [a, b]→ R, ω
strictly increasing. Let

• E1 = {x : F is derivable with respect to ω};

• E2 = {x : DωF (x) = −∞ and DωF (x) = +∞};

• E3 = {x : DωF (x) = DωF (x) = ±∞};

• E4 = [a, b] \ (E1 ∪ E2 ∪ E3).

Then

(i) [a, b] \ (E1 ∪ E2) is ω-null and contains E3, so E3 is ω-null.

(ii) E4 is both ω-null and F -null.

Proof. The proof follows from Theorem 5.1 as in [5, p. 417].

Corollary 6.1. Let F : [a, b]→ R. Let

• E1 = {x : F is derivable at x};

• E2 = {x : DF (x) = −∞ and DF (x) = +∞};

• E3 = {x : DF (x) = DF (x) = ±∞};
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• E4 = [a, b] \ (E1 ∪ E2 ∪ E3).

Then

(i) [a, b] \ (E1 ∪ E2) is m-null and contains E3, so E3 is m-null;

(ii) E4 is both m-null and F -null.

Moreover, (ii) may be replaced by “Λ(B(F ;E4)) = 0”, or by “m∗(F (E4)) = 0”.

Proof. (i) and (ii) follow by Theorem 6.1 with ω the identity function.
We show the second part. Since E4 ⊂ [a, b] \ E2, it follows that F is

V B∗G on E4 (see [12, p. 234]). Since E4 is m-null, the assertion follows by
Lemma 5.6.

7 Extensions of Theorem B and Theorem C of
de la Vallée Poussin

Theorem 7.1. Let F : R → R, and let E ⊂ R. If F is increasing on [a, b]
and F is constant on (−∞, a] and on [b,+∞), then µ∗F (E) = F ∗(E).

Proof. Let D = {x ∈ E : F is discontinuous at x}. Then D is countable.
Suppose that D = {d1, d2, . . . , di, . . .}. By Lemma 2.1, (vi) and Lemma 3.1,
(iv) we have

F ∗(D) =
∑
i

F ∗
(
{di}

)
=
∑
i

µ∗F
(
{di}

)
= µ∗F (D) .

The set D being Borel measurable, by Lemma 2.1, (ii), (vii) and Lemma 3.1,
(ii), (iii), it follows that

F ∗(E) = F ∗(D) + F ∗(E \D) = µ∗F (D) + µ∗F (E \D) = µ∗F (E) .

Corollary 7.1. Let F : R → R, and let E ⊂ R. Suppose that F is V B on
[a, b] and F is constant on (−∞, a] and on [b,+∞).

(i) µ∗F (E) = µ∗VF
(E) = V ∗F (E) = V

∗
F (E) + V ∗F (E) ;

(ii) If µ∗F (E) = 0, then V ∗F (E) = V
∗
F (E) = V ∗F (E) = F ∗(E) = µ∗

V F
(E) =

µ∗V F
(E) = 0.

Proof. (i) follows from Lemma 3.1, (v), Theorem 7.1 and Lemma 2.2, and
(ii) is evident.
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Corollary 7.2 (Theorem B). Let F : R → R, F ∈ V B on [a, b], F constant
on (−∞, a] and on [b,+∞). Let Z = {x ∈ [a, b] : F is continuous at x and
F ′(x) does not exist (finite or infinite)}. Then we have

F ∗(Z) = V ∗F (Z) = µ∗F (Z) = m∗(Z) = 0 = Λ
(
B(F ;Z)

)
= 0 .

Proof. For m∗(Z) = µ∗F (Z) = Λ(B(F ;Z)) = 0 see Corollary 5.1, (i), (ii),
(iii). That V ∗F (Z) = F ∗(Z) = 0 follows now by Corollary 7.1.

