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A PROOF OF THE FUNDAMENTAL
THEOREM OF CALCULUS USING

HAUSDORFF MEASURES

Abstract

This note contains a proof of the Fundamental Theorem of Calculus
for the Lebesgue-Bochner integral using Hausdorff measures (see 2.4).
For the real case (X = R), this proof uses only the basics from the
Lebesgue integral theory (see 2.6).

1 Preliminaries

Throughout this paper, µ denotes the Lebesgue measure on R, X will be an
arbitrary fixed real Banach space, and the measurability is understood relative
to the Borel sets of R and X respectively. We say that a given f : [a , b] 7→
X is µ-measurable if there exists the µ-null Borel set A ⊆ [a , b] such that
f([a , b]\A) can be included in a separable subspace of X and f restricted
to [a , b]\A is measurable. By an integral of a µ-measurable f : [a , b] 7→ X
we shall always mean the the Lebesgue integral or, to be more accurate on
Banach spaces context, the Lebesgue-Bochner integral. Recall that there exists
a (possibly infinite) integral

∫ b
a
f(t) dt for every positive µ-measurable function

f : [a , b] 7→ R+ and, for a µ-measurable f : [a , b] 7→ X, one says that f is
µ-integrable if and only if

∫ b
a
‖f(t)‖ dt < +∞, and in this case the integral∫

b
af dt exists. Obviously, [a , b] could be replaced with an arbitrary interval of

reals.
It has to be pointed out that apart from basic definitions from integra-

tion theory, we shall use in the sequel almost nothing but the following easy
consequence of the Dominated Convergence Theorem.
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Proposition 1.1. If f : [a , b] 7→ X and fn : [a , b] 7→ X (n ≥ 1) is a sequence
of integrable functions such that fn(t) 7→ f(t) a.e. , then f is integrable and∫ b

a

fn(t) dt 7−→
∫ b

a

f(t) dt ,

provided that (fn)n is uniformly integrable.

Note : Recall that the uniform integrability of (fn)n means

lim
k 7→+∞

∫
‖fn‖≥k

‖fn(t)‖ dt = 0 uniformly for n ≥ 1 ,

and in this case the fact that [a , b] is a bounded interval is essential because
the proof of the above proposition needs finite measure.

All the above are standard facts in this field and can be found in almost
every measure theory books – see for example [2] and [7].

A definition of the Hausdorff measure hα would go as follows: if (T, d)
is any metric space, A ⊆ T and δ > 0, let Λ(A, δ) be the set of all arbitrary
collections (C)i of subsets of T , such that A ⊆

⋃
i Ci and diam (Ci) ≤ δ for

every i. Now, for every α > 0 define

hδα(A)
def
= inf

{ ∑
(diamCi)α | (Ci)i ∈ Λ(A, δ)

}
. (1)

Then there exists limδ 7→0 h
δ
α(A) = supδ>0 h

δ
α(A) and hα(A)

def
= limδ 7→0 h

δ
α(A)

gives an outer measure on P(T ) which is countable additive on the σ-field of
all Borel subsets of T .

If T = R
n, the Hausdorff measure hn, restricted to the σ-field of the Borel

subsets of Rn, is identical to the Lebesgue measure on Rn up to a constant
multiple. In particular, h1(C) = µ(C) for every Borel set C ⊆ R. With this
remark, the following proposition is the translation of a well known inequality:

Proposition 1.2. If C ⊆ R is a Borel set and F : C 7−→ X is a Lipschitz
map (i.e ‖ f(x)− f(y) ‖ ≤ a |x− y | whenever x, y ∈ C), then

h1(F (C)) ≤ aµ(C) .

Apart from the above proposition, the next result is the only one needed
in this paper from the Hausdorff measure theory. See for example [4] or [3].

Proposition 1.3. If (T, d) is a metric space and C ⊆ T is connected, then

diam (C) ≤ h1(C) .
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We conclude this section with some notations.
Throughout this paper we fix, for an arbitrary interval [a , b] with a < b, a

sequence of divisions

∆n = {a = t
(n)
0 < t

(n)
1 < · · · < t

(n)
kn−1 < t

(n)
kn

= b } for n ≥ 1 (2)

such that ∆n ≤ ∆n+1 in the sense that every tni from ∆n can be found as
some t(n+1)

j in ∆n+1, and

δn
def
=

kn−1
max
i=0

( t(n)
i+1 − t

(n)
i ) 7−→ 0 . (3)

For every g : [a , b] 7→ X and n ≥ 1, let

∆ng =
kn−1∑
i=0

g(t(n)
i+1)− g(t(n)

n )

t
(n)
i+1 − t

(n)
i

1
[ t

(n)
i ,t

(n)
i+1 )

,

where, for any C ⊆ [a , b], 1C(t) = 1 if t ∈ C and 1C(t) = 0 if t 6∈ C.

