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CONTINUOUS NORMS AND ABSOLUTELY
CONTINUOUS NORMS IN BANACH

FUNCTION SPACES ARE NOT THE SAME

Abstract

It is known that the concepts of continuous norm and of absolutely
continuous norm do not coincide. There exists a space in which all func-
tions possess continuous norm but not all functions possess absolutely
continuous norm. In this paper we construct an extremal example of a
Banach function space in which all functions have continuous norm but
only the zero function has absolutely continuous norm.

1 Introduction

The concept of absolutely continuous norm plays a very important role in
characterization of classes of reflexive Banach function spaces and of separable
Banach function spaces. Let us recall two assertions presented by C. Bennett
and R. Sharpley in [1]. The first one [1, Corollary 4.4] shows that a Banach
function space X is reflexive if and only if both X and its associate space X ′
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have absolutely continuous norms (see also [7] and [8]). In the second one [1,
Corollary 5.6] it is proved that a Banach function space (X,µ) is separable if
and only if X has absolutely continuous norm and µ is a separable measure.
The concept of continuous norm was introduced by Q. Lai and L. Pick in
[5]. They proved that the Hardy operator Tf(x) =

∫ x
0
f(t)dt is a compact

mapping from a Banach function space (X, v) into L∞ if and only if the
function 1/v has continuous norm in the associate space (X ′, v). This result
raised the question, if in every Banach function space X, the set of all functions
with absolutely continuous norm is different from the set of all functions with
continuous norm. In [6] two Banach function spaces are constructed which
demonstrate that the concepts of continuous norm and absolutely continuous
norm are not identical. The first space contains a function with continuous
but not absolutely continuous norm and another function with non-continuous
norm. In the other space, every function has continuous norm and there is a
function with non-absolutely continuous norm.

D. E. Edmunds, J. Lang and A. Nekvinda [2] investigated the notions of
continuous norm and absolutely continuous norm in the scale of spaces Lp(x)

of functions integrable with variable power p(x). These spaces possess many
non-standard properties (see [4], [3]). Nevertheless, the set of functions with
continuous norm and the set of functions with absolutely continuous norm in
these spaces coincide (see [2]).

In the present paper an extreme example of Banach function space is found
in the sense that every function has continuous norm and only the zero function
has absolutely continuous norm. The paper is organized in the following way.
Section 2 has a preparatory character and brings basic notations, definitions
and auxiliary assertions. In Section 3 we construct the Banach function space
and in Section 4 we prove that it has the desired properties.

2 Preliminaries

Let Ω be a non-empty open subset of R and let M(Ω) be the set of all real
measurable functions defined on Ω. Denote by |E| the Lebesgue measure of
any measurable subset E of Ω and by χE the characteristic function of E. The
unit function will be denoted 1Ω; i.e., 1Ω(x) = 1 for all x ∈ Ω.

Definition 2.1. A normed linear space (X, ‖ . ‖) is called a Banach function
space (abbreviated BFS) if the following conditions are satisfied:

(2.1) the norm ‖f‖ is defined for all f ∈ M(Ω), and f ∈ X if and only if
‖f‖ <∞;

(2.2) ‖f‖ = ‖ |f | ‖ for every f ∈M(Ω);
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(2.3) if 0 ≤ fn ↗ f a.e. in Ω, then ‖fn‖ ↗ ‖f‖;

(2.4) if E ⊂ Ω, |E| <∞, then χE ∈ X;

(2.5) for every set E ⊂ Ω with |E| < ∞, there exists a positive constant CE
such that

∫
E
|f(x)|dx ≤ CE‖f‖.

Recall that the Fatou property (2.3) immediately yields

(2.6) if 0 ≤ f ≤ g, then ‖f‖ ≤ ‖g‖.

The above definition was introduced in [1]. In [8] another definition of
Banach function spaces is given which—requiring properties (2.1), (2.2), (2.6)
and the completeness of the space—specifies a wider class of spaces. The
space we construct in this paper is a Banach function space in the sense of
both definitions.

Definition 2.2. Let X = (X(Ω), ‖ . ‖) be a Banach function space and let
f ∈ X be an arbitrary function. We say that the function f has absolutely
continuous norm in X if for any sequence of open sets Gn withGn ⊃ Gn+1 for
n = 1, 2, . . . and

⋂∞
n=1Gn = ∅, the norms ‖fχGn‖ tend to zero as n → ∞.

The set of all functions with absolutely continuous norms is denoted by Xa.
We say that f has continuous norm in X if limr→0+ ‖fχ(x−r,x+r)∩Ω‖ = 0

for every x ∈ Ω and limr→∞ ‖fχΩ\(−r,r)‖ = 0. The set of all functions with
continuous norm is denoted by Xc.

Recall that ||| . ||| :M(Ω)→ [−∞,∞] is a seminorm onM(Ω) if every f, g ∈
M(Ω) and a ∈ R satisfy |||f ||| ≥ 0, |||af ||| = |a| |||f |||, |||f + g||| ≤ |||f |||+ |||g|||.

