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THE ESSENTIAL POINT SET OF A
CONTINUOUS FUNCTION

Abstract

For continuous self maps of [0, 1], we extend M. K. Fort, Jr.’s no-
tion of an essential fixed point to points generating nonsingleton ω-limit
sets. The ω-limit sets of these essential points are, in a metric sense,
stable under small perturbations of the function. We develop some of
the properties of the essential point set of a continuous function, and
investigate the relationship between essential points, ω-limit sets, and
the chaotic nature of the generating function.

1 Introduction

In Essential and non-essential fixed points, M. K. Fort, Jr. establishes the
notion of an essential fixed point with the following definition: Let x be a
fixed point of f , a continuous self-map of I = [0, 1]. If, for each neighborhood
U of x, there is an ε > 0 so that g : I → I has a fixed point in U whenever
‖f − g‖ < ε, then x is an essential fixed point of f . Using the notion of
semicontinuity and some of his earlier work involving set valued functions,
Fort shows that the collection of essential functions found in C(I, I) forms a
residual set; that is, the typical element of C(I, I) has the property that each
of its fixed points is essential. Since the appearance of Fort’s paper, several
authors - to include Jiang, et al [12], S. Kinoshita [13], Y. Yonezawa [20], and
Del Prete, et al [8] - have endeavored to extend or generalize his results. For
the most part, these efforts have concentrated on extending Fort’s results to
spaces more general than C(I, I), the collection of continuous self-maps of the
unit interval. In this paper we work exclusively in C(I, I) while extending
Fort’s concept of an essential point to points with nonsingleton ω-limit sets.

We proceed through several sections. In section two we present the notation
and definitions we will use throughout the balance of the paper. Paramount
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among these is the following extension of Fort’s notion of an essential point:
Let x be a recurrent point of f in C(I, I). We call x an essential point of
f if for any ε > 0 there exists a corresponding δ > 0 so that, whenever
g ∈ C(I, I) for which ‖f − g‖ < δ, there exists y a recurrent point of g such
that H(ω(x, f), ω(y, g)) < ε, where H denotes the Hausdorff metric. While
perhaps not immediately apparent, we could just as well require that y is a
recurrent point of g such that |x− y|+H(ω(x, f), ω(y, g)) < ε; that is, require
y to be close to x as well as its ω-limit set being close to ω(x, f). This is
an equivalent formulation of an essential point, as we show in the proof of
Proposition 17.

In section three we examine some of the elementary properties of a contin-
uous function’s set of essential points. We find that the essential point set of a
function inherits many, but by no means all, of the properties of the recurrent
point set, of which it is a subset. For example, while both sets are strongly
invariant under the generating function, the essential point set of an iterate
fn of f may be a proper subset of the essential point set of f , whereas the
recurrent sets of fn and f are always equal. We also characterize essential pe-
riodic points of continuous functions using Bruckner’s notion of stability [4].
This section concludes with a characterization of essential functions possessing
zero topological entropy.

Section four is dedicated to the relationship between essential points and
the ω-limit sets to which they give rise. For example, we show that ω(x, f)
must necessarily be a finite set, a Cantor set, or a union of finitely many
nondegenerate closed intervals whenever x is an essential point of f .

Our last section concerns the three maps defined on C(I, I) that send a
function to its collection of essential periodic points, recurrent points, and
essential points. By considering the continuity structure of these maps, we are
able to develop some insight into how perturbations affect a function’s periodic,
recurrent and essential point sets. We also find that essential functions are
dense in the space of continuous self-maps of I with zero topological entropy,
a closed subset of C(I, I).

2 Preliminaries

We shall be concerned with the class C(I, I) of continuous functions mapping
the unit interval I = [0, 1] into itself, and the properties associated with the
essential point set of these functions. For f in C(I, I) and any integer n ≥ 1, fn

