Hussain Elalaoui-Talibi, Department of Mathematics, Tuskegee University, Tuskegee, AL 36088. e-mail: HUSSAIN@Acd.Tusk.Edu

ON MARCZEWSKI-BURSTIN LIKE CHARACTERIZATIONS OF CERTAIN σ -ALGEBRAS AND σ -IDEALS

Abstract

Consider a σ -ideal, σ -algebra pair $\mathcal{I} \subseteq \mathcal{A}$ on a Polish space X which has no isolated points, such that \mathcal{A} contains all the Borel subsets of Xwhile \mathcal{I} contains all the countable subsets of X, but none of the perfect subsets of X. We show that if $(\mathcal{I}, \mathcal{A})$ admits a simultaneous MB-like characterization consisting of Borel sets, then $(\mathcal{I}, \mathcal{A})$ is $((s_0), (s))$, the σ -ideal, σ -algebra pair of Marczewski null, Marczewski measurable sets. We deduce some results about uniformly completely Ramsey sets.

Let X be a Polish space with no isolated points, and let $\mathcal{I} \subseteq \mathcal{A}$ be a σ ideal, σ -algebra pair on X. \mathcal{A} is said to have a "Marczewski-Burstin-like" (or "MB-like") characterization based on a collection \mathcal{G} of Borel subsets of X provided $\emptyset \notin \mathcal{G}$ and

$$M \in \mathcal{A} \iff \forall P \in \mathcal{G}, \ \exists Q \in \mathcal{G}, \ Q \subseteq P \ni Q \subseteq M \text{ or } Q \cap M = \emptyset.$$
(1)

 $\mathcal I$ is said to have an "MB-like" characterization based on $\mathcal G$ provided $\emptyset \not\in \mathcal G$ and

$$M \in \mathcal{I} \iff \forall P \in \mathcal{G}, \ \exists Q \in \mathcal{G}, \ Q \subseteq P \ni Q \cap M = \emptyset.$$
(2)

If both (1) and (2) hold with the same class \mathcal{G} , we say that the pair $(\mathcal{I}, \mathcal{A})$ has a *simultaneous MB-like* characterization based on \mathcal{G} . We say that the pair $(\mathcal{I}, \mathcal{A})$ satisfies *condition* (C) if \mathcal{A} contains all the Borel subsets of X, while \mathcal{I} contains all the countable subsets of X, but none of the perfect subsets of X.

It was seen in Corollary 2 of [1] that the σ -ideal, σ -algebra pairs (AFC, B_r) , of the always first category sets, sets with the Baire property in the restricted sense, and (U_0, U) , of the universally null sets, universally measurable sets do

Key Words: MB-like characterization, Marczewski-measurable, completely Ramsey Mathematical Reviews subject classification: Primary 28A20; Secondary 26E99, 04A05

Received by the editors October 19, 1999

not have a simultaneous MB-like characterization based on any class of Borel sets. This was a consequence of Corollary 1 of [1] which says that if $\mathcal{I} \subseteq \mathcal{A}$ is a σ -ideal, σ -algebra pair on X that satisfies condition (C) and admits a simultaneous MB-like characterization based on a collection \mathcal{G} of Borel sets, then $(\mathcal{I}, \mathcal{A})$ satisfies the *Marczewski hull condition*, which says:

$$\forall Z \subseteq X, \exists M \in \mathcal{A} \ \ni Z \subseteq M \text{ and } \forall N \in \mathcal{A} \ni Z \subseteq N, \ M \setminus N \in \mathcal{I}.$$
(3)

Since the publication of [1], the current author discovered the following theorem, which greatly clarifies and simplifies the proof of Corollary 2 of [1].

Theorem 1. Let $(\mathcal{I}, \mathcal{A})$ be a σ -ideal, σ -algebra pair satisfying condition C. If $(\mathcal{I}, \mathcal{A})$ admits a simultaneous MB-like characterization based on a class of Borel sets \mathcal{G} , then $(\mathcal{I}, \mathcal{A}) = (S_0(X), S(X))$.

PROOF. We first note that the class \mathcal{G} cannot contain any countable Borel sets because if there were a countable $P \in \mathcal{G}$, P would belong to \mathcal{I} . But there could then exist no $Q \subseteq P$, $Q \in \mathcal{G}$ for which $Q \cap P = \emptyset$.

Let $M \in S(X)$ and let $P \in \mathcal{G}$. Since P is an uncountable Borel set, it contains a perfect set P'. So there exists a perfect set $Q' \subseteq P'$ such that $Q' \subseteq M$ or $Q' \cap M = \emptyset$. By Lemma 1 of [1], there exists a set $Q \in \mathcal{G}$ such that $Q \subseteq Q' \subseteq P$. If $Q' \subseteq M$, then so is Q. If $Q' \cap M = \emptyset$, then $Q \cap M = \emptyset$. So $M \in \mathcal{A}$.

The proof in the other direction is similar. So $\mathcal{A} = S(X)$. Similarly we get $\mathcal{I} = S_0(X)$. This finishes the proof.

It is known that the pair (CR_0, CR) of completely Ramsey null, completely Ramsey sets has a simultaneous MB-like characterization based on a certain class of Borel sets. On the other hand, since the pair (UCR_0, UCR) of uniformly completely Ramsey null, uniformly completely Ramsey sets satisfies condition (C), and under (CH), there exists an (s_0) set which is not in UCR(cf. Th. 14 of [2]), we conclude from Theorem 1,

Corollary 2. Under (CH), the pair (UCR₀, UCR) has no simultaneous MBlike characterization based on a collection of Borel sets.

The existence of an (s_0) set which is not UCR actually answers the question of whether the (UCR_0, UCR) pair satisfies either the Marczewski hull condition or the countable chain condition (ccc). Recall that the *countable chain condition* states that every collection of pairwise disjoint sets from $\mathcal{A} \setminus \mathcal{I}$ is countable. It is known that the pair (CR_0, CR) satisfies the Marczewski hull condition, but not the (ccc). We have the following result whose proof follows Walsh's remarks in [3], **Corollary 3.** Under (CH), the pair (UCR₀, UCR) satisfies neither the Marczewski hull nor the countable chain conditions.

PROOF. Under (CH) (cf. Th. 14 of [2]), we know that there exists a set Z which is (s_0) , but not UCR. Let $M \in UCR$ be such that $Z \subseteq M$. Then, since a set is in UCR_0 if and only if it is in UCR and is totally imperfect (Thm. 7 of [2]), $M \in UCR \setminus UCR_0$ and contains a perfect set P disjoint from Z. By letting $N := P^c$, we see that the Marczewski hull condition (3) is not satisfied by the pair (UCR_0, UCR) . Since the (ccc) implies the Marczewski hull condition, we see that the (ccc) is not satisfied either.

References

- J. B. Brown, H. Elalaoui-Talibi, Marczewski-Burstin-like characterizations of σ-algebras, ideals, and measurable functions, Coll. Math. 82(1999), 277–286.
- [2] U. B. Darji, Uniformly completely Ramsey sets, Coll. Math. 64(1993), 163-171.
- [3] J. Walsh, Marczewski sets, measure and the Baire property, II, Proc. Amer. Math. Soc. 106(1989), 1027–1030.