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ON STRONG PRODUCT MEASURABILITY

Abstract

We consider a special condition implying the strong product mea-
surability of bounded functions with values in a Banach space which all
vertical sections are derivatives.

Let R, Z, and N denote the real line, the set of integers, and the set of pos-
itive integers, respectively. Let (X,M) be a measurable space, let (Y,N, µ) be
a measure space, and let Z be a Banach space. We define µi as the inner mea-
sure generated by µ, i.e., µi(C) = sup

{
µ(D) : D ∈ N, D ⊂ C

}
for each C ⊂ Y .

Let I ⊂M be a proper σ-ideal of subsets of X. We assume that condition (c-
cc) is fulfilled in (X,M, I), i.e., that each family of pairwise disjoint elements
of M \ I is at most countable.

We assume that we have a net structure J in (Y,N, µ) (see [1]). Recall that
a net in Y is an at most countable collection of pairwise disjoint measurable
sets of positive measure which cover Y . The individual sets in the collection
are called cells. The family J =

⋃∞
n=1 Jn, where each Jn is a net, is called a

net structure. For each y ∈ Y , there is a sequence (Jn) such that y ∈ Jn ∈ Jn
for each n. In this case we write Jn ⇒ y. Several examples of net structures
can be found, e.g., in [5] or [6].

Example 1. For each n ∈ N, the family Jn of all intervals of the form[ i1 − 1
2n

,
i1
2n
)
× · · · ×

[ im − 1
2n

,
im
2n
)
,

where i1, . . . , im ∈ Z, is a net in Rm.

A function g : Y → Z is called a derivative (with respect to the net J) if g
is Bochner-integrable over each J ∈ J and

lim
n→∞

∫
Jn
g

µ(Jn)
= g(y)
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whenever Jn ⇒ y, y ∈ Y .
Let h : X → Z. We say that h is measurable if h−1(U) ∈M for every open

set U ⊂ Z. We say that h is nearly simple if there exists a sequence of pairwise
disjoint sets A1, A2, . . . ∈ M and elements α1, α2, . . . ∈ Z, such that h = αn
on An for each n, and X =

⋃∞
n=1An. We say that h is strongly measurable if

there exists a sequence of nearly simple functions (hn) and a set A ∈ I such
that hn → h on X \A. We will see that if h is a strongly measurable function,
then there exists a sequence of nearly simple functions uniformly convergent
to h outside of some A ∈ I (Proposition 5).

First we will investigate the properties of strongly measurable functions.
Since each nearly simple function is measurable and the pointwise limit of
measurable functions is measurable, each strongly measurable function is mea-
surable as well.

Lemma 1. If X =
⋃
n∈NXn, each Xn is measurable, and h�Xn is nearly

simple (strongly measurable) for each n, then h is nearly simple (respectively
strongly measurable).

Proof. For each n let An1, An2, . . . ∈M and αn1, αn2, · · · ∈ Z be such that
h = αnk on Ank for each k, and Xn =

⋃∞
k=1Ank. Arrange all sets of the form

Ank \
⋃
i<nXi in a sequence, (Bm), and let βm ∈ Z be such that h = βm

on Bm. Clearly each Bm is measurable and X =
⋃∞
m=1Bm.

Now suppose that each h�Xn is strongly measurable. For each n choose
a sequence of nearly simple functions, (hnk), and a set An ∈ I such that
hnk → h on Xn \ An. For each k define gk = hnk on Xn \

⋃
i<nXi. Then

each gk is nearly simple and evidently gk → h on X \
⋃∞
n=1An.

Lemma 2. Let h, h1, h2, . . . : X → Z. If each of the sets h1(X), h2(X), . . .
is a separable subspace of Z and hn → h, then h(X) is a separable subspace
of Z.

Proof. Since Z0 = cl
(⋃∞

n=1 hn(X)
)

is a separable subspace of Z, it suffices
to prove that h(X) ⊂ Z0. Let z ∈ h(X). There exists an x ∈ X such that
h(x) = z. Since hn(x)→ z, we get z ∈ cl{hn(x) : n ∈ N} ⊂ Z0.

Clearly if h is a nearly simple function, then h(X) is a separable subspace
of Z. So by Lemma 2, we obtain the following corollary.

Corollary 3. Let h : X → Z. If h is a strongly measurable function, then
there exists a set A ∈ I such that h(X \A) is a separable subspace of Z.

Proof. Let (hn) be a sequence of nearly simple functions pointwise conver-
gent to h on X \A, where A ∈ I. Then by Lemma 2, h(X \A) is a separable
subspace of Z.



On Strong Product Measurability 439

Lemma 4. Let h : X → Z. If h is a measurable function and h(X) is a
separable subspace of Z, then h is strongly measurable. Moreover there is a
sequence of nearly simple functions uniformly convergent to h on X.