denotes the nth iterate of f . Let P (f) represent those points p ∈ I that are
periodic under f , and if p is a periodic point of period n for which fn(p)− p
is not unisigned in any deleted neighborhood of p, then p is called a stable
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periodic point; we let S(f) represent the stable periodic points of f . Those
periodic points and stable periodic points of period n are denoted by Pn(f)
and Sn(f), respectively. Let F (f) = {x ∈ I : f(x) − x = 0} represent the
fixed point set of f , so that Fn(f) = F (fn) = {x ∈ I : fn(x) − x = 0} =
∪m|nPm(f). For each x in I, we call the set of all subsequential limits of the
trajectory {fn(x)}∞n=0 the ω-limit set of f generated by x, and write ω(x, f).
Let Λ(f) = ∪x∈Iω(x, f) represent the collection of ω-limit points of f , while
Ω(f) = {ω(x, f) : x ∈ I} denotes the set composed of the ω-limit sets of f .
If x ∈ ω(x, f), then we call x a recurrent point of f , and write x ∈ R(f);
this is equivalent to saying that there exists a sequence {nk} ⊂ N for which
limk→∞ fnk(x) = x. Now, let ε > 0 be given, and take x and y to be any points
in [0, 1]. An ε-chain from x to y with respect to a function f is a finite set of
points {x0, x1, ..., xn} in [0, 1] with x = x0, y = xn and |f(xk−1)− xk| < ε for
k = 0, 1, ..., n− 1. We call x a chain recurrent point of f if there is an ε-chain
from x to itself for any ε > 0, and write x ∈ CR(f).

In addition to the usual, Euclidean metric d on I = [0, 1], we will be working
in two metric spaces. Within C(I, I) we will use the supremum metric given
by ‖f − g‖ = sup{|f(x) − g(x)| : x ∈ I}. Our second metric space (K,H)
is composed of the class of nonempty closed sets K in I endowed with the
Hausdorff metric H given by H(E,F ) = inf{δ > 0 : E ⊂ Bδ(F ), F ⊂ Bδ(E)},
where Bδ(F ) = {x ∈ I : d(x, y) < δ, y ∈ F}. This space is compact [5]. We are
now in a position to generalize Fort’s notion of an essential fixed point. For
f in C(I, I), we call x an essential point of f if x ∈ R(f), and for any ε > 0
there exists a corresponding δ > 0 so that, whenever g ∈ C(I, I) for which
‖f−g‖ < δ, there exists y a recurrent point of g such thatH(ω(x, f), ω(y, g)) <
ε. We call f an essential function if R(f) = E(f), the essential point set of f .
The following result involving Ω(f) and (K,H) from [3] will be needed in the
ensuing sections.

Theorem 1. For any f in C(I, I), the set Ω(f) is closed in (K, H).

In much of the sequel we will restrict our attention to a closed subset E of
C(I, I) composed of those functions f having zero topological entropy, denoted
by h(f) = 0. The reader is referred to Theorem A of [11] for an extensive list
of equivalent formulations of topological entropy zero. For our purposes, it
suffices to note that every periodic orbit of a continuous function with zero
topological entropy has cardinality of a power of two. The following theorem,
due to Smı́tal [15], sheds considerable light on the structure of infinite ω-limit
sets for functions with zero topological entropy.

Theorem 2. If ω is an infinite ω-limit set of f ∈ C(I, I) possessing zero
topological entropy, then there exists a sequence of closed intervals {Jk}∞k=1 in
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[0, 1] such that

1. for each k, {f i(Jk)}2k

i=1 are pairwise disjoint, and Jk = f2k

(Jk).

2. for each k, Jk+1 ∪ f2k

(Jk+1) ⊂ Jk.

3. for each k, ω ⊂ ∪2k

i=1f
i(Jk).

4. for each k and i, ω ∩ f i(Jk) 6= ∅.

We make the following definitions with Smı́tal’s Theorem in mind. Let
ω be an infinite compact subset of I, and let f map ω into itself. We call
f a simple map on ω if ω has a decomposition S ∪ T into compact portions
that f exchanges, and f2 is simple on each of these portions. From Smı́tal’s
Theorem one sees that every map f with zero topological entropy is simple on
each of its infinite ω-limit sets. Let {Jk}∞k=1 be a nested sequence of compact
periodic intervals with respect to ω and f as described in Smı́tal’s Theorem.
Every set of the form ω ∩ f i(Jk) is periodic of period 2k, and we call each
such set a periodic portion of rank k. This system of periodic portions of
ω, or of the corresponding periodic intervals, is called the simple system of
ω with respect to f . We now recall a device from [9] that allows us to code
the sets f i(Jk) with finite tuples of zeros and ones. Let N denote the natural
numbers, and take N to be the set of sequences composed of zeros and ones.
If n ∈ N and n = {ni}∞i=1, we let n|k = (n1, n2, ..., nk). Set 0 = {0, 0, ....} and
1 = {1, 1, ....}. Now, define a function A : N −→ N given by A(n) = n + 10,
where addition is modulus two from left to right. For each k ∈ N and i ∈ N
put F1|k = Jk and FAi(1|k) = f i(Jk). Thus, for each m and n in N and k ∈ N
there is a j ∈ N such that Aj(m|k) = n|k; the above relations define Fn|k for
all n ∈ N and k ∈ N. Now, set Fn = ∩∞k=1Fn|k, and let K = ∪n∈N ∩∞k=1 Fn|k.
Then K and each Fn are compact, and the components of K consist of the
Fn sets.