We will be particularly concerned with seminorms which satisfy conditions

(2.7) |||f ||| = ||| |f | ||| for all f ∈M(Ω)]

(2.8) if fn, f ∈M(Ω) and 0 ≤ fn ↗ f a.e. in Ω, then |||fn||| ↗ |||f |||.

Evidently, (2.8) implies

(2.9) if 0 ≤ f ≤ g, then |||f ||| ≤ |||g|||.

We will need the following three assertions. The easy proofs are omitted.

Proposition 2.3. Let Ωi, i ∈ I, be a system of non-empty open subsets of
Ω such that Ω =

⋃
i∈I Ωi ∪ M , where |M | = 0. Let ||| . |||i be a system of

seminorms on Ωi satisfying conditions (2.7) and (2.8). Define the seminorm
||| . ||| by |||f ||| = supi∈I |||fi|||i, where fi denotes the restriction of f on Ωi.
Then ||| . ||| satisfies (2.7) and (2.8).
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Proposition 2.4. Let Ωn be a sequence of non-empty open subsets of Ω and
Ω =

⋃∞
n=1 Ωn ∪ M , where |M | = 0. Let ||| . |||n be a system of seminorms

satisfying (2.7) and (2.8). Define the seminorm |||f ||| =
∑∞
n=1 |||fn|||n for fn

being the restriction of f on Ωn. Then ||| . ||| satisfies (2.7) and (2.8).

Proposition 2.5. Let ||| . ||| be a seminorm satisfying (2.7) and (2.8) and let
|||1Ω||| <∞. Define the norm ‖ . ‖ by ‖f‖ = |||f |||+

∫
Ω
|f |. Then ‖ . ‖ is a norm

in a BFS.

For the sake of simplicity, in the rest of the paper we assume Ω = (0, 1).

3 The Construction

Our considerations are based on principles of construction of the Cantor set.
Let the symbol K denote the set of all finite sequences of the numbers 0 and 1
including the empty sequence ∅. The elements of K will be called multiindices.
The length `(α) of a multiindex α ∈ K, α = (a1, a2, . . . , an), is the number of
all members of the sequence α; i.e., `(α) = n. We define a partial ordering �
on K saying that α � β for α = (a1, a2, . . . , ak), β = (b1, b2, . . . , bn) if k ≤ n
and ai = bi for i = 1, 2, . . . , k. We shall write α � β if α � β does not hold,
and α � β if α � β and β � α. Note, that α = β if α � β and β � α, and
that the relations �, 6= are different.

Recall the construction of the Cantor set C. Define the intervals Iα, α ∈ K,
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by

. . .

I00 = ( 1
33 ,

2
33 )

. . .

I0 = ( 1
32 ,

2
32 )

. . .

I01 = ( 7
33 ,

8
33 )

. . .

I∅ = ( 1
3 ,

2
3 )

. . .

I10 = ( 19
33 ,

20
33 )

. . .

I1 = ( 7
32 ,

8
32 )

. . .

I11 = ( 25
33 ,

26
33 )

. . .

Note that |Iα| = 3−`(α)−1. The Cantor set is given by C = [0, 1] \
⋃
α∈K Iα. If

A,B ⊂ R we say that A is to the left (right) of B if supA < inf B (inf A >
supB), respectively. Let α, β ∈ K and let Iα, Iβ be the corresponding intervals
from the above construction. We say that α is to the left (right) of β if Iα is
to the left (right) of Iβ , respectively. If α is to the left of γ and γ is to the
left of β, we say that γ is between α and β. We denote by F the system of all
bounded measurable sets M ⊂ R such that |M ∩ (x − t, x + t)| > 0 for every
x ∈ M and t > 0, |M | = 3−n for certain positive integer n, and, moreover,
neither inf M nor supM belong to M . Let P be the family of all mappings
P : K → F such that

⋃
α∈K P (α) is bounded,

|P (α)| = 1
3`(α)+1

(3.1)

and
if α is to the left of β, then P (α) is to the left of P (β). (3.2)

By E we denote the class of all measurable sets E ⊂ R such that E =⋃
α∈K P (α) for some P ∈ P. It is easy to see that for every E ∈ E the

corresponding mapping P ∈ P is unique and |E| = 1. We set IEα = P (α),
ĨEα = (inf IEα , sup IEα ).
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Note that the set [0, 1] \ C belongs to E .
Let E ∈ E . Let P ∈ P be the corresponding mapping and IEα = P (α),

α ∈ K. For α ∈ K we define the closed intervals JEα by

. . .

JE00 = [inf E, inf IE0 ]
. . .

JE0 = [inf E, inf IE∅ ]
. . .

JE01 = [sup IE0 , inf IE∅ ]
. . .

JE∅ = [inf E, supE]
. . .

JE10 = [sup IE∅ , inf IE1 ]
. . .

JE1 = [sup IE∅ , supE]
. . .

JE11 = [sup IE1 , supE]
. . .