Remark 1.4. For the given F : [a , b] 7−→ X and f : [a , b] 7−→ X, if the deriva-
tive F ′(t) exists a.e. and F ′(t) = f(t) a.e. , then

∆nF (t) 7−→ f(t) a.e.

Indeed, if F ′(t) = f(t) and t 6∈
⋃
n ∆n, i.e. almost everywhere, then

there exists an uniquely defined sequence of open intervals (an, bn)n≥1 such
that an, bn are consecutive points in ∆n and t ∈ (an.bn) for every n. Since
bn − an 7−→ 0 by 3,

∆nF (t) =
F (bn)− F (an)

bn − an
7−→ f ′(t) .

The final aim of this proof for FTC is to show that under some conditions,
(∆nF )n is uniformly integrable.

2 Main result

We fix f : [a , b] 7→ X, a continuous function F : [a , b] 7−→ X, and we assume
that there exists a Borel set B ⊂ [a , b] such that:

the derivative F ′(t) exists and F ′(t) = f(t) for every t ∈ [a , b]\B .
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In the end, µ(B) = 0 will be an additional hypothesis, but this is of no
consequence for the moment.

Since f(t) = F ′(t) for t ∈ [a , b]\B, f restricted to [a , b]\B is measurable,
therefore ‖f‖ restricted to [a , b]\B is measurable, any set of the form

C = { t ∈ [a , b]\B | ‖f(t)‖ ≤ ρ }

is a Borel set, the (possibly infinite) integral
∫
C
‖f(t)‖ dt exists, and so on.

Lemma 2.1. For any fixed ρ > 0 there exists a sequence of mutually disjoint
Borel sets (Ck)k≥1 , such that

[a , b]\B =
⋃
k≥1

Ck (4)

and for every k ≥ 1 ,

‖F (x)− F (y)− (x− y) f(y) ‖ ≤ ρ |x− y | whenever x, y ∈ Ck . (5)

Proof. For every fixed rational t ∈ Q denote by At, the set of all those
y ∈ [a , b]\B such that

y + t ∈ [a , b] and ‖F (y + t)− F (y)− t f(y) ‖ ≤ ρ |t| .

Since f restricted to [a , b]\B is measurable and F is continuous, the map

y 7→ F (y + t)− F (y)− t f(y)

is a measurable function on the set

([a , b]\B) ∩ { y | y + t ∈ [a , b] } .

It follows that each At is a Borel set and, with the sequence (δn)n given
by 3,

Bn
def
=

⋂
t∈Q , |t|≤δn

At

is a Borel set, as an intersection of a countable family of Borel sets. Since F
is continuous and x = y + (x− y),

y ∈ Bn if and only if

‖F (x)− F (y)− (x− y) f(y) ‖ ≤ ρ |x− y | (6)

for every x ∈ [a , b] such that |x− y | ≤ δn ,



A Proof of the Fundamental Theorem of Calculus 385

and from F ′(y) = f(y) for y ∈ [a , b]\B, it follows

[a , b]\B =
⋃
n≥1

Bn .

Let E1 = B1,E2 = B2\E1, . . . , En = Bn\(E1 ∪ E2 ∪ · · · ∪ En−1), . . . .
The Borel sets En (n ≥ 1) are mutually disjoint,

En ⊆ Bn (n ≥ 1) and
⋃
n≥1

En =
⋃
n≥1

Bn = [a , b]\B (7)

Finally, for every n ≥ 1, let ∆n be the division given by 2, and define

E
(i)
n = En ∩

[
t
(n)
i , t

(n)
i+1

)
if 0 ≤ i < kn − 1 ,

and E
(kn−1)
n = En ∩

[
t
(n)
kn−1, t

(n)
kn

]
.

The sequence (Ck)k≥1 is the result of an arbitrary enumeration of the sets
E

(i)
n . Indeed, if Ck = E

(i)
n for some n ≥ 1 and 0 ≤ i ≤ kn−1, then |x−y | ≤ δn

for every x, y ∈ Ck ,

Ck = E(i)
n ⊆ En

from 7

⊆ Bn ,

and 5 is an easy consequence of 6.