Given the very specific behavior that functions of zero topological entropy
must demonstrate on their infinite ω-limit sets, it may not be too surprising
that Bruckner and Smı́tal have been able to characterize these sets [7].

Theorem 3. An infinite compact set W ⊂ (0, 1) is an ω-limit set of a map
f ∈ C(I, I) with zero topological entropy if and only if W = Q ∪ P , where
Q is a Cantor set and P is empty or countably infinite, disjoint with Q, and
satisfies the following conditions:

• every interval contiguous to Q contains at most two points of P ;

• each of the intervals [0,minQ), (maxQ, 1] contains at most one point of
P , and
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• P = Q ∪ P .

While the iterative structures of continuous functions with positive topo-
logical entropy can be quite involved, we will be able to make good use of
one structure, called a horseshoe, that is shared by all these functions. If f
is a continuous self-map of I for which h(f) > 0, then there exist compact
subintervals J and K in I with at most one common point, and a natural
number m, for which J ∪K ⊂ fm(J) ∩ fm(K). Because of this there exists a
compact set X ⊂ I such that fm(X) = X, and fm|X is semiconjugate to the
shift operator σ on two symbols [2].

Positive topological entropy provides one notion of chaos; another concept
of chaos comes from Li and Yorke [14]. We say a function f ∈ C(I, I) is chaotic
in the sense of Li and Yorke if there exists an uncountable set X ⊂ I so that
for any pair of distinct points x and y in X, lim infn→∞ |fn(x) − fn(y)| = 0
and lim supn→∞ |fn(x) − fn(y)| > 0. The existence of a horseshoe X ⊂ I
insures that every function f for which h(f) > 0 is chaotic in the sense of Li
and Yorke. As Bruckner and Ceder show [6], a function f with zero topological
entropy is chaotic in the sense of Li and Yorke if and only if intK 6= ∅ for
some simple system of f .

3 The Set of Essential Points

We begin with a rather straightforward geometric characterization of essential
periodic points. This result uses Bruckner’s notion of stability [4], and gener-
alizes the characterization of an essential fixed point found in [8] in a natural
way.

Proposition 4. If f ∈ C(I, I), then z is an essential periodic point of f if
and only if z ∈ S(f).

Proof. Suppose z ∈ Sn(f) so that fn(z)− z is not unisigned in any deleted
neighborhood of z. Let ε > 0. Thus, for every g ∈ C(I, I) sufficiently close
to f , there exist x, y in B ε

2
(z) so that gn(x) > x and gn(y) < y, and Pn(g) ∩

B ε
2
(z) 6= ∅. By taking δ < ε

2 if necessary, we may insure the existence of
x ∈ Pn(g) ∩ Bδ(z) whenever ‖f − g‖ < δ so that H(ω(x, g), ω(y, g)) < ε. It
follows that z is an essential point of f .

Now, let us suppose z ∈ Pn(f) is an interior point of I, and there exists U a
neighborhood of z so that fn(x)−x ≥ 0 for any x ∈ U . The proof concerning
the endpoints is similar. By taking a smaller neighborhood of z if necessary, we
may presume fn(x) 6= 1 for any x ∈ U , too. Now, let V be a neighborhood of
z contained in U so that V, f(V ), f2(V ), ..., fn−1(V ) are disjoint, and fn(V ) ⊂
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U . Let ε > 0, and set a = inf{fn−1(x) : x ∈ V }, b = sup{fn−1(x) : x ∈ V }.
Let g ∈ C(I, I) for which ‖f − g‖ < ε, g(x) > f(x) on [a, b], gn(V ) ⊂ U and
V, g(V ), g2(V ), ..., gn−1(V ) are disjoint. Then F (gn) ∩ V = ∅, and z is not
essential.