The generalized Cantor set CE corresponding to the set E is defined by

CE =
∞⋂
n=1

⋃
`(α)=n

JEα .

It is not difficult to show the following properties:

(3.3) |JEα | ≥ |JEα ∩ E| =
∑
α�β |IEβ | = 3−`(α);

(3.4) the families {IEα }α and {ĨEα }α are pairwise disjoint;

(3.5) α � β if and only if JEβ ⊂ JEα and α � β if and only if JEα ∩ JEβ = ∅;

(3.6) α � β if and only if ĨEβ ⊂ JEα and α � β if and only if ĨEβ ∩ JEα = ∅;

(3.7) if α ∈ K and if k is an integer, k ≥ `(α), then the number of all multi-
indices β such that α � β and `(β) = k, is equal to 2k−`(α);
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(3.8) for every x ∈ CE there exists a unique sequence {αn}∞n=1 such that
α1 � α2 � . . . , `(αn) = n and x ∈

⋂∞
n=1 J

E
αn .

Moreover, if α is to the left of β and α � β, then there exists γ between α
and β such that γ � α and γ � β.

Now, we are ready to construct the desired norm in a BFS. Consider the
classM =M(0, 1). We will identify the functions f ∈M with their extensions
by zero outside (0, 1). For E ∈ E we define the seminorm ||| . |||E by

|||f |||E =
∞∑
k=0

2−k max
`(α)=k

sup
n≥k

∣∣∣⋃ IEβ

∣∣∣−1
∫

S
IEβ

|f(x)| dx

=
∞∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|f(x)| dx, f ∈M,
(3.9)

where the union is taken over all β such that `(β) = n and α � β; the second
equality follows from (3.3).

Definition 3.1. The space X is the set of all functions f ∈M with ‖f‖ <∞
where ‖f‖ = supE∈E |||f |||E .

Theorem 3.2. (X, ‖ . ‖) is a BFS.

Proof. Set ‖f‖0 = ‖f‖ +
∫ 1

0
|f |. Considering the only term with k = n = 0

on the right hand side of (3.9) we obtain |||f |||E ≥ 3
∫
IE∅
|f(x)| dx for every

E ∈ E . If E1, E2, E3 ∈ E are such that IE1
∅ = (0, 1/3), IE2

∅ = (1/3, 2/3),
IE3
∅ = (2/3, 1), then there exists i ∈ {1, 2, 3} such that 3

∫
I
Ei
∅
|f | ≥

∫ 1

0
|f |.

Hence

‖f‖ ≥ |||f |||Ei ≥ 3
∫
I
Ei
∅

|f | ≥
∫ 1

0

|f |,

and so, 2‖f‖ ≥ ‖f‖0 ≥ ‖f‖. It suffices to show that ‖ . ‖0 is a norm in a BFS.
According to Propositions 2.3 and 2.4 every seminorm ||| . |||E , E ∈ E ,

satisfies conditions (2.7) and (2.8) on the interval (0, 1). Repeated application
of Proposition 2.3 yields that the seminorm ‖f‖ = supE∈E |||f |||E satisfies (2.7)
and (2.8). By Proposition 2.5, it remains to verify that the unit function 1Ω

satisfies ‖1Ω‖ < ∞ which is seen from (3.9). |||1Ω|||E ≤
∑∞
k=0 2−k = 2 for

every E ∈ E ; i.e., ‖1Ω‖ ≤ 2 <∞.
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4 Properties of the Space X

In this section we prove two theorems. The first one claims that only the zero
function in X has absolutely continuous norm; i.e., Xa = {0}, while the other
claims that every function from X has continuous norm; i.e., Xc = X.

Theorem 4.1. Xa = {0}.

Proof. Let f ∈ X, f 6= 0. Then there exist a measurable set M , |M | > 0,
and a real number η > 0 such that |f | ≥ η > 0 on M . Set

M ′ = {x ∈M : |(x− t, x+ t) ∩M | > 0 for every t > 0}.

Clearly, |M ′| = |M |. Take the integer n0 such that 3−n0−1 ≤ |M ′| < 3−n0 and
the real number b < 1 such that |[inf M ′, b] ∩M ′| = 3−n0−1. Set

F1 = [inf M ′, b] ∩M ′, F2 = [1, 2− 3−n0−1], and F = F1 ∪ F2.

For every α ∈ K we denote by p(α), q(α) the least real numbers such that
|(inf F, p(α)) ∩ F | = inf Iα, |(p(α), q(α)) ∩ F | = |Iα|, and we set P (α) =
(p(α), q(α)) ∩ F . It is easy to see that P ∈ P and so the set E =

⋃
α∈K P (α)

belongs to E . Set E1 = E∩F1, E2 = E∩F2 and α0 = (0, 0, . . . , 0), `(α0) = n0.
Since E1 is to the left of E2 and |E1| = 3−n0−1, we have IEβ ∩F1 = IEβ if β is to
the left of α0 and IEβ ∩F1 = ∅ in other cases. For every non-negative integer N
we set GN =