Lemma 7.1. Let F : R → R, a ≤ c < d ≤ b. Suppose that F is constant on
(−∞, a] and on [b,+∞). Then:

(i) V F (d)− V F (c) ≤ V
(
F ; [c, d]

)
≤ V

(
F ; [c, d]

)
= VF (d)− VF (c);

(ii) Let E ⊂ [a, b] such that [c, d] ⊂ [inf E, supE]. If {(ci, di)}∞i=1 are the
intervals contiguous to

(
E∩[c, d]

)
∪{c, d} and F is decreasing∗ on E, then

V
(
F ; [c, d]

)
≤
∑
i V
(
F ; [ci, di]

)
, so V F (d)− V F (c) ≤

∑
i V
(
F ; [ci, di]

)
.

Proof. (i) Let {[αj , βj ]}nj=1 be a finite set of nonoverlapping closed intervals
contained in [a, d]. Suppose that α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αn < βn and
c ∈ (αjo , βjo) (the case c /∈ (αj , βj), j = 1, 2, . . . , n is easier). Then

n∑
j=1

(
F (βj)− F (αj)

)
=
jo−1∑
j=1

(
F (βj)− F (αj)

)
+ F (c)− F (αjo)+

+F (βjo)− F (c) +
n∑

j=jo+1

(
F (βj)− F (αj)

)
≤ V F (c) + V

(
F ; [c, d]

)
.

It follows that V F (d)− V F (c) ≤ V
(
F ; [c, d]

)
. The other parts are evident.

(ii) Let {[ak, bk]}mk=1 be a finite set of nonoverlapping closed intervals con-
tained in [c, d]. Clearly if [α, β]∩E 6= ∅ and [α, β] ⊂ [c, d], then F (β)−F (α) ≤
0. Let

A =
{
k ∈ {1, 2, . . . ,m} : F (bk)− F (ak) > 0

}
.

Then for each k ∈ A, [ak, bk] ∩ E = ∅, so [ak, bk] ⊂ [cik , dik ] for some ik. We
also have that

m∑
k=1

(
F (bk)− F (ak)

)
≤
∑
k∈A

(
F (bk)− F (ak)

)
≤
∑
i

V
(
f ; [ci, di]

)
.
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Lemma 7.2. Let F : [a, b] → R, F ∈ V B on [a, b], and let E ⊂ [a, b] such
that F is continuous at each point of E. If F is decreasing∗ on E, then
µ∗
V F

(E) = 0. Consequently, if F is decreasing∗G on E, then µ∗
V F

(E) = 0,
and if F is increasing∗G on E, then µ∗V F

(E) = 0.

Proof. Let c = inf E, d = supE, and let {(ci, di)}∞i=1 be the intervals con-
tiguous to E (for i = 1, 2, . . . , n the proof is easier). It is well known that VF
is continuous at each x ∈ E. Thus by Lemma 7.1, (i), V F is continuous at
such a x. It follows that

µ∗
V F

(
E ∩

(
∪∞i=1{ci, di} ∪ {c, d}

))
= 0 ,

so we may suppose without loss of generality that E contains neither ci or di,
nor c or d. Since

∑∞
i=1 V (F ; [ci, di]) < V (F ; [a, b]), for ε > 0 there is an io

such that
∞∑
i=io

V
(
F ; [ci, di]

)
< ε .

Let G = (c, d) \ ∪io−1
i=1 [ci, di]. Clearly E ⊂ G. Let δ : E → (0,+∞) be such

that
(
x − δ(x), x + δ(x)

)
⊂ G. Let π =

{(
〈xj , yj〉, xj

)}p
j=1
⊂ β∗δ (E) be a

partition. We may suppose without loss of generality that xj < yj for each
j = 1, 2, . . . , p. By Lemma 7.1, we have that

p∑
j=1

(
V F (yj)− V F (xj)

)
≤
∞∑
i=io

V
(
F ; [ci, di]

)
< ε .

In general, it follows that V ∗δ (V F ;E) ≤ 2ε; so µ∗
V F

(E) ≤ 2ε. Since ε is
arbitrary, we obtain that µ∗

V F
(E) = 0.