We now turn our attention to results concerning the structure and proper-
ties of the set of recurrent points and the set of essential points of a continuous
self-map of the interval. We see that, while E(f) inherits many of R(f)’s nice
properties, this is by no means always the case. We begin with a result that
relates the structure of the recurrent point set of a function to its topological
entropy. While this result must be known, the author is unable to provide a
reference.

Lemma 5. If f ∈ C(I, I), then R(f) is closed if and only if h(f) = 0.

Proof. Suppose h(f) = 0. From Proposition IV.15 of [2], we know that
R(f) ⊂ P (f) for any f ∈ C(I, I). Let {xn} ⊂ R(f) so that xn → x. Then
there exists {yn} ⊂ P (f) such that yn → x, and since Ω(f) is closed in (K,H)
compact, we may also assume that ω(yn, f) → ω ∈ Ω(f), with x ∈ ω. If x is
not contained in R(f), then x cannot be a periodic point, since P (f) ⊂ R(f) by
definition. If ω is a Cantor set, then ω(y, f) = ω for all y ∈ ω by Proposition
3.1(7) of [6]. If x is not a recurrent point, then, it follows that ω must be
infinite, and by Theorem 3 that ω = Q ∪ P , where Q is a Cantor set and
P is nonempty and countably infinite. Moreover, x is an element of P : if
x ∈ Q, then ω(x, f) = Q, a proper subset of Q ∪ P , and x ∈ R(f), again by
Proposition 3.1(7) [6]. But x ∈ P contradicts the existence of {yn} ⊂ P (f)
for which yn → x, as parts (6) and (13) of Proposition 3.1 [6] show that
P ∩ P (f) = ∅.

Now, suppose h(f) > 0. Then there exists X ⊂ I and m a natural number
so that fm : X → X is semiconjugate to the shift operator σ on two symbols,
so that X is not contained in R(f). Since P (f) ⊂ R(f) and X ⊂ P (f), R(f)
is not closed.

In a similar fashion one sees that the set of essential points of a function is
also closed if and only if the function has zero topological entropy. In the course
of our proof we presume that S(fm) ⊂ S(f); we prove this in Proposition 13.

Theorem 6. If f ∈ C(I, I), then E(f) is closed if and only if h(f) = 0.

Proof. Suppose h(f) = 0, {xn} ⊂ E(f) and xn → x. Since Ω(f) is closed in
the compact metric space (K,H), we may presume that ω(xn, f)→ ω ∈ Ω(f),
where x ∈ ω. Suppose now that x is not an element of R(f). Then ω = P ∪Q,
where P is a Cantor set and Q is countable, with x ∈ Q. If ω(xn, f) is infinite,
then ω(xn, f) is perfect, so there is yn ∈ P (f) so that H(ω(xn, f), ω(yn, f)) <
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1
n ; thus there exists {yn} ⊂ P (f) such that yn → x. But this contradicts
x being an element of Q, so that x ∈ R(f). Moreover, since h(f) = 0, it
follows that ω = ω(x, f). It remains to show that x is essential. Let ε > 0.
There exists N a natural number so that H(ω(xN , f), ω(x, f)) < ε

2 , and there
exists δ > 0 so that ‖f − g‖ < δ implies the existence of y ∈ R(g) so that
H(ω(xN , f), ω(y, g)) < ε

2 . Thus, H(ω(x, f), ω(y, g)) < ε, and our conclusion
follows.

Suppose h(f) > 0, and let X ⊂ I so that fm|X is semiconjugate to
the shift operator σ on two symbols, for some natural number m. Since X
contains a homoclinic trajectory, X is not contained in R(fm) = R(f) [2].
Since X ⊂ S(fm), and S(fm) ⊂ S(f), it follows that X ⊂ S(f). Thus S(f)
is not a subset of E(f), so that E(f) is not closed.

Before considering a couple interesting consequences of our lemma, we
develop an example to show just how badly the set of essential points can fail
to be closed when one considers a function with positive topological entropy.

Example 7. There exists f ∈ C(I, I), necessarily possessing positive topolog-
ical entropy, and a sequence of essential periodic orbits {ω(xk, f)}∞k=1 in Ω(f)
for which ω = limk→∞ ω(xk, f) exists, yet no point of ω is essential.

