FINITELY CONTINUOUS, DARBOUX FUNCTIONS

Abstract

Some properties of finitely continuous functions are investigated. In particular we show that, in the class of Darboux functions, the family of 2 -continuous functions is the same as the family $B_{1}^{* *}$ and the set of all discontinuity points of finitely continuous, Darboux functions is nowhere dense.

Our terminology is standard. By \mathbb{R} we denote set of all real numbers. If X is a metric space and $A \subset X$, then $\operatorname{card}(A),(\operatorname{der}(A))$ stand for the cardinality (derivative respectively) of A. The cardinality of the set of natural numbers is denoted by ω. We consider only real-valued functions. If X is a metric space and $f \in \mathbb{R}^{X}$ then by $C_{f}\left(D_{f}\right)$ we denote the set of all continuity (discontinuity) points of the function f. The function f is said to be Darboux if, for every connected set $A \subset X$ the image $f(A)$ is a connected subset of \mathbb{R} (i.e.,an interval). The class $\mathcal{F} \subset \mathbb{R}^{X}$ is an ordinary system (in the sense of Aumann) if \mathcal{F} contains all constants and for $f, g \in \mathcal{F}, \max f, g \in \mathcal{F}, \min f, g \in \mathcal{F}, f+g \in$ $\mathcal{F}, f \cdot g \in \mathcal{F}$ and $($ if $\{x: g(x)=0\}=\emptyset) \frac{f}{g} \in \mathcal{F}$. The class \mathcal{F} is a complete system (in the sense of Aumann) if \mathcal{F} is an ordinary system and uniform limit of a sequence of functions from \mathcal{F} belongs to \mathcal{F}.

Let \mathcal{A} be a covering of a metric space X (i.e. $\cup \mathcal{A}=X$). The function $f \in \mathbb{R}^{X}$ is said to be \mathcal{A} - continuous if, for all $A \in \mathcal{A}$, the restriction $f\lceil A$ is continuous. The function $f \in \mathbb{R}^{X}$ is said to be n-continuous (finitely continuous, countable continuous) if there exists a covering \mathcal{A} of X such that $\operatorname{card}(\mathcal{A})=n(\operatorname{card}(\mathcal{A})<\omega, \operatorname{card}(\mathcal{A} \leq \omega)$ and f is \mathcal{A}-continuous.
R. Pawlak in [5] introduced the notions of the class functions $B_{1}^{* *}$ - intermediate between the family of continuous functions and the class Baire*1 functions. We say that the function f belongs to the class $B_{1}^{* *}$ if either $D_{f}=\emptyset$ or $f \upharpoonright D_{f}$ is continuous function.

[^0]Theorem 1. Let X be a locally connected metric space. If $f \in \mathbb{R}^{X}$ is a Darboux function, then f is 2-continuous if and only if f belongs to the class $B_{1}^{* *}$.

Proof. If f is Darboux and belongs to the class $B_{1}^{* *}$ then f is of course 2-continuous, since $f \upharpoonright C_{f}$ is a continuous function.

Now we suppose that f is Darboux, $X=A \cup B$ and $f \upharpoonright A, f \upharpoonright B$ are continuous. We can assume that $D_{f} \neq \emptyset$. Fix $x \in D_{f}$. Let for instance $x \in A$. Let $\epsilon>0$. There is a connected, open neighborhood U of x such that $f(U \cap A) \subset$ $\left(f(x)-\frac{\epsilon}{2}, f(x)+\frac{\epsilon}{2}\right)$. If $U \cap B \subset C_{f}$ then $U \cap D_{f} \subset U \cap A$ and consequently $f\left(U \cap D_{f}\right) \subset(f(x)-\epsilon, f(x)+\epsilon)$. Thus, we can assume that $U \cap D_{f} \cap B \neq \emptyset$. Let $b \in U \cap D_{f} \cap B$. There is a connected, open neighborhood $U_{1} \subset U$ of b, such that $f\left(U_{1} \cap B\right) \subset\left(f(b)-\frac{\epsilon}{2}, f(b)+\frac{\epsilon}{2}\right)$. Since $f \upharpoonright B$ is continuous and $b \in D_{f}$, then b is an accumulation point of A. So, consequently $U_{1} \cap A \neq \emptyset \neq U_{1} \cap B$. According to the Darboux property of f, we may infer that $f\left(U_{1}\right)$ is a connected set. So, $\left(f(x)-\frac{\epsilon}{2}, f(x)+\frac{\epsilon}{2}\right) \cap\left(f(b)-\frac{\epsilon}{2}, f(b)+\frac{\epsilon}{2}\right) \neq \emptyset$. Thus $f(b) \in(f(x)-\epsilon, f(x)+\epsilon)$. This means that $f\left(U \cap D_{f}\right) \subset(f(x)-\epsilon, f(x)+\epsilon)$. We conclude that $f\left\lceil D_{f}\right.$ is continuous at x.

Remark 1. There is a 3-continuous, Darboux function that is not in the first class of Baire.