Proof. Let ε > 0. Let {pn : n < N} be an at most countable dense subset
of h(X). For each n < N define

An = h−1(B(pn, ε)) \
⋃
k<n h

−1(B(pk, ε)),

where B(pn, ε) =
{
z ∈ Z : ‖z − pn‖ < ε

}
. Define ϕ(x) = pn if x ∈ An,

n < N . Clearly ϕ is a nearly simple function and ‖ϕ(x) − h(x)‖ < ε for
each x ∈ X.

Proposition 5. If h is a pointwise limit of a sequence of strongly measurable
functions, then h is strongly measurable. Moreover there exists a sequence of
nearly simple functions (ϕn) and a set A ∈ I such that (ϕn) is uniformly
convergent to h on X \A.

Proof. Let (hn) be a sequence of strongly measurable functions pointwise
convergent to h. For each n let An ∈ I be such that hn(X \An) is a separable
subspace of Z. (See Corollary 3.) Then A =

⋃
n∈NAn ∈ I and by Lemma 2,

h(X\A) is a separable subspace of Z. Now our assertion follows from Lemma 4.

Example 2. Assume Z is nonseparable and let h : (Z, 2Z , {∅}) → Z be an
arbitrary function. Then evidently h is measurable, but by Corollary 3 and
Lemma 4, h is strongly measurable if and only if h(Z) is separable.

We will use the following generalization of Davies’ Lemma [3].

Proposition 6. Assume that a function h : X → Z fulfills the following con-
dition:

for each ε > 0 and each A ∈ M \ I, there is a B ∈ M \ I with
B ⊂ A such that oscB h < ε, (1)

where oscB h = sup
{
‖h(x)− h(t)‖ : x, t ∈ B

}
. Then h is strongly measurable.

Proof. Fix an ε > 0. It suffices to show that there are a set K ∈ I and a
nearly simple function ϕ such that ‖ϕ(x) − h(x)‖ < ε for each x ∈ X \ A.
Let Ω denote the first uncountable ordinal. First we will define by transfinite
induction a sequence {Aα : α < Ω}, composed of pairwise disjoint elements
of M, such that for each α < Ω, if Aα ∈ I, then Aα = ∅.

Let α < Ω and suppose we have already defined the set Aβ for each β < α.
Set K = X \

⋃
β<αAβ . If K ∈ I, then we define Aα = ∅. In the opposite
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case observe that K ∈ M. (Recall that α < Ω.) Use condition (1) to find a
set Aα ∈M \ I such that Aα ⊂ K and oscAα f < ε.

By (ccc) there is a ξ < Ω such that Aα = ∅ for each α ≥ ξ. We may assume
that Aα 6= ∅ for each α < ξ. Define K = X \

⋃
α<ξ Aα. For each α < ξ choose

an xα ∈ Aα. Define ϕ(x) = f(xα) if x ∈ Aα for some α < ξ, and ϕ(x) = f(x0)
if x ∈ K. Since Aξ = ∅, we have K ∈ I. So, ϕ is a nearly simple function. (We
use the fact that ξ < Ω.) Clearly ‖ϕ(x)− h(x)‖ < ε for each x ∈ X \A.

Let f : X × Y → Z. In the space X × Y , we consider the product σ-field
M×N (i.e., the σ-field generated by the family of all sets of the form M ×N ,
where M ∈ M and N ∈ N), and the σ-ideal

{
A × B : A ∈ I, B ⊂ Y

}
.

So, f is nearly simple if there are elements α1, α2, . . . ∈ Z and a sequence
of pairwise disjoint sets A1, A2, . . . ∈ M × N, such that f = αn on An for
each n, and X × Y =

⋃∞
n=1An; f is strongly measurable if there exists a

sequence of nearly simple functions (fn) and a set A ∈ I such that fn → f
on (X × Y ) \ (A × Y ). For each x ∈ X, we define the section fx : Y → Z
by fx(y) = f(x, y). Analogously, for each y ∈ Y , the section fy : X → Z is
defined by fy(x) = f(x, y).

Theorem 7. Assume that a bounded function f : X × Y → Z, which all sec-
tions fx are derivatives, satisfies the following condition:

for every ε > 0 and every set A ∈ M \ I, there exist a B ∈ M \ I
with B ⊂ A and a C ⊂ Y such that µi(Y \C) < ε and oscB fy < ε for
every y ∈ C.

(2)

Then f is strongly measurable.

Proof. Let M be such that ‖f(x, y)‖ < M/4 for all (x, y) ∈ X × Y . Fix
a J ∈ J, and put hJ(x) =

∫
J
fx. We will prove that hJ is strongly measurable.