Construction. Let h : [0, 1] → [0, 1] be the hat function given by x 7−→ 2x
if x ∈ [0, 1

2 ] and x 7−→ 2(1 − x) if x ∈ [ 12 , 1]. Then h2k

has a zero at l

22k if

2|l and h2k

is one at l

22k if 2 does not divide l, for l = 0, 1, ..., 22k

. To get the

entire graph of h2k

we extend it linearly on each of the intervals [ m
22k ,

m+1

22k ], for

m = 0, 1, ..., 22k − 1. It follows that h has an essential periodic point of period
2k on the interval [ 1

22k ,
1

22k−1
]; call this point xk. Since (K,H) is a compact

metric space, there exists {xkj
} ⊂ {xk} so that limj→∞ ω(xkj

, h) exists; call
this limit set ω. Since Ω(h) is closed, ω ∈ Ω(h), and because xkj → 0, we
know that 0 ∈ ω. Since {0} is not an essential point of h, it follows that the
set of essential points of h is not closed. In fact, a tedious but not too difficult
calculation shows that we can take {xkj

} = {xk} and ω = {0} ∪ {∪∞k=0
1
2k }, so

that ω is a homoclinic trajectory of h. Since ω(x, h) = {0} for any x ∈ ω, one
sees that {0} = R(h)∩ω. Because {0} is not contained in E(f), ω∩E(f) = ∅.
It is worth noting that 0 is the unique periodic point of h that is not stable.

We now consider a couple corollaries to Proposition 6.

Corollary 8. If f ∈ C(I, I) and h(f) = 0, then S(f) ⊂ E(f).

It may, in fact, be true that S(f) = E(f) whenever f is a continuous
function with zero topological entropy, but the author is unable to either
prove this or develop an appropriate counterexample.
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Corollary 9. If f ∈ C(I, I), h(f) = 0 and x ∈ R(f) for which ω(x, f) is
infinite, then x is an essential point.

Proof. Since x ∈ R(f), it follows that ω(x, f) is a nowhere dense per-
fect set, so that there exists ωn ∈ Ω(f) such that |ωn| = 2n for any n, and
H(ωn, ω(x, f))→ 0 as n→∞. Let ε > 0, and choose N a natural number so
that H(ωN , ω(x, f)) < ε

2 . Moreover, we may choose our N so that there is a
δ > 0 for which ‖f − g‖ < δ implies the existence of y a periodic point of g
with H(ωN , ω(y, g)) < ε

2 , by Theorem II.19 of [2]. It follows that y ∈ R(g) for
which H(ω(y, g), ω(x, f)) < ε.

Our next result shows that, just as the set of recurrent points of a contin-
uous function is strongly invariant, so is the set of essential points.

Proposition 10. If f ∈ C(I, I), then f(E(f)) = E(f).

Proof. Suppose x ∈ E(f), and y = f(x). Then y ∈ ω(x, f) = ω(f(x), f) =
ω(y, f), so that y ∈ R(f). Let ε > 0. Since x ∈ E(f), there exists a δ > 0
so that ‖f − g‖ < δ implies the existence of z a recurrent point of g for
which H(ω(z, g), ω(x, f)) = H(ω(z, g), ω(y, f)) < ε. Thus, y ∈ E(f), and
f(E(f)) ⊂ E(f).

Now, suppose x ∈ E(f). Then x ∈ ω(x, f), and since ω(x, f) is strongly
invariant under f , there is a y in ω(x, f) for which f(y) = x. Since y must be
an essential point of f , it follows that f(E(f)) ⊃ E(f).

As mentioned earlier, E(f) inherits some, but not all, of the nice properties
R(f) possesses. We turn our attention to some of these differences. We first
show that, while R(fn) = R(f) for any natural number n, the inclusion can
be proper when one considers essential points; this is true even for functions
with zero topological entropy.

Proposition 11. For any f in C(I, I) and for any natural number n, E(fn) ⊂
E(f).

Proof. Since x ∈ E(fn), it follows that x ∈ ω(x, fn). Since ω(x, fn) ⊂
ω(x, f) for any n ∈ N, we have that x ∈ ω(x, f), so that x ∈ E(f).

Example 12. There exists a function f possessing zero topological entropy for
which E(fn) is a proper subset of E(f) for infinitely many natural numbers
n.

Construction. Let f ∈ C(I, I) be given by f(x) = 1− x. Then y = 1
2 is an

essential fixed point of f , and since f2(x) = 1− (1− x) = x, we see that f2k

is the identity function for all k in N.
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In a similar fashion, S(fn) can be a proper subset of S(f), even though
P (f) and P (fn) are always equal. Our next proposition confirms that S(fm) ⊂
S(f) for all natural numbers m, a fact assumed without proof in the verifi-
cation of Theorem 6. One can also view this proposition as a corollary to
Proposition 11.