Proof. Let C be the ternary Cantor set in $[0,1]$. Let $\left\{\left(a_{n}, b_{n}\right): n=1,2, \ldots\right\}$ be the family of all components of $[0,1] \backslash C$. Define the function $f \in \mathbb{R}^{[0,1]}$ by $f\left(a_{n}\right)=0, f\left(b_{n}\right)=1$ and linear on $\left[a_{n}, b_{n}\right]$, for $n=1,2, \ldots$. Otherwise let $f(x)=0$. Then f is Darboux function. By Lemma 1 from [3] the function f is not almost continuous in the sense of Stallings, so it is not Baire 1. If $A_{1}=[0,1] \backslash C, A_{2}=\left\{b_{n}: n=1,2, \ldots\right\}, A_{3}=C \backslash A_{2}$, then $f \upharpoonright A_{i}$ is a continuous function, for $i=1,2,3$.
R. Pawlak in [5] proved that if f belongs to the class $B_{1}^{* *}$ then the set of all discontinuity points of f is nowhere dense. Moreover this is true also in case when f is a finitely continuous Darboux function:

Theorem 2. Let X be a locally connected space. If $f \in \mathbb{R}^{X}$ is a finitely continuous, Darboux function, then the set of all discontinuity points of f is nowhere dense.

Proof. Let $f \in \mathbb{R}^{X}$ be a Darboux function and $\mathcal{A}=\left\{A_{1}, \ldots A_{k}\right\}$ be a finite covering of X, such that $f\lceil A$ is continuous function, for $A \in \mathcal{A}$. Let $G \subset X$ be a nonempty open set. We shall show that there is a nonempty open set $U \subset G$, such that f is continuous on U.

This fact is obvious if G contains some isolated point. So, we assume that G contains no isolated points of X.

Observe, that there is an open, nonempty set U, such that (for $i=1, \ldots, k$) if $U \cap A_{i} \neq \emptyset$ then $U \subset \operatorname{der}\left(A_{i}\right)$. Indeed, let $V_{0}=G$. If $V_{0} \subset \operatorname{der}\left(A_{1}\right)$ let $V_{1}=V_{0}$, otherwise exists an open nonempty set $V_{1} \subset V_{0}$ such that $V_{1} \cap A_{1}=\emptyset$. Similarly, if $V_{1} \subset \operatorname{der}\left(A_{2}\right)$ let $V_{2}=V_{1}$, otherwise let $V_{2} \subset V_{1}$ be an open nonempty set, such that $V_{2} \cap A_{2}=\emptyset$. In this way we show, that there are nonempty open sets $V_{1}, \ldots V_{k}$ such that, for $i=1, \ldots k, V_{i} \subset V_{i-1}$ and if $V_{i} \cap A_{i} \neq \emptyset$ then $V_{i} \subset \operatorname{der}\left(A_{i}\right)$. Now we can take $U=V_{k}$.

Let $\mathcal{B}=\{A \in \mathcal{A}: U \cap A \neq \emptyset\}$ and $n=\operatorname{card}(\mathcal{B})$. If $n \leq 2$, then by Theorem 1 the function $f\left\lceil U\right.$ belongs to the class $B_{1}^{* *}(U, \mathbb{R})$. Thus by Lemma 2 in [5] the set of discontinuity points of $f \backslash U$ is nowhere dense. Since U is an open nonempty set, then there exists an open nonempty set $W \subset U \subset G$ such that f is continuous on W.

We also can assume that $n>2$. We shall now prove that f is continuous on U. Let $x \in U$ and $\epsilon>0$. There is $B_{1} \in \mathcal{B}$, such that $x \in B_{1}$. Let $W_{1} \subset U$ be an open connected neighborhood of x such that $f\left(W_{1} \cap B_{1}\right) \subset$ $\left(f(x)-\frac{\epsilon}{2 n}, f(x)+\frac{\epsilon}{2 n}\right)$. We shall show that $f\left(W_{1}\right) \subset(f(x)-\epsilon, f(x)+\epsilon)$.

Suppose, to the contrary, that there is $t \in W_{1}$ such that $f(t) \notin(f(x)-$ $\epsilon, f(x)+\epsilon$). Without loss of generality we may assume that $f(t) \leq f(x)-\epsilon$. There is $B_{2} \in \mathcal{B}$, such that $t \in B_{2}$. Let $W_{2} \subset W_{1}$ be a open connected neighborhood of t such that $f\left(W_{2} \cap B_{2}\right) \subset\left(f(t)-\frac{\epsilon}{2 n}, f(t)+\frac{\epsilon}{2 n}\right)$.