The second part follows from the fact that, if F is increasing∗G on E, then
−F is decreasing∗G on E and V F (x) = V −F (x).

Corollary 7.3. Let F : [a, b]→ R, be a V B function, and let E ⊂ [a, b] such
that F is continuous at each point of E. If F is increasing∗G on E, then

F ∗(E) = V ∗F (E) = µ∗F (E) = V
∗
F (E) .

Moreover, if F is decreasing∗G on E, then

−F ∗(E) = V ∗F (E) = µ∗F (E) = V ∗F (E) .

Proof. See Lemma 7.2 and Corollary 7.1, (i).
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Theorem 7.2. Let F : [a, b]→ R be a V B function. Let

Z =
{
x ∈ [a, b] : F ′(x) does not exist (finite or infinite)

}
;

E+∞ =
{
x ∈ [a, b] : F ′(x) = +∞

}
;

E0 =
{
x ∈ [a, b] : F ′(x) = 0

}
;

E−∞ =
{
x ∈ [a, b] : F ′(x) = −∞

}
;

P =
{
x ∈ [a, b] : F ′(x) ∈ (0,+∞)

}
;

N =
{
x ∈ [a, b] : F ′(x) ∈ (−∞, 0)

}
.

Then we have:

(i) µ∗
V F

(Z) = µ∗
V F

(E0) = µ∗
V F

(E−∞) = µ∗
V F

(N) = 0;

(ii) µ∗V F
(Z) = µ∗V F

(E0) = µ∗V F
(E+∞) = µ∗V F

(P ) = 0;

(iii) µ∗
V F

(E∩P ) = µ∗VF
(E∩P ) = V ∗F (E∩P ) = µ∗F (E∩P ) = (L)

∫
E∩P F

′(t) dt,
whenever E is a Lebesgue measurable subset of [a, b];

(iv) µ∗V F
(E∩N)=µ∗VF

(E∩N)=V ∗F (E∩N)=µ∗F (E∩N)=−(L)
∫
E∩N F

′(t) dt,
whenever E is a Lebesgue measurable subset of [a, b];

(v) V
∗
F (E) = µ∗

V F
(E) = µ∗

V F
(E ∩ E+∞) + (L)

∫
E∩P F

′(t) dt, whenever E is
a Lebesgue measurable subset of [a, b] and F is continuous at each point
of E;

(vi) V ∗F (E) = µ∗V F
(E) = µ∗V F

(E ∩E−∞) + (L)
∫
E∩N F

′(t) dt, whenever E is
a Lebesgue measurable subset of [a, b] and F is continuous at each point
of E;

(vii) F ∗(E) = F ∗(E ∩E+∞) +F ∗(E ∩E−∞) + (L)
∫
E
F ′(t) dt, whenever E is

a Lebesgue measurable subset of [a, b] and F is continuous at each point
of E;

(viii) V ∗F (E) = F ∗(E ∩ E+∞) +
∣∣F ∗(E ∩ E−∞)

∣∣ + (L)
∫
E
|F ′(t)| dt, whenever

E is a Lebesgue measurable subset of [a, b] and F is continuous at each
point of E;

(ix) V ∗F ([a, b] \ A) = m∗([a, b] \ A) = 0, where A = {x ∈ [a, b] : V ′F (x) =
|F ′(x)|, F is continuous at x}.
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Proof. Note that F satisfies Lusin’s condition (N) on E0 ∪P ∪N (see [12]).
(i) By Corollary 7.2, µ∗F (Z) = 0, and by Lemma 5.3, µ∗F (E0) = 0. It

follows that µ∗
V F

(Z) = µ∗F (E0) = 0 (see Corollary 7.1, (ii)). By Lemma 4.3,
F is decreasing∗G on E−∞ ∪N so by Lemma 7.2 we have that µ∗

V F
(E−∞) =

µ∗
V F

(N) = 0.

