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GRAPHS OF CONTINUOUS FUNCTIONS
FROM R TO R ARE NOT PURELY

UNRECTIFIABLE

Abstract

We present an elementary proof that the graph of a continuous func-
tion from R to R is not purely unrectifiable. As a consequence of our
method, we observe that all continuous functions from R to R meet the
graph of some monotonic function in a set of positive linear measure.

In an unpublished note, Gy. Petruska showed that a typical continuous
function meets any function of bounded variation at a nowhere dense null
set; this improves on the well-known fact (which is an immediate consequence
of Jarńık’s result [2] that a typical continuous function has at a.e. point no
approximate derivative) that a typical continuous function meets any Lipschitz
function in a null set. As a natural counterpart to this result, we show that
the graph of a continuous function from R to R meets the rotated graph of a
Lipschitz function from R to R in a set of positive linear measure. In a similar
way, we also observe that the graph of any continuous function meets the
graph of a monotone function in a set of positive linear measure. This should
be contrasted with the result of Humke and Laczkovich [1] which states that
a typical continuous graph meets any monotone graph over a strongly porous
subset of the real axis.

Recall that a subset, E, of the plane is purely unrectifiable if for all Lips-
chitz maps f : R→ R

2, the linear measure of f(R) ∩ E is zero. This is equiv-
alent to saying that E meets all rotatations of graphs of Lipschitz functions
from R→ R in a set of zero linear measure.

We give a simple proof that:

Theorem. If f : [0, 1] → R is a continuous function then the graph of f is
not purely unrectifiable.
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Proof. We may suppose that f(0) < f(1): The same argument works in
the case when f(a) < f(b) for some a < b and a symmetric one applies if
f(a) > f(b) for some a < b. And if f is constant, then the statement is
obvious.

Since f(0) < f(1) and f is continuous, the projection of the graph of f
onto the y-axis must be a closed interval containing [f(0), f(1)]. Define the
set E to be those points, x, of the graph of f with y-coordinate lying in the
interval [f(0), f(1)], and for which the line segment orthogonal to the y-axis
connecting x to the y-axis intersects the graph of f only at x. Since the
orthogonal projection of E onto the y-axis contains the interval [f(0), f(1)],
it necessarily has positive linear measure. It thus suffices to show that E lies
on the rotated graph of a Lipschitz function. Fix a point x ∈ E. Let X(x)
denote the open, infinite, upper-left quadrant of the plane with vertex x and
boundary consisting of the semi-infinite vertical ray {x + (0, α) : α > 0} and
the semi-infinite horizontal ray to the left of x which ends at x. Since f is
continuous, it follows that X(x) cannot intersect the graph of f . We note that
the double-sided infinite cone which contains X(x) may only intersect E at x.
It is now immediate that E lies on the graph of a Lipschitz function rotated
through π/4; see either [3, Lemma 15.13] or [4] for further details.

Remarks.

1. The method of the proof also shows that f intersects the graph of a
monotonic function in a set of positive linear measure; for the restriction
of f to f−1(E) in the proof of the theorem is increasing (and bounded)
and so may be extended to a monotone function from R to R.

2. The method fails completely if we drop either the requirement that f be
continuous or only ask that f be continuous on a set of positive measure.
A simple example of this is given by the lower envelope of the von Koch
curve: this is the function on the unit interval whose graph consists
of the closest point of the von Koch curve to the x-axis. (We assume
that the curve lies above the unit interval.) Since the von Koch curve
is purely unrectifiable, it follows that the graph of this function is also
purely unrectifiable. Lusin’s theorem now allows us to find a subset of
the unit interval of positive measure on which this function is continuous.

3. An immediate corollary of this result is that the graph of 1-dimensional
Brownian motion contains rectifiable pieces. Unfortunately it seems to
give no insight into understanding Brownian motion in the plane.
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