Remark 2.2. Within the hypothesis of the preceding lemma, since 5 is sym-
metric for any fixed Ck and x, y ∈ Ck , we have ‖F (y)−F (x)−f(x)(y−x) ‖ ≤
ρ | y − x | , therefore

|x− y | ‖ f(x)− f(y) ‖ = ‖ − f(y)(x− y)− f(x)(y − x) ‖ ≤
≤ ‖F (x)− F (y)− f(y)(x− y) ‖+ ‖F (y)− F (x)− f(x)(y − x) ‖ ≤

≤ 2 ρ |x− y | ,

hence ‖ f(x)− f(y) ‖ ≤ 2 ρ for every x, y ∈ Ck so, if we define

ak = inf { ‖f(t)‖ | t ∈ Ck } ,

then 0 ≤ ak ≤ ‖f(x)‖ ≤ ak + 2 ρ for every x ∈ Ck . (8)

Lemma 2.3. If (Ck)k≥1 is the sequence given by lemma 2.1 for ρ > 0, then
for every k ≥ 1,

h1(F (Ck)) ≤ 3 ρµ(Ck) +
∫
Ck

‖f(t)‖ dt .
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Proof. Let (ak)k≥1 be given by 2.2, and fix some Ck . If x, y ∈ Ck,

‖F (x)− F (y) ‖
from 5

≤ ( ρ + ‖f(y)‖ ) |x− y |
by 8

≤ (3 ρ+ ak) |x− y | ,

hence h1(F (Ck))
by 1.2

≤ (3 ρ+ ak)µ(Ck) . (9)

Since ak ≤ ‖f(t)‖ for every t ∈ Ck, with 1Ck(t) = 1 for t ∈ Ck and
1Ck(t) = 0 if t 6∈ Ck, we have

(3 ρ+ ak)1Ck ≤ 3 ρ1Ck + ‖f‖1Ck , therefore

(3 ρ+ ak)µ(Ck) =
∫ b

a

(3 ρ+ ak)1Ck(t) dt ≤

≤ 3 ρ
∫ b

a

1Ck(t) dt+
∫ b

a

‖f(t)‖1Ck(t) dt = 3 ρµ(Ck) +
∫
Ck

‖f(t)‖ dt .

Finally, h1(F (Ck))
by 9

≤ (3 ρ+ ak)µ(Ck) ≤ 3 ρµ(Ck) +
∫
Ck

‖f(t)‖ dt .

Proposition 2.4. (Fundamental Theorem of Calculus) Suppose that for the
given

f : [a , b] 7−→ X ,

there exists F : [a , b] 7→ X, which is continuous, the derivative F ′(t) exists
and F ′(t) = f(t) outside a µ-null Borel set B ⊆ [a , b] such that

h1(F (B)) = 0 . (10)

Then f is µ-measurable and if we assume the integrability of f ,

F (b)− F (a) =
∫ b

a

f(t) dt . (11)

Proof. Let F : [a , b] 7→ X and B ⊆ [a , b] as above. Recall that the integra-
bility of the (µ-measurable) f : [a , b] 7→ X is equivalent to∫ b

a

‖f(t)‖ dt < +∞ . (12)
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Let (Ck)k≥1 be the sequence given by lemma 2.1 for an arbitrary ρ > 0.
Since µ(B) = 0 and the sets Ck are mutually disjoint, b − a =

∑
k≥1 µ(Ck)

and

h1(F ([a , b])) = h1

F (B) ∪

⋃
k≥1

F (Ck)

 h1(F (B))=0 by 10

≤

≤
∑
k≥1

h1(F (Ck))
by 2.3

≤
∑
k≥1

[
3 ρµ(Ck) +

∫
Ck

‖f(t)‖ dt
]
≤

≤ 3 ρ (b− a) +
∫ b

a

‖f(t)‖ dt < +∞

for every ρ > 0, therefore

h1(F ([a , b])) ≤
∫ b

a

‖f(t)‖ dt . (13)

By the continuity of F , the set F ([x , y]) is connected in X, hence

‖F (b)− F (a) ‖ ≤ diam (F ([a , b]))
by 1.3

≤ h1(F ([a , b])) ,

which, taking into account 13, gives:

‖F (b)− F (a) ‖ ≤
∫ b

a

‖f(t)‖ dt . (14)

Since the same argument as above can be applied for every interval [x , y] ⊆
[a , b] instead of [a , b], if we define ϕ : [a , b] 7−→ R+, by

ϕ(x) =
∫ x

a

‖f(t)‖ dt for a ≤ x ≤ b , (15)

from 14 we have

‖F (y)− F (x)‖ ≤ ϕ(y)− ϕ(x) for a ≤ x < y ≤ b .