(ii) The proof follows by (i), because µ∗V F
= µ∗

V −F
.

(iii) By Lemma 3.2 we have µ∗F (E ∩P ) = (L)
∫
E∩P F

′(t) dt, and by Corol-
lary 7.1, (i) it follows that

µ∗F (E ∩ P ) = µ∗VF
(E ∩ P ) = µ∗

V F
(E ∩ P ) + µ∗V F

(E ∩ P ) = µ∗
V F

(E ∩ P )

(see also (ii)).
(iv) The proof is similar to that of (iii).
(v) That V

∗
F (E) = µ∗

V F
(E) follows by Theorem 7.1. Since Z ∪E+∞∪E0∪

E−∞ ∪ P ∪N = [a, b] and because Z, E+∞, E0, E−∞, P and N are all Borel
sets (so µ∗

V F
-measurable), Lemma 3.1, (ii) and by (i) and (iii) above, it follows

that

µ∗
V F

(E) = µ∗
V F

(E ∩ Z) + µ∗
V F

(E ∩ E+∞) + µ∗
V F

(E ∩ E0)

+µ∗
V F

(E ∩ E−∞) + µ∗
V F

(E ∩ P ) + µ∗
V F

(E ∩N)

= µ∗
V F

(E ∩ E+∞) + µ∗
V F

(E ∩ P )

= µ∗
V F

(E ∩ E+∞) + (L)
∫
E∩P

F ′(t) dt .

(vi) The proof is similar to that of (v).
(vii) We have

F ∗(E) = V
∗
F (E)− V ∗F (E) = V

∗
F (E ∩ E+∞)

+ (L)
∫
E∩P

F ′(t) dt− V ∗F (E ∩ E−∞) + (L)
∫
E∩N

F ′(t) dt

= F ∗(E ∩ E+∞) + F ∗(E ∩ E−∞) + (L)
∫
E∩(P∪N∪E0)

F ′(t) dt

= F ∗(E ∩ E+∞) + F ∗(E ∩ E−∞) + (L)
∫
E

F ′(t) dt

(see (ii), (i) and the facts that (L)
∫
E0
F ′(t) dt = 0 andm

(
E\(P∪N∪E0)

)
= 0).



Thomson’s Variational Measure and Some Classical Theorems539

(viii) By Corollary 7.1, (i) we have:

V ∗F (E) = V
∗
F (E) + V ∗F (E) = V

∗
F (E ∩ E+∞)

+ (L)
∫
E∩P

F ′(t) dt+ V ∗F (E ∩ E−∞) + (L)
∫
E∩N

|F ′(t)| dt

= F ∗(E ∩ E+∞) +
∣∣F ∗(E ∩ E−∞)

∣∣+ (L)
∫
E

|F ′(t)| dt

(see (ii) and (i)).
(ix) By [11, Theorem, p. 15] it follows that V ′F (x) = |F ′(x)| ∈ [0,+∞) a.e.

on [a, b], so m∗
(
[a, b] \A

)
= 0. By (viii), we have

V ∗F
(
[a, b] \A

)
= F ∗

((
[a, b] \A

)
∩ E+∞

)
+ F ∗

((
[a, b] \A

)
∩ E−∞

)
.

If x ∈ E+∞, then F ′(x) = +∞, so V ′F (x) = +∞. Hence x ∈ A, and so(
[a, b] \ A

)
∩ E+∞ = ∅. Similarly

(
[a, b] \ A

)
∩ E−∞ = ∅. It follows that

V ∗F
(
[a, b] \A

)
= 0.

Remark 7.1. Theorem 7.2, (vii), (viii), (ix) strictly contains Theorem C,
because in (vii) and (viii) the set E is not only Borel but also Lebesgue mea-
surable. Note also in order to prove Theorem C, Saks uses the Lebesgue De-
composition Theorem [12, p. 119], whereas our proof does not use this decom-
position; it is instead essentially based on Theorem 8.2 of [4] (see Lemma 3.2).