We will use Proposition 6. Fix an ε > 0 and an A ∈M \ I. By (2), there are
a B ∈M \ I with B ⊂ A and a C ⊂ Y such that

µi(Y \ C) < ε/M (3)

and

oscB fy <
ε

4µ(J)
for every y ∈ C. (4)

Fix points u, v ∈ B. Define

D =
{
y ∈ J : ‖f(u, y)− f(v, y)‖ < ε

4µ(J)

}
.
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Since the sections fu and fv are derivatives, the set D is N-measurable. By (4),
we get D ⊃ C. So by (3), µ(J \D) < ε/M . Consequently,

‖hJ(u)− hJ (v)‖ =
∥∥∫
J
fu −

∫
J
fv
∥∥ ≤ ∫

D
‖fu − fv‖+

∫
J\D ‖fu − fv‖

≤ ε

4µ(J)
· µ(J) +

ε

M
· M

2
=

3ε
4

and oscB hJ < ε. By Proposition 6, we conclude that hJ is strongly measur-
able.

Now we will repeat the Lipiński’s argument [4] to show the strong measur-
ability of f . For each n ∈ N define

fn(x, y) = hJ(x)/µ(J)

if y ∈ J ∈ Jn. By Lemma 1, each function fn is strongly measurable. We will
show that fn → f , whence by Proposition 5, we will obtain the assertion of
the theorem.

Fix a point (x, y) ∈ X × Y . Let Jn ⇒ y. Using the fact that fx is a
derivative, we obtain

f(x, y) = fx(y) = lim
n→∞

∫
Jn
fx/µ(Jn) = lim

n→∞
hJn(x)/µ(Jn) = lim

n→∞
fn(x, y).

This completes the proof.

Remark 1. By Remark 2 of [2], if each set A ⊂ R of cardinality less than that
of continuum has Lebesgue measure zero, then there is a Lebesgue measur-
able function f : R2 → [0, 1] which all sections fx and fy are derivatives and
which does not satisfy condition (2). So, condition (2) is not necessary for
the measurability of a bounded function f which all sections fx and fy are
derivatives.

The following theorem is proved in [2].

Theorem 8. Assume that a locally bounded function f : R2 → R which all
sections fx, x ∈ R, are derivatives, satisfies the following condition:

for every ε > 0 and every open interval I, there exist an x ∈ I
and a linear set D such that µi(R\D) < ε and for every y ∈ D
there is an open interval Iy 3 x such that oscIy f

y < ε.
(5)

Then f has the Baire property.

Observe that in general condition (5) does not imply condition (2).
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Example 3. Define f : R2 → R by f(x, y) = xy. Then f is continuous, so
f fulfills condition (5). Notice that if a < b and |fy(a)−fy(b)| = |y(b−a)| < 1,
then |y| < (b − a)−1. So, for each set B ⊂ R with cardinality greater than 1
the set

{
y ∈ R : oscB fy < 1

}
is bounded. Consequently, condition (2) (where

M denotes the σ-field of all sets with the Baire property and I is the σ-ideal
of meager sets) fails.

Despite of that we will show that Theorem 8 is actually a particular case
of Theorem 7.

Theorem 9. Assume that f satisfies the assumptions of Theorem 8. Then
for each m ∈ N, the restricted function f�[−m,m]2 fulfills condition (2). So,
by Theorem 7 and Lemma 1, f has the Baire property.

Proof. Fix an ε > 0 and an A ⊂ M \ I. There is an open interval I such
that I \ A ∈ I. Use condition (5) to find an x ∈ I and a D ⊂ [−m,m] such
that µi([−m,m] \D) < ε and for every y ∈ D there is an open interval Iy 3 x
such that oscIy f

y < ε. For each n ∈ N define

Dn =
{
y ∈ D : Iy ⊃ (x− n−1, x+ n−1)

}
.

Then D =
⋃
n∈NDn. Since (Dn) is an ascending sequence of sets,

µi([−m,m] \Dn) < ε

for some n ∈ N. Put B = (x− n−1, x+ n−1) ∩ I ∩A and C = Dn. Evidently
B ⊂ A, B ∈M \ I, and µi([−m,m] \ C) < ε. Moreover

oscB fy ≤ oscIy f
y < ε

for every y ∈ C.

Example 4. Define f : R2 → R by

f(x, y) =

{
1 if x ∈ Q,
0 otherwise.

Then function f has the Baire property. It fulfills condition (2) if we define M

and I as in Example 3. Meanwhile one can readily verify that for each y ∈ R
and each open interval J we have oscJ fy = 1. So, condition (5) fails.
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Centre Mathématique International de Varenna, 15–25 Aug. 1954, pub.
Mathematical Institute, Rome.



444