With the notations from the last part of section 1, it follows that

‖∆nF (t)‖ ≤ ∆nϕ(t) for every t ∈ [a , b] . (16)

As a consequence of the definition 15, (∆nϕ)n is uniformly integrable, so
(∆nF )n is uniformly integrable by 16 and ∆nF (t) 7−→ f(t) a.e. by 1.4. It
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remains to observe that∫ b

a

f(t) dt
by 1.1

= lim
n

∫ b

a

∆nF (t) dt =

= lim
n

[
kn−1∑
i=0

(F (t(n)
i+1)− F (t(n)

i )

]
= lim

n
[F (b)− F (a) ] = F (b)− F (a) .

The choice of a bounded interval [a , b] is due only to the fact that this
includes the hard part of the above proofs. Since an arbitrary interval of reals
is the union of a sequence of bounded intervals, the following proposition is
the result of 2.4 via some standard arguments:

Proposition 2.5. Let I ⊆ R be an arbitrary interval, with u = sup I and
v = inf I. Suppose that for the given f : I 7−→ X , there exists F : I 7→ X,
which is continuous, the derivative F ′(t) exists and F ′(t) = f(t) outside a
µ-null Borel set B ⊆ I such that h1(F (B)) = 0 .

Then f is µ-measurable and if f is integrable, then F (v − 0), F (u+ 0) ∈ X
exist and

F (v − 0)− F (u+ 0) =
∫ v

u

f(t) dt . (17)

Remark 2.6. The previous propositions include the situation X = R, in
which case the condition h1(F (B)) = 0 is equivalent with µ(F (B)) = 0, where
µ stands for the Lebesgue outer measure on R.

In this case an explicit use of the Hausdorff measure theory is not necessary
in the above proof – the inequality from 1.2 becomes µ((F (C)) ≤ aµ(C) and,
instead of 1.3, it suffices to observe that any connected subset C ⊂ R is
always an interval, so diam (C) = µ(C). With this observation, the entire
real case proof for FTC presented in this paper becomes fully accessible in an
introductory course of measure theory.

Remark 2.7. In the case of a positive f : [a , b] 7−→ R+ the function F from 2.4
is monotone and the integrability of f is the result of the inequality

∫ b
a
f(t) dt ≤

F (b)− F (a) < +∞.
Consequently, in the proposition 2.5, if f : I 7−→ R+, the integrability con-

dition is not necessary and 17 holds, with F (v− 0)− F (u+ 0) = +∞ being a
possibility.

It should be pointed out that this particular case can be viewed as an inde-
pendent result coming from another ideas. If follows from lema 2.1, applied to
F for a fixed ρ > 0, that F restricted to every Ck is a Lipschitz map, therefore
µ(F (C)) = 0 for every µ-null set C ⊂ [a , b], as a consequence of the condition
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µ(F (B)) = 0, i.e. F verifies the Luzin condition (N), hence F is absolutely
continuous by Banach-Zarecki Theorem ( see for example [1] ). Finally, 11
holds as a direct consequence of the Lebesgue-Radon-Nikodym Theorem.

3 Comments

The author of this note happens to be fond of Hausdorff measures, but has
no serious informations on the FTC research area, and this proof has been
found almost by accident. Although for the real case (X = R), 2.4 cannot
be explicitly found in Saks’s book (see [6]), it is there, somewhat between
the lines, ultimately as a consequence of the Theorem 7.7, page 285. Perhaps
because of the fact that the arguments given in [6] are full of technicalities,
apparently 2.4 became almost absent in the subsequent general presentations
of the Lebesgue integral. The case B = ∅, i.e. F ′(t) exists everywhere in [a , b],
is much better known – see [5] for example.

The author wishes to thank to professor Brian S. Thompson for the ob-
servation ( made in the real-analysis mailing list ) that 2.4 can be somehow
found in Saks’s book, and to the referee for many helpful remarks made on
the previous version of this paper.
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