8 A de la Vallée Poussin Type Theorem for VB∗G
Functions (An Extension of a Theorem of Thomson)

Lemma 8.1 (Thomson). [13, Lemma 42.1]. Let F : [a, b] → R, E ⊂ [a, b].
Then µ∗F (Eo) = 0, where Eo = {x ∈ [a, b] : F ′(x) = 0}.

Definition 8.1. With the notations of Definition 3.1, let:

• V ∗δ(F ;E) = sup
{∑n

i=1 ∆F+
(
〈xi, yi〉

)
: π =

{(
〈xi, yi〉, xi

)}n
i=1

is a
partition, π ⊂ β∗δ (E)

}
;

• V ∗δ(F ;E) = sup
{∑n

i=1 ∆F−
(
〈xi, yi〉

)
: π =

{(
〈xi, yi〉, xi

)}n
i=1

is a
partition, π ⊂ β∗δ (E)

}
;

• µ∗F (E) = infδ V
∗
δ(F ;E);

• µ∗
F

(E) = infδ V ∗δ(F ;E);
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Lemma 8.2. Let F : R→ R, E ⊂ R. Then we have:

(i) µ∗F (E) ≤ µ∗F (E);

(ii) µ∗
F

(E) ≤ µ∗F (E);

(iii) µ∗F (E) ≤ µ∗F (E) + µ∗
F

(E).

Proof. All assertions follow from the equality∣∣F (y)− F (x)
∣∣ = ∆F+

(
[x, y]

)
+ ∆F−

(
[x, y]

)
.

Lemma 8.3. Let F : [a, b] → R. Then µ∗F (E) = µ∗F (E) whenever E ⊂ {x ∈
[a, b] : F ′(x) ∈ [0,+∞]}.
Proof. We always have µ∗F (E) ≥ µ∗F (E). We show the converse inequality.
Let P = {x ∈ [a, b] : F ′(x) ∈ (0,+∞]}, A ⊂ P and let η : A→ (0,+∞) such
that

F (y)− F (x)
y − x

> 0 whenever y ∈
(
x− η(x), x+ η(x)

)
\ {x} .

Let δ : A → (0,+∞), and let δ1(x) = min{δ(x), η(x)} for each x ∈ A. If(
[x, y], x) or ([x, y], y) ∈ β∗δ1(A), then 0 < F (y) − F (x) = ∆F+([x, y]). It

follows that (〈x, y〉, x) ∈ β∗δ1(A) and ∆F+(〈x, y〉) = |F (y)− F (x)|. Hence

µ∗F (A) ≤ V ∗δ1(F ;A) = V
∗
δ1(F ;A) ≤ V ∗δ(F ;A) .

Therefore µ∗F (A) ≤ µ∗F (A). Now we obtain

µ∗F (E) ≤ µ∗F (E ∩ P ) + µ∗F (E ∩ E0) = µ∗F (E ∩ P ) ≤ µ∗F (E ∩ P ) ≤ µ∗F (E) ,

where E0 = {x ∈ [a, b] : F ′(x) = 0}.

Lemma 8.4. Let F : [a, b]→ R. Then µ∗F (E) = 0 whenever E ⊂ {x ∈ [a, b] :
F ′(x) ∈ [−∞, 0]}.
Proof. Let N = {x ∈ [a, b] : F ′(x) ∈ [−∞, 0)}, A ⊂ N , and let δ : A →
(0,+∞) such that

F (y)− F (x)
y − x

< 0 whenever y ∈
(
x− δ(x), x+ δ(x)

)
\ {x} .