⋃
`(α)≥N Ĩ

E
α . Obviously, GN form a decreasing sequence of open

sets with empty intersection. Let us calculate |||fχGN |||E for a fixed N . Taking
only the first summand in (3.9), using (3.4) and the fact that ĨEα ∩ E = IEα ,
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we obtain

|||fχGN |||E ≥ sup
n≥0

3n+1

2n
∑

`(β)=n

∫
IEβ

|fχGN |

= sup
n≥0

3n+1

2n
∑

`(β)=n

∫
IEβ

|f |
∑

`(α)≥N

χeIEα
≥ sup
n≥0

3n+1

2n
∑

`(β)=n

∫
IEβ

|f |
∑

`(α)≥N

χeIEα ∩E
= sup
n≥0

3n+1

2n
∑

`(β)=n

∑
`(α)≥N

∫
IEβ

|fχIEα |

≥ sup
n≥N

3n+1

2n
∑

`(β)=n

∑
`(α)=n

∫
IEβ

|fχIEα |

≥ sup
n≥N

3n+1

2n
∑

`(β)=n

∫
IEβ ∩E1

|f |.

By (3.7) and the inclusion E1 ⊂M we arrive at

|||fχGN |||E ≥ sup
n≥N

3n+1

2n

∫
∪IEβ
|f | ≥ sup

n≥N

3n+1

2n
2n−`(α0)−1

3n+1
η =

η

2n0+1
,

where the union is taken over all β left of α0 such that `(β) = n. Thus,

‖fχGN ‖ = sup
E∈E
|||fχGN |||E ≥

η

2n0+1
,

and therefore f does not have absolutely continuous norm.

The proof of Xc = X is rather technical. The core is contained in the
following five lemmas.

Lemma 4.2. Let E ∈ E, let α1 � α2 � · · · � αj � . . . be a sequence of
multiindices with `(αj) = j and let |||f |||E <∞. Then

lim
j→∞

|||fχJEαj |||E = 0. (4.1)

Proof. It follows from (3.5) and (2.9) that |||fχJEαj |||E is non-increasing.
Assume that (4.1) does not hold. Then there exists η > 0 such that for every
j the inequality

|||fχJEαj |||E ≥ η (4.2)
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holds. Let us fix j and calculate |||fχJEαj |||E . According to (3.9) we have

|||fχJEαj |||E =
j−1∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ ∩JEαj

|f |

+
∞∑
k=j

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ ∩JEαj

|f |

= Aj +Bj .

(4.3)

Let 0 ≤ k ≤ j − 1. Then αk � αj . If α � β, `(α) = k and α � αk, then
β � αj and, according to (3.6), IEβ ∩ JEαj = ∅. Therefore,

max
`(α)=k
α�αk

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ ∩JEαj

|f | = 0

and we can rewrite Aj in the following form.

Aj =
j−1∑
k=0

sup
n≥k

3n+1

2n
∑

`(β)=n
αk�β

∫
IEβ ∩JEαj

|f |.

If k ≤ n ≤ j − 1, then the inequalities `(β) ≤ j − 1 < j = `(αj) imply αj � β
and (3.6) yields IEβ ∩ JEαj = ∅. Thus, we can write

Aj =
j−1∑
k=0

sup
n≥j

3n+1

2n
∑

`(β)=n
αk�β

∫
IEβ ∩JEαj

|f |.

If n ≥ j, then again (3.6) implies that IEβ ∩JEαj = ∅ if αj � β and IEβ ∩JEαj = IEβ
if αj � β. Hence, we can further reduce the expression of Aj .

Aj =
j−1∑
k=0

sup
n≥j

3n+1

2n
∑

`(β)=n
αj�β

∫
IEβ

|f | = j sup
n≥j

3n+1

2n
∑

`(β)=n
αj�β

∫
IEβ

|f |. (4.4)

Since

Bj ≤
∞∑
k=j

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|f | ≤ |||f |||E <∞,
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we have limj→∞Bj = 0, and so, according to (4.2), (4.3), there exists j0 such
that Aj ≥ η/2 for j ≥ j0 and, by (4.4),

sup
n≥j

3n+1

2n
∑

`(β)=n
αj�β

∫
IEβ

|f | ≥ η

2j
, j ≥ j0.

Thus, using the assumption `(αk) = k, we obtain

|||f |||E ≥
∞∑
k=j0

sup
n≥k

3n+1

2n
∑

`(β)=n
αk�β

∫
IEβ

|f | ≥ η

2

∞∑
k=j0

1
k

=∞,

which contradicts the assumption.

Lemma 4.3. Let E ∈ E and |||f |||E <∞. Then limt→0+ |||fχ(x−t,x+t)|||E = 0
for all x ∈ R.

Proof. We can assume that x ∈ [inf E, supE].
First of all, consider the case x /∈ CE . By (3.4), there exists a unique

multiindex γ ∈ K such that (x− t, x+ t) ⊂ ĨEγ for sufficiently small t > 0, and
so

|||fχ(x−t,x+t)|||E = |||fχ(x−t,x+t)∩eIEγ |||E
=
∞∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ ∩eIEγ |fχ(x−t,x+t)|.