Proposition 13. Let f ∈ C(I, I). If y ∈ Pn(f), and there exists m = kn a
natural number so that fm(x)−x is not unisigned in any deleted neighborhood
of y, then y is an essential periodic point.

Proof. Suppose, to the contrary, that y is not an essential periodic point of
f, so that there exists U a neighborhood of y on which fn(x)−x is unisigned.
Say fn(x) − x ≥ 0 for any x in U. Since fn is uniformly continuous, there
exists V ⊂ U a neighborhood of x so that f jn(V ) ⊂ U , for j = 1, 2, ..., k. That
fkn(x) ≥ x for any x ∈ V ⊂ U follows from the fact that fn(x) − x ≥ 0 for
any x in U . But this implies fm(x)− x is unisigned on V .

We close this section with a characterization of essential functions with
zero topological entropy.

Theorem 14. If f ∈ C(I, I) and h(f) = 0, then f is an essential function if
and only if every periodic point of f is essential.

Proof. Suppose every periodic point of f is essential. Since R(f) ⊂ P (f), it
suffices to show that x ∈ R(f) − P (f) is an essential point. But this implies
that ω(x, f) is infinite, so our conclusion follows from Corollary 9.

If f is an essential map, then every point of R(f) must be essential. But
P (f) ⊂ R(f), so every periodic point of f is essential.

4 Essential Points and ω-Limit Sets

We now turn our attention to a brief discussion of essential points, and their
relationship to the function’s ω-limit sets. Our first result deals with the types
of ω-limit sets that can be generated by the recurrent points of a continuous
function. We get an analogous result concerning essential points as a corollary.

Proposition 15. If f ∈ C(I, I) and x is a recurrent point of f , then ω(x, f)
must be either finite or perfect. That is, ω(x, f) must be either a periodic orbit,
a Cantor set, or a union of finitely many nondegenerate closed intervals.

Proof. Let y ∈ ω(x, f), an infinite ω-limit set of f . It suffices to show that
y is not isolated in ω(x, f) for our conclusion to follow. Since x ∈ ω(x, f) and
ω(x, f) is strongly invariant, {fn(x)}

∞
n=0 = ω(x, f). It follows, then, that a
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subsequence of {fn(x)}∞n=0 converges to y, so that y is not isolated in ω(x, f).
The structures possible for ω(x, f) now follow from [1].

Since by definition E(f) is a subset of R(f), we have the following corollary
concerning essential points, and the structure of their ω-limit sets.

Corollary 16. If f ∈ C(I, I) and x is an essential point of f , then ω(x, f)
must be either finite, a Cantor set, or a union of finitely many nondegenerate
closed intervals.

The following results deal with essential points and those ω-limit sets gen-
erated by an essential point. We find that while all of ω(x, f) need not be
contained in E(f) whenever x ∈ E(f), there is always a subset dense in the
ω-limit set that is composed of essential points. Our first proposition along
these lines is rather technical; its value stems from the corollaries that follow.
We also take this opportunity to show that x ∈ E(f) if and only if, for any
ε > 0, there is a corresponding δ > 0 so that ‖f − g‖ < δ implies the existence
of y ∈ R(g) so that |x− y| < ε as well as H(ω(x, f), ω(y, g)) < ε. That is, we
can require y to be a recurrent point of g that not only has an ω-limit set that
is ε-close to ω(x, f), but that y itself is ε-close to x.

Proposition 17. Let f ∈ C(I, I), with x ∈ E(f). If y ∈ ω(x, f) for which
ω(x, f) = ω(y, f), then y ∈ E(f).

Proof. Since y ∈ ω(y, f) = ω(x, f), it follows that y ∈ R(f). Since x ∈ E(f),
for any ε > 0 there exists a δ > 0 so that ‖f − g‖ < δ implies the existence
of z a recurrent point of g so that H(ω(z, g), ω(x, f)) < ε

2 . Thus, there is an
element a of ω(z, g) so that |y−a| < ε

2 . Since z ∈ R(g) and ω(z, g) is strongly
invariant under g, we have that gn(z) ∈ ω(gn(z), g) = ω(z, g) for any n, so
that {gn(z)}∞n=0 ⊂ R(g). Moreover, {gn(z)}

∞
n=0 = ω(z, g), so that there is

b ∈ R(g) such that |a − b| < ε
2 , and ω(b, g) = ω(z, g). Thus, |y − b| < ε, and

y ∈ E(f).