If ([x, y], x) or ([x, y], y) ∈ β∗δ (A), then F (y) − F (x) < 0; so ∆F+([x, y]) = 0.
It follows that µ∗F (A) ≤ V ∗δ(F ;A) = 0, so µ∗F (A) = 0. Now we obtain that

µ∗F (E) ≤ µ∗F (E ∩N) + µ∗F (E ∩ E0) ≤ 0 + µ∗F (E ∩ E0) = 0 + 0 = 0 ,

where E0 = {x ∈ [a, b] : F ′(x) = 0}.
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Theorem 8.1. (An extension of Theorem 46.3 of [13, p. 107]).
Let F : R → R, and let E ⊂ R such that F is continuous at each point of
E and F ∈ V B∗G on E. Let E+∞ = {x : F ′(x) = +∞}, E−∞ = {x :
F ′(x) = −∞}, D = {x : F ′(x) ∈ (−∞,+∞)}, P = {x : F ′(x) = (0,+∞)},
N = {x : F ′(x) = (−∞, 0)}. Then we have:

(i) µ∗F (E) = µ∗F (E ∩ E+∞) + µ∗F (E ∩ E−∞) + µ∗F (E ∩ P ) + µ∗F (E ∩ N) =
µ∗F (E ∩ E+∞) + µ∗F (E ∩ E−∞) + µ∗F (E ∩D);

(ii) µ∗F (E) = µ∗F (E ∩ E+∞) + µ∗F (E ∩ P );

(iii) µ∗
F

(E) = µ∗F (E ∩ E−∞) + µ∗F (E ∩N).

Therefore µ∗F (E) = µ∗F (E) + µ∗
F

(E).
Moreover, if E is Lebesgue measurable, then

(iv) µ∗F (E) = µ∗F (E ∩ E+∞) + µ∗F (E ∩ E−∞) + (L)
∫
E∩D |F

′(t)| dt ;

(v) µ∗F (E) = µ∗F (E ∩ E+∞) + (L)
∫
E∩P F

′(t) dt ;

(vi) µ∗
F

(E) = µ∗F (E ∩ E−∞)− (L)
∫
E∩N F

′(t) dt ,

Proof. Let E0 = {x ∈ E : F ′(x) = 0} and Z = {x ∈ E : F ′(x) does not
exist (finite or infinite)}. The sets Z, E0, E+∞, E−∞, D, P , N are all Borel
(see Hajek’s Theorem of [1, p. 57]).

(i) Since Z ∪ E+∞ ∪ E+∞ ∪D = R, we obtain

µ∗F (E) = µ∗F (E ∩ Z) + µ∗F (E ∩ E+∞) + µ∗F (E ∩ E−∞) + µ∗F (E ∩D)
= µ∗F (E ∩ E+∞) + µ∗F (E ∩ E−∞) + µ∗F (E ∩D)

by Lemma 3.1, (ii), and Corollary 5.1, (ii). Since D = Eo ∪ P ∪N , we obtain

µ∗F (E ∩D) = µ∗F (E ∩ Eo) + µ∗F (E ∩ P ) + µ∗F (E ∩N)
= µ∗F (E ∩ P ) + µ∗F (E ∩N)

by Lemma 3.1, (ii), and Lemma 8.1.
(ii)1 Since Z ∪ E+∞ ∪ P ∪ (Eo ∪N ∪ E−∞) = R, we obtain

µ∗F (E) = µ∗F (E∩Z)+µ∗F (E∩E+∞)+µ∗F (E∩P )+µ∗F
(
E∩(Eo∪N∪E−∞)

)
= µ∗F (E ∩ Z) + µ∗F (E ∩ E+∞) + µ∗F (E ∩ P )

by Lemma 3.1, (ii), Lemma 8.3 and Lemma 8.4. And we have

0 ≤ µ∗F (E ∩ Z) ≤ µ∗F (E ∩ Z) = 0
1The proof of Theorem 8.1, (ii) uses that µ∗F is a metric outer measure.
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by Lemma 8.2, (i), and Corollary 5.1, (ii).
(iii) The proof is similar to that of (ii).
(iv), (v) and (vi) follow by Lemma 3.2.