Property (3.4) yields

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ ∩eIEγ |fχ(x−t,x+t)| =

{
3`(γ)+1

2`(γ)

∫
IEγ
|fχ(x−t,x+t)| if α � γ,

0 if α � γ.

Hence

|||fχ(x−t,x+t)|||E =
`(γ)∑
k=0

3`(γ)+1

2`(γ)

∫
IEγ ∩(x−t,x+t)

|f | → 0 as t→ 0+,

since
∫
IEγ
|f | ≤ |||f |||E <∞.
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Now, assume that x ∈ CE . Let {αn} be the sequence of multiindices from
(3.8). If x is an inner point of all JEαn , then there is a sequence of positive real
numbers tn such that (x− tn, x+ tn) ⊂ JEαn and for 0 < t < tn we have

|||fχ(x−t,x+t)|||E ≤ |||fχJEαn |||E . (4.5)

By Lemma 4.2 the last term tends to 0 as n→∞. So lim
t→0+

|||fχ(x−t,x+t)|||E = 0.

If x = inf E or x = supE, then (x − t, x + t) ∩ E is (x, x + t) ∩ E or
(x− t, x) ∩ E and we arrive at (4.5) replacing (x− t, x+ t) with (x, x+ t) or
(x− t, x) respectively.

Finally, if there is n such that x is one of the end points of JEαn and
x 6= inf E, x 6= supE, then there exists a unique interval ĨEα such that either
x = inf ĨEα or x = sup ĨEα . We will investigate only the case x = inf ĨEα . The
other case is analogous. Then x = supJEαj for all αj with `(αj) ≥ `(α) + 1,
and we can write

|||fχ(x−t,x+t)|||E ≤ |||fχ(x−t,x)|||E + |||fχ(x,x+t)|||E
= |||fχ(x−t,x)∩JEαj

|||E + |||χ(x,x+t)∩IEα |||E

for such t that (x − t, x) ⊂ JEαj and (x, x + t) ⊂ ĨEα . The first term can be
estimated in the same way as (4.5). The second term can be treated as the
case x /∈ CE .

For r ∈ R and M ⊂ R we define the set r +M by

r +M = {r + x : x ∈M}.

Lemma 4.4. Let 0 < t < 1, 0 < τ ≤ η/4 and let f ∈ X satisfy

sup
E∈E
|||fχ(0,t)|||E ≥ η. (4.6)

Then there exists E ∈ E and γ ∈ K such that

0 < s := inf IEγ < t, (4.7)

|||fχ(s,t)|||E ≥
η

2
− 2τ, (4.8)

sup IEω ≤ 4t and |IEω | ≤ 3t whenever IEω ∩ (s, t) 6= ∅. (4.9)

Proof. Take E0 ∈ E such that

η − τ ≤ |||fχ(0,t)|||E0 ≤ sup
E∈E
|||fχ(0,t)|||E . (4.10)
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At first, we will find E1 ∈ E and γ ∈ K such that (4.7) and (4.8) hold with
E1 in place of E. According to Lemma 4.3, there is a number s0, 0 < s0 < t,
such that |||fχ(0,s0)|||E0 ≤ τ and so, by (4.10),

|||fχ(s0,t)|||E0 ≥ η − 2τ.

Set r = inf
⋃
IE0
β where the union is taken over all β ∈ K such that

IE0
β ∩ (s0, t) 6= ∅. (4.11)

Note, that r < t. We will distinguish two cases: s0 ≤ r and r < s0. Let s0 ≤ r.
Then |||fχ(s0,t)|||E0 = |||fχ(r,t)|||E0 . By Lemma 4.3, there exists a number t1,
r < t1 < t, such that |||fχ(r,t1)|||E0 < τ . We take γ such that r ≤ inf IE0

γ < t1.
Then γ satisfies (4.11). We define the mapping P : K → F by

P (ω) =

{
IE0
ω if ω = γ or if ω is to the right of γ,
−1 + Iω if ω is to the left of β,

where Iω are the intervals from the construction of the classical Cantor set in
Section 3 and we set E1 =

⋃
ω∈K P (ω). Clearly, P ∈ P and E1 ∈ E . Then

(4.7) is satisfied and the estimates

|||fχ(s,t)|||E1 ≥ |||fχ(t1,t)|||E0 ≥ |||fχ(r,t)|||E0 − |||fχ(r,t1)|||E0 ≥ η − 3τ

yield
|||fχ(s,t)|||E1 >

η

2
− 2τ. (4.12)

Now, let r < s0. There exists a unique multiindex β satisfying (4.11) and
inf IE0

β < s0. Then inf IE0
β = r and either

r < s0 < t ≤ q (4.13)

or
r < s0 < q < t, (4.14)

where q = sup IE0
β .