Observe, that if $V \subset U$ is an nonempty open set and $B \in \mathcal{B}$, then $V \cap$ $B \neq \emptyset$. In particular $B_{1} \cap W_{2} \neq \emptyset \neq B_{2} \cap W_{2}$. By Darboux property of f we can found $s_{3} \in W_{2}$ such that $f\left(s_{3}\right)=f(x)-\frac{2 \epsilon}{n}$. Let $B_{3} \in \mathcal{B}$ be such that $s_{3} \in B_{3}$ and $W_{3} \subset W_{2}$ be a nonempty connected neighborhood of s_{3} such that $f\left(B_{3} \cap W_{3}\right) \subset\left(f\left(s_{3}\right)-\frac{\epsilon}{2 n}, f\left(s_{3}\right)+\frac{\epsilon}{2 n}\right)$. Similarly (continuing this process) if $3<i \leq n$ then $W_{i-1} \cap B_{1} \neq \emptyset \neq W_{i-1} \cap B_{2}$. We can also found $s_{i} \in W_{i-1}$ such that $f\left(s_{i}\right)=f(x)-\frac{(i-1) \epsilon}{n}$. Let B_{i} be such that $s_{i} \in B_{i} \in \mathcal{B}, W_{i} \subset W_{i-1}$ be a nonempty connected neighborhood of s_{i} such that $f\left(B_{i} \cap W_{i}\right) \subset\left(f\left(s_{i}\right)-\frac{\epsilon}{2 n}, f\left(s_{i}\right)+\frac{\epsilon}{2 n}\right)$.

We obtain the points $s_{3}, \ldots s_{n}$ and sets $W_{3}, \ldots W_{n}, B_{3}, \ldots B_{n}$, such that $f\left(s_{i}\right)=f(x)-\frac{(i-1) \epsilon}{n}, W_{i}$ is an open connected neighborhood of $s_{i}, W_{i} \subset W_{i-1}$, $s_{i} \in B_{i} \in \mathcal{B}, f\left(W_{i} \cap B_{i}\right) \subset\left(f\left(s_{i}\right)-\frac{\epsilon}{2 n}, f\left(s_{i}\right)+\frac{\epsilon}{2 n}\right)$.

Observe, that $f\left(W_{i} \cap B_{i}\right)$ are nonempty and pairwise disjoint. This means that $B_{i} \neq B_{j}$ for $i \neq j, i, j \in\{1, \ldots n\}$ so $\left\{B_{1}, \ldots B_{n}\right\}=\mathcal{B}$.

Let $H=W_{n}$. Then H is an open, nonempty, connected set, $B_{1} \cap H \neq \emptyset \neq$ $B_{2} \cap H, f(H)=f(H \cap \bigcup \mathcal{B}) \subset \bigcup_{i=1}^{n} f\left(W_{i} \cap B_{i}\right) \subset\left(-\infty, f(x)-\frac{3 \epsilon}{2 n}\right) \cup(f(x)-$ $\left.\frac{\epsilon}{2 n},+\infty\right)$. Observe that $B_{1} \cap H \neq \emptyset \neq B_{2} \cap H$, also $f(H) \cap\left(-\infty, f(x)-\frac{3 \epsilon}{2 n}\right) \neq$ $\emptyset \neq f(H) \cap\left(f(x)-\frac{\epsilon}{2 n},+\infty\right)$. Thus $f(H)$ is not connected. This contradicts Darboux property of f.
Proposition 1. The family of finitely continuous, real valued functions is an ordinary system in the sense of Aumann.

Proof. If f is \mathcal{A} continuous and g is \mathcal{B} continuous, where \mathcal{A}, \mathcal{B} are finite covering of X then $\mathcal{C}=\{A \cap B: A \in \mathcal{A} \wedge B \in \mathcal{B}\}$ is a finite covering of X and $\min (f, g), \max (f, g), f+g, f \cdot g, \frac{f}{g}($ when $\{x: g(x)=0\}=\emptyset)$, are \mathcal{C}-continuous.

Remark 2. The family of finitely continuous, real valued functions is not an complete system in the sense of Aumann.

Proof. The uniform limit of finitely continuous functions may not be finitely continuous. In fact, if $f \in \mathbb{R}^{\mathbb{R}}$ is bounded Lebesgue measurable function then it is uniform limit of simple functions [2, Theorem 4.19] On the other hand family of all bounded functions of first Baire class contains a dense G_{δ} subset consisting of functions of Sierpiński-Adjan-Nowikow type which are even not countably continuous [4, Theorem 4.3. and Lemma 4.1].

References

[1] G. Aumann, Reele Funktionen, Berlin -Göttingen-Heidelberg (1954).
[2] A. M. Bruckner, J. B. Bruckner, B. S. Thomson, Real Analysis, PrenticeHall International, Inc New Jersey 1997.
[3] K. R. Kellum, Compositions of Darboux-like functions, Real Anal. Exchange, 23(1) (1997-98), 211-217.
[4] J. Mill, R. Pol, Baire 1 functions which are not countable unions of continuous functions, Acta Math. Hung., 66(4) (1995), 289-300.
[5] R. J. Pawlak, On some class of functions intermediate between the class B_{1}^{*} and the family of continuous functions, Tatra Mount., (to appear).
[6] R. J. O'Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc., 60 (1976), 187-192.

[^0]: Key Words: continuity, countably continuous, Darboux, Baire one star, ordinary system.
 Mathematical Reviews subject classification: 26A15
 Received by the editors December 31, 1999