As a consequence of Proposition 17, we have the following two corollaries,
the first of which follows from Proposition 10, too.

Corollary 18. If f ∈ C(I, I) and x ∈ E(f), then {fn(x)}∞n=0 ⊂ E(f).

Corollary 19. If f ∈ C(I, I),h(f) = 0 and x ∈ E(f), then ω(x, f) ⊂ E(f).

Proof. Suppose x ∈ E(f), and ω(x, f) is infinite. Then ω(x, f) is a Cantor
set, and by Smı́tal’s Theorem, ω(x, f) = ω(y, f) for every y ∈ ω(x, f).

A consideration of Example 7 shows that one cannot extend Corollary 19
to functions with positive topological entropy. Suppose h(f) > 0 with X ⊂ I
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and m ∈ N so that fm|X is semiconjugate to the shift operator σ on two
symbols. Since there exists a sequence of stable periodic orbits {ωn} ⊂ Ω(fm)
so that ωn → X, there exists x ∈ E(fm) for which ω(x, fm) = X. But X is
not a subset of E(f).

5 Set Valued Functions

Some of the more interesting results found in Fort’s paper relate the structure
of the fixed point set of a continuous function f to the behavior of the map
F : (C(I, I), ‖ ◦ ‖) → (K,H) given by g 7−→ F (g) at the function f . Since
we will concern ourselves with generalizations of these results, for the sake of
clarity and convenience, we restate Fort’s results below. The first of these can
also be found in [19].

Theorem 20. The function F : (C(I, I), ‖ ◦ ‖)→ (K,H) given by g 7−→ F (g)
is upper semicontinuous.

Theorem 21. If f ∈ C(I, I), then each fixed point of f is essential if and
only if f is a point of continuity of the map F : (C(I, I), ‖ ◦ ‖)→ (K,H).

Theorem 22. If f ∈ C(I, I) and ε > 0, then there exists g in C(I, I) so that
‖f − g‖ < ε, and each fixed point of g is essential.

We begin by considering the map Fn : (C(I, I), ‖ ◦ ‖) → (K,H) given by
g 7−→ Fn(g) = F (gn). By making relatively straightforward changes to the
proofs found in [10], one gets the following series of corollaries.

Corollary 23. The function Fn : (C(I, I), ‖ ◦ ‖)→ (K,H) is upper semicon-
tinuous.

Corollary 24. If f ∈ C(I, I), then each point of Fn(f) is essential if and
only if f is a point of continuity of the map Fn : (C(I, I), ‖ ◦ ‖)→ (K,H).

Corollary 25. If f ∈ C(I, I) and ε > 0, then there exists g in C(I, I) so that
‖f − g‖ < ε, and each point of Fn(g) is essential.

The following result also follows from Theorem 21, and characterizes es-
sential 2n-functions.

Corollary 26. If f ∈ C(I, I) is a 2n-function, then f is essential if and only
if the map F2n : (C(I, I), ‖ ◦ ‖)→ (K,H) is continuous at f .

Let us now consider the map R : (E , ‖ ◦ ‖)→ (K,H) given by g 7−→ R(g).
In a sense, this map is more general than Fn : (C(I, I), ‖ ◦ ‖) → (K,H) since
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Fn(g) ⊂ R(g) for all natural numbers n. We have, however, severely restricted
the domain of R : (E , ‖ ◦ ‖)→ (K,H) by considering only those functions with
zero topological entropy. With Fort’s Theorem 20 in mind, we begin with the
following.

Proposition 27. The function R : (E , ‖ ◦ ‖) → (K,H) given by g 7−→ R(g)
is upper semicontinuous at f if and only if f is nonchaotic in the sense of Li
and Yorke.

Proof. If f is not chaotic in the sense of Li and Yorke, then CR(f) = Λ(f) =
R(f) [16]. Now, suppose that there exists {fn} ⊂ E so that fn → f with
xn ∈ R(fn) for any n, and xn → x. Since we may presume that xn ∈ P (fn)
for each n, we see that x ∈ CR(f) = R(f).