Assume first that (4.13) holds. We change the set E0 pasting the mass of
IE0
β \ (s0, t) to the right of t. We define the mapping P : K → F by

P (ω) =


[
(s0, t) ∩ IE0

β

]
∪
(
t, t+ |IE0

β \ (s0, t)|
)

if ω = β,

−1 + Iω if ω is to the left of β,
t+ |IE0

β \ (s0, t)|+ Iω if ω is to the right of β,
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and set E1 =
⋃
ω∈K P (ω). Clearly, P ∈ P and E1 ∈ E . We set γ = β. Since

(s0, t) ∩E1 = (s0, t) ∩E0 = (s0, t) ∩ IE0
β = (s0, t) ∩ IE1

β = (s, t) ∩ IE1
β , we have

|||fχ(s,t)|||E1 = |||fχ(s0,t)|||E0 ≥ η − 2τ >
η

2
− 2τ.

Now, let (4.14) hold. Then

η − 2τ ≤ |||fχ(s0,t)|||E0 ≤ |||fχ(s0,q)|||E0 + |||fχ(q,t)|||E0 = A+B

and so, either A ≥ η
2 − τ or B ≥ η

2 − τ . If A ≥ η
2 − τ we define P by

P (ω) =


−1 + Iω if ω is to the left of β,[
(s0, q) ∩ E0

]
∪ (q, q + |(r, s0) ∩ E0|) if ω = β,

q + |(r, s0) ∩ E0|+ Iω if ω is to the right of β,

and set E1 =
⋃
ω∈K P (ω). As in the previous case, P ∈ P, setting γ = β we

obtain (4.7), and

|||fχ(s,t)|||E1 ≥ |||fχ(s,q)|||E1 = |||fχ(s0,q)|||E0 = A ≥ η

2
− τ

implies (4.12).
If B ≥ η

2 − τ , we set t1 = inf
⋃
IE0
ω where the infimum is taken over all

ω ∈ K, which are to the right of β. Then q < t1 < t. By Lemma 4.3, there is
a number s2, t1 < s2 < t, such that |||fχ(s2,t)|||E0 ≥

η
2 − 2τ. According to the

definition of t1 there is a multiindex β′ such that t1 ≤ inf IE0
β′ < s2. We define

P (ω) =


−1 + Iω if ω is to the left of β′,
IE0
β′ if ω = β′,

IE0
ω if ω is to the right of β′.

Then P ∈ P, and setting E1 =
⋃
ω∈K P (ω) and γ = β′ we obtain (4.7) and

also (4.12) since
|||fχ(s,t)|||E1 ≥ |||fχ(s2,t)|||E0 .

Thus, we have E1 ∈ E and γ ∈ K satisfying (4.7) and (4.8). If E1 satisfies
(4.9), we set E = E1. Assume that E1 does not satisfy (4.9). We have to
change it so that (4.7), (4.8) remain valid and, moreover, (4.9) holds.

If |IE1
ω | ≤ 3t for all ω such that IE1

ω ∩ (s, t) 6= ∅, then there exists α ∈ K
such that inf IE1

α < t < sup IE1
α . We define

P (ω) =


−1 + Iω if ω is to the left of α,[
IE1
α ∩ (s, t)

]
∪
(
t, t+ |IE1

α \ (s, t)|
)

if ω = α,

5t+ Iω if ω is to the right of α
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and set E =
⋃
ω∈K P (ω). It is seen that (4.9) holds.

If |IE1
α | > 3t and IE1

α ∩ (s, t) 6= ∅ for some α ∈ K, then this α is determined
in a unique way. We take the integer j such that

3jt < |IE1
α | ≤ 3j+1t (4.15)

and denote by L the set of all ω ∈ K such that IE1
ω ∩ (s, t) 6= ∅. We denote

α = (a1, . . . , ak) and define the multiindex α′ = (a1, . . . , ak, 0, 1, . . . , 1) with
`(α′) = k + j. The family L has the properties

α′ /∈ L,
if ω is between ω1, ω2 ∈ L, then ω ∈ L, (4.16)

if ω ∈ L \ {α}, then α′ � ω, `(ω) > `(α′) and ω is to the right of α′.

We set z = 3−k−j−1 − |IE1
α ∩ (s, t)|. Note that (4.15) yields z > 0. It follows

from (4.16) that the (k + j + 1)-th component of every ω ∈ L \ {α} is 1.
We consider the injection κ : L \ {α} → K which changes the (k + j + 1)-th
component from 1 to 0 and keeps all other components unchanged. Obviously,
κ preserves the relation �. We define the mapping P : K → F by

P (ω) =



−1 + Iω if ω is to the left of any element of
κ(L \ {α}),

IE1
κ−1(ω) if ω ∈ κ(L \ {α}),[
IE1
α ∩ (s, t)

]
∪ (t, t+ z) if ω = α′,

t+ z + Iω if ω is to the right of α′.

A simple analysis shows that P ∈ P. We set E =
⋃
ω∈K P (ω). Then E ∈

E , (4.7) and (4.9) are satisfied, and it remains to verify the estimate (4.8).
According to (3.9), we have

|||fχ(s,t)|||E =
∞∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(ω)=n
α�ω

∫
IEω

|fχ(s,t)|.