9 Characterizations of VB∗G ∩ (N) for Lebesgue
Measurable Functions

Corollary 9.1. Let F : [a, b]→ R and let E be a Lebesgue measurable subset
of [a, b]. The following assertions are equivalent.

(i) F ∈ V B∗G ∩ (N) on E.

(ii) F ∈ V B∗G ∩ (N) on Z, whenever Z is a null subset of E.

(iii) There exists a countable subset E1 of E such that µ∗F (Z) = 0, whenever
Z is a null subset of E \ E1.

(iv) Z is F -null whenever Z is a null subset of E.

Proof. For (i) ⇔ (ii) ⇔ (iii) see [3, Theorem 9] and (iii) ⇒ (iv) is evident.
(iv)⇒ (ii) Let Z be a null subset of E. Then Z is F -null, so by Lemma 5.6,

m(F (Z)) = 0. It follows that F ∈ (N) on Z. For Z there is a countable set
D such that µ∗F (Z \D) = 0. By [13, Theorem 40.1], F is V B∗G on Z \D, so
on Z.

10 A Characterization of VB∗G ∩N+∞ on a Lebesgue

Measurable Set

Definition 10.1 (Saks). [2, p. 79] Let F : R → R. F is said to be N+∞ on
a real set E if the set

(
{x ∈ E : (F|E)′(x) = +∞}

)
is of Lebesgue measure

zero.

Lemma 10.1. Let F : R → R, and let E ⊂ R such that F is V B∗G on E.
Let E+∞ = {x : F ′(x) = +∞}. Then the following assertions are equivalent.

(i) F is N+∞ on E.

(ii) m∗
(
F (E ∩ E+∞)

)
= 0.

Proof. (i)⇒ (ii) Let E1 = {x ∈ E : x is an accumulation point for E}. Then
E \ E1 is at most countable and E1 ∩ E+∞ ⊂ {x ∈ E : (F|E)′(x) = +∞}.

(ii)⇒ (i) Let Z = {x ∈ E : F ′(x) does not exist (finite or infinite)}. Then
we have {x ∈ E : (F|E)′(x) = +∞} ⊂ Z ∪ E+∞, and (i) follows because
m∗
(
F (E ∩ Z)

)
= 0 by Corollary 5.1, (iv).
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Lemma 10.2. Let F : R→ R and E ⊂ R. If µ∗F (E) < +∞, then F ∈ V B∗G
on E.

Proof. Suppose that µ∗F (E) = M < +∞. For ε = 1 there is a δ : E →
(0,+∞) such that V

∗
δ(F ;E) < M + 1. Let

En =
{
x : δ(x) >

1
n

}
and Eni = En ∩

[ i
n
,
i+ 1
n

]
, i = 0,±1,±2, . . . .

If Eni is countable, then F is V B∗G on this set. Fix some uncountable set Eni
and let cni = inf Eni, dni = supEni. We show that F ∈ V B(Eni; [cni, dni])
(for the definition see [2, Definition 2.7.1]). Let {[ck, dk]}pk=1 be a finite set of
nonoverlapping closed intervals such that {ck, dk} ∩ Eni 6= ∅. Clearly, if ck ∈
Eni, then

(
[ck, dk], ck

)
∈ β∗δ (E), and if dk ∈ Eni, then

(
[ck, dk], dk

)
∈ β∗δ (E).

It follows that
p∑
k=1

(
F (dk)− F (ck)

)
≤

p∑
k=1

∆F+
(
[ck, dk]

)
< V

∗
δ(F ;E) < M + 1 .

Thus F ∈ V B(Eni; [cni, dni]). By [2, Theorem 2.8.1, (xii), (i)], we obtain that
F ∈ V B∗ on Eni; so F ∈ V B∗G on E.

Theorem 10.1. Let F : R → R and let E be a Lebesgue measurable subset
of R. Let E+∞ = {x : F ′(x) = +∞}. Then the following assertions are
equivalent.