Now, suppose f ∈ E is chaotic in the sense of Li and Yorke. Then intK 6= ∅
for some simple system of f [6], so that Λ(f) is a proper subset of CR(f). It
follows that R : (E , ‖ ◦ ‖)→ (K,H) is not upper semicontinuous at f [16].

Our next two results generalize, in some sense, Theorem 21. They show
that while continuity of R : (E , ‖ ◦ ‖)→ (K,H) at f is sufficient to insure that
f is an essential function, this condition is not necessary.

Proposition 28. If R : (E , ‖ ◦ ‖) → (K,H) is continuous at f , then f is an
essential function.

Proof. Let x ∈ R(f). We show that x is essential. Since R : (E , ‖ ◦ ‖) →
(K,H) is continuous at f , for any {fn} ⊂ E such that fn → f , there exists
xn ∈ R(fn) so that xn → x. Moreover, as (K,H) is compact, we may assume
that {ω(xn, fn)} converges; say ω = limn→∞ ω(xn, fn). Then x ∈ ω. Now,
let us suppose that ω is finite. By Theorem 6 of [17], it follows that ω is a
periodic orbit of f , so that ω = ω(x, f), and our desired conclusion follows.
Suppose, on the other hand, that ω is infinite. Since f(ω) = ω by Lemma 4 of
[17], we know that ω(x, f) ⊂ ω, and if C is the set of isolated points of ω, them
ω − C is an ω-limit set of f . Because h(f) = 0 and x ∈ R(f), it follows that
x ∈ ω − C and that ω(x, f) = ω − C. Since ω(x, f) is infinite and h(f) = 0,
it follows that x is essential.

The following lemma shows that R : (E , ‖ ◦ ‖) → (K,H) need not be
continuous at a function in order for that function to be essential.

Lemma 29. There exist functions in E that are essential, but at which the
map R : (E , ‖ ◦ ‖)→ (K,H) is not continuous.

Proof. Let f : I → I be a continuous function for which h(f) = 0 and
S(f) = P (f), but f is chaotic in the sense of Li and Yorke. This is equivalent
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to requiring that there exists a simple system of f for which intK 6= ∅, or that
R(f) is a proper subset of CR(f).

Turning our attention to the map E : (E , ‖ ◦ ‖) → (K,H), we again show
that continuity at a function is a sufficient, but not a necessary condition, in
order for that function to be essential.

Proposition 30. If E : (E , ‖ ◦‖)→ (K,H) given by g 7−→ E(g) is continuous
at f , then f is an essential function.

Proof. Suppose E : (E , ‖ ◦ ‖ → (K,H) is continuous at f . We wish to show
that R(f) = E(f). If x ∈ R(f) and ω(x, f) is infinite, then x is essential. Let
us presume, then, that x ∈ R(f) and ω(x, f) is a periodic ω-limit set. Suppose
fn → f . Then there exists a sequence of points {xn} such that xn ∈ E(fn) ⊂
R(fn) for each n, limn→∞ xn = x and limn→∞ ω(xn, fn) = ω(x, f). It follows
that x is essential.

Lemma 31. There exist functions in E that are essential, but at which the
map E : (E , ‖ ◦ ‖)→ (K,H) is not continuous.

Proof. Let f : I → I be a continuous function for which h(f) = 0 and
S(f) = P (f), but f is chaotic in the sense of Li and Yorke. Then there exists
a simple system of f for which intK 6= ∅, or that R(f) is a proper subset of
CR(f). Now, apply the example found in Lemma 16 of [16]. This allows us to
find, for any ε > 0, a function g in E so that S(g)∩ intK 6= ∅, and ‖f−g‖ < ε.
Since intK ⊂ CR(f) − R(f), this shows that E is not upper semicontinuous
at f , so that E cannot be continuous there.

We conclude with a generalization of Fort’s Theorem 22 to a function’s
set of essential points. Since the map E : (E , ‖ ◦ ‖) → (K,H) is not upper
semicontinuous, our proof must rest on ideas quite different than those of Fort.
Nevertheless, we conclude that essential functions comprise a dense subset of
E .

Theorem 32. If f is an element of E and ε > 0, then there exists g in E so
that ‖f − g‖ < ε, and g is an essential function.

Proof. Let ε > 0. From Theorem 4 of [18], there exists n a natural number
and h a 2n-function such that ‖f − h‖ < ε

2 . Using Corollary 25, let g be
an essential 2n-function such that ‖g − h‖ < ε

2 . Then ‖f − g‖ < ε, and our
conclusion follows.
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