The integrals vanish for all ω except ω = α′ or ω ∈ κ(L), and

3`(ω)+1

2`(ω)

∫
IEω

|fχ(s,t)| =
3`(ω)+1

2`(ω)

∫
I
E1
κ−1(ω)

|fχ(s,t)| for ω ∈ κ(L),

3`(α
′)+1

2`(α′)

∫
IE
α′

|fχ(s,t)| =
(3

2

)j 3`(α)+1

2`(α)

∫
I
E1
α

|fχ(s,t)|.
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This immediately yields the inequality |||fχ(s,t)|||E ≥ |||fχ(s,t)|||E1 and so, by
(4.12), the estimate (4.8) holds.

Lemma 4.5. Let E ∈ E, γ ∈ K, 0 < s < t < 1 and 0 < τ < θ/2. Let f ∈ X
be such that |||fχ(s,t)|||E ≥ θ. Then there exists a positive integer N such that

N ≥ `(γ) (4.17)

and
N∑
k=0

max
`(α)=k

sup
k≤n≤N

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)| ≥ θ − 2τ.

Proof. There exists a positive integer N1 ≥ `(γ) such that

N1∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)| ≥ θ − τ.

For every α, `(α) = k ≤ N1, we can find an integer N2(k, α) ≥ N1 such that

sup
k≤n≤N2(k,α)

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)| ≥ sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)|−
τ

2N1+1 − 1
.

Setting N = max{N2(α, k) : 0 ≤ k ≤ N1, `(α) = k} we obtain

N∑
k=0

max
`(α)=k

sup
k≤n≤N

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)|

≥
N1∑
k=0

max
`(α)=k

sup
k≤n≤N2(α,k)

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)|

≥
N1∑
k=0

max
`(α)=k

(
sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)| −
τ

2N1+1 − 1

)

≥
N1∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)| − τ ≥ θ − 2τ.
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Lemma 4.6. Let f ∈ X be such that

lim
t→0+

sup
E∈E
|||fχ(0,t)|||E = η > 0. (4.18)

Let 0 < s < t < 1, E ∈ E and γ ∈ K satisfy (4.7) and

|||fχ(s,t)|||E = θ > 0. (4.19)

Then for every τ , 0 < τ < min(η/8, θ/2) there exist F ∈ E, s1 ∈ (0, s) and
γ1 ∈ K such that s1 = inf IFγ1 and |||fχ(s1,t)|||F ≥ θ + η

2 − 4τ.

Proof. Let
0 < t1 < min{s/7, 3−N−2} (4.20)

where N is the integer from Lemma 4.5. Since (4.6) holds with t1 in place of
t, from Lemma 4.4 we obtain s1 ∈ (0, t1), γ1 ∈ K and E1 ∈ E such that

0 < s1 := inf IE1
γ1 < t1, (4.21)

|||fχ(s1,t1)|||E1 ≥
η

2
− 2τ, (4.22)

sup IE1
ω ≤ 4t1 and |IE1

ω | ≤ 3t1 whenever IE1
ω ∩ (s1, t1) 6= ∅. (4.23)

Set
L = {ω : IEω ∩ (s, t) 6= ∅}, L1 = {ω : IE1

ω ∩ (s1, t1) 6= ∅}

and denote α = (a1, . . . , ak) the (unique) minimal element of L1 with respect
to the relation �. By (4.23), (4.20) and (4.17), the inequalities

3−`(α)−1 = |IE1
α | ≤ 3t1 < 3−N−1 ≤ 3−`(γ)−1

hold. Hence `(α) ≥ `(γ) + 1. Let γ = (c1, . . . , cj). The first k components of
every element of L1 coincide with the components of α and we can define the
injection κ : L1 → K by

ω = (a1, . . . , ak, b1, . . . , bn) 7→ κ(ω) = (c1, . . . , cj , 0, 1, . . . , 1, b1, . . . , bn),
`(κ(ω)) = `(ω).

Every κ(ω) is to the left of every element of L because its (j + 1)-th
component is zero and, by (4.7), γ is the left most element of L. Denote by
H1 the family of all multiindices which are to the left of every element of
κ(L1), by H2 the family of multiindices which are between κ(L1) and L, and
by H3 the set of all multiindices which are to the right of every element of L.
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Set δ = (c1, . . . , cj , 0, 1, . . . , 1) with `(δ) = k + 1, r = inf
⋃
δ�β Iβ and define

the mapping P : K → F by

P (ω) =



−1 + Iω if ω ∈ H1,

IE1
κ−1(ω) if ω ∈ κ(L1),

−r + 4t1 + Iω if ω ∈ H2,

IEω if ω ∈ L,
supE + Iω if ω ∈ H3,

where Iω are the intervals from the construction of the classical Cantor set in
Section 3. Set F =

⋃
ω∈K P (ω). Then P satisfies (3.1), F is bounded and in

order to show that F ∈ E we have to verify (3.2).