(i) F ∈ V B∗G ∩N+∞ on E.

(ii) there exists a countable subset E1 of E such that µ∗F (Z) = 0 whenever
Z ⊂ E \ E1 and m∗(Z) = 0.

Proof. (i) ⇒ (ii) Since F is V B∗G on E, there exists a countable set E1

such that F is continuous at each point of E \ E1 (see [12]). Let Z ⊂ E \ E1

with m∗(Z) = 0. Then we have

µ∗F (Z) = µ∗F (Z ∩ E+∞) = m∗(F (Z ∩ E+∞)) = 0

by Theorem 8.1, (v), Lemma 5.6, (i), (iii) and Lemma 10.1.
(ii) ⇒ (i) By Corollary 5.1, (i), m∗(E+∞) = 0, and by Lemma 8.3, we

obtain that

µ∗F
(
(E ∩ E+∞) \ E1

)
= µ∗F

(
(E ∩ E+∞) \ E1

)
= 0 .

It follows that m∗
(
F (E ∩ E+∞)

)
= 0 (see Lemma 3.1, (vi)); so F is N+∞ on

E (see Lemma 10.1). Let Z ⊂ E \ E1 with m∗(Z) = 0. Since µ∗F (Z) = 0, by
Lemma 10.2, it follows that F ∈ V B∗G on Z. Hence F ∈ V B∗G on E \ E1,
so on E (see [3, Theorem 1]).
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Lemma 10.3. Let F,G : R→ R, E ⊂ R, α, β ≥ 0. Then

µ∗αF+βG(E) ≤ α · µ∗F (E) + β · µ∗G(E) .

Proof. From ∆(αF + βG)+
(
[x, y]

)
≤ α · ∆F+

(
[x, y]

)
+ β · ∆G+([x, y]

)
it

follows immediately that µ∗αF+βG(E) ≤ α · µ∗F (E) + β · µ∗G(E) .

Corollary 10.1. Let E ⊂ R be a Lebesgue measurable set. Let

A =
{
F : R→ R : F ∈ V B∗G ∩N+∞ on E

}
.

Then A is a semi-linear subspace, i.e., α1F1 +α2F2 ∈ A, whenever α1, α2 ≥ 0
and F1, F2 ∈ A.

Proof. Let α1, α2 ≥ 0 and F1, F2 ∈ A. Clearly α1F1 + α2F2 ∈ V B∗G.
By Theorem 10.1, there exist two countable subsets E1, E2 of E such that
µ∗F (Z1) = 0 whenever Z1 = E\E1 and m∗(Z1) = 0, and µ∗F2

(Z2) = 0 whenever
Z2 ⊂ E \ E2 and m∗(Z2) = 0. Let Z ⊂ E \ (E1 ∪ E2) with m∗(Z) = 0. Then
µ∗F1

(Z) = µ∗F2
(Z) = 0. By Lemma 10.3, µ∗α1F1+α2F2

(Z) = 0; so by Theorem
10.1 we obtain that α1F1 + α2F2 ∈ A.

Corollary 10.2. Let E ⊂ R be a Lebesgue measurable set and let

A1 =
{
F : R→ R : F ∈ V B∗G on E and m

(
F (E ∩{x : F ′(x) = ±∞})

)
=0
}
.

Then A1 is a linear space.

Proof. Let A be defined as in Corollary 10.1. If F ∈ A1, then F and −F
belong to A. Applying Corollary 10.1 and Lemma 10.1, it follows that A1 is
a linear space.

Remark 10.1. Note that A1 = {F : R → R : F ∈ V B∗G ∩ (N) on E}.
This follows by Lemma 5.6 and the well known fact that F ∈ (N) on the set
{x ∈ E : F ′(x) exists and is finite}. Therefore Corollary 10.2 is a special case
of [3, Corollary 3].
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