If β is to the left of β′ and both β, β′ belong to one of the sets H1, κ(L),
H2, L or H3, then obviously P (β) is to the left of P (β′). If β ∈ H1, then
P (β) = −1 + Iω ⊂ (−1, 0). If β = κ(ω) for some ω ∈ L1, then P (β) = IE1

ω ⊂
[s1, 4t1] according to (4.21) and (4.23). If β ∈ L, then P (β) ⊂ [s, supE]. If
β ∈ H3, then P (β) ⊂ (supE, supE + 1). Finally, let β ∈ H2. Since

H2 ⊂ {ω ∈ K : δ � ω}, (4.24)

we have inf P (β) > 4t1. On the other hand, by (4.24) and (4.23),

sup
⋃
δ�ω

Iω − inf
⋃
δ�ω

Iω = |
⋃
δ�ω

Iω| = 3−`(δ) = 3−k−1 = |IE1
α | ≤ 3t1.

This yields supP (β) = −r + 4t1 + sup Iβ < 7t1 < s by (4.20). All these
relations together imply that F satisfies (3.2).

Now, we can write

|||fχ(s1,t)|||F ≥
N∑
k=0

max
`(α)=k

sup
k≤n≤N

3n+1

2n
∑

`(β)=n
α�β

∫
IFβ

|fχ(s,t)|

+
∞∑

k=N+1

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IFβ

|fχ(s1,t1)| = A+B.
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Since IFβ ∩ (s, t) 6= ∅ if and only if β ∈ L, we have

A =
N∑
k=0

max
`(α)=k

sup
k≤n≤N

3n+1

2n
∑

`(β)=n
α�β

∫
IFβ

|fχ(s,t)|

=
N∑
k=0

max
`(α)=k

sup
k≤n≤N

3n+1

2n
∑

`(β)=n
α�β

∫
IEβ

|fχ(s,t)|

and so, according to the assumption (4.19) and Lemma 4.5, A ≥ θ−2τ. Using
the definitions of L1, κ and P we obtain

B =
∞∑

k=N+1

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
IFβ

|fχ(s1,t1)|

=
∞∑

k=N+1

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
I
E1
β

|fχ(s1,t1)|.

According to (4.23) and (4.20), for every β ∈ L1 we have 3−N−1 > 3t1 ≥
|IE1
β | = 3−`(β)−1 and so, `(β) > N . Hence, by (4.22),

B =
∞∑
k=0

max
`(α)=k

sup
n≥k

3n+1

2n
∑

`(β)=n
α�β

∫
I
E1
β

|fχ(s1,t1)| = |||fχ(s1,t1)|||E1 ≥
η

2
− 2τ.

Thus, |||fχ(s1,t)||| ≥ A+B ≥ θ + η
2 − 4τ.

Lemma 4.7. Every function f ∈ X has continuous norm in X; i.e., Xc = X.

Proof. Our aim is to prove that for every f ∈ X, lim
t→0+

‖fχ(x−t,x+t)∩(0,1)‖ = 0,

x ∈ [0, 1] or, equivalently,

lim
t→0+

‖fχ(x,x+t)‖ = 0, x ∈ [0, 1), (4.25)

and limt→0+ ‖fχ(x−t,x)‖ = 0, x ∈ (0, 1]. We will prove only (4.25); the other
relation can be proved in the same way. Without loss of generality we can
suppose that x = 0 because ‖fχ(x,x+t)‖ = ‖gχ(0,t)‖ for g(ξ) = f(ξ + x),
0 < ξ < 1− x.
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Assume, to the contrary, that f ∈ X \ Xc, f 6= 0; i.e., f satisfies (4.18).
Let 0 < τ < η/22. Then there exist 0 < t < 1 and E ∈ E such that

η ≤ sup
E∈E
|||fχ(0,t)|||E < η + τ. (4.26)

Let s ∈ (0, t), γ ∈ K and E ∈ E be from Lemma 4.4 and let N be the
corresponding integer from Lemma 4.5. Then the assumptions of Lemma 4.6
are satisfied with θ ≥ η

2 − 2τ and so there exist E1 ∈ E , s1 ∈ (0, s) and γ1 ∈ K
such that s1 = inf IE1

γ1 and |||fχ(s1,t)|||E1 ≥ θ + η
2 − 4τ ≥ η − 6τ. Hence the

assumptions of Lemma 4.6 are satisfied with s1, E1, γ1 and θ ≥ η − 6τ , and
there exist E2 ∈ E , s2 ∈ (0, s1), γ2 ∈ K such that s2 = inf IE2

γ2 and

|||fχ(s2,t)|||E2 ≥ θ +
η

2
− 4τ ≥ 3

2
η − 10τ > η + τ.

This contradicts the assumption (4.26).

Remark. It is possible to repeat the last step in the proof ad libitum to get
that ‖f‖ =∞.
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[3] D. E. Edmunds, J. Rákosńık, Density of smooth functions in W k,p(x)(Ω),
Proc. R. Soc. London, 437 (1992), 229–236.
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