
Real Analysis Exchange
Vol. (), , pp. 177–194

J. Ewert and S. P. Ponomarev, Institute of Mathematics, Pedagogical
University, 76-200 Slupsk, Poland. e-mail: im-pap@admin.wsp.slupsk.pl,
stapon@admin.wsp.slupsk.pl

ON THE GENERALIZED LINDELÖF
PROPERTY

Abstract

We consider two types of topological spaces which generalize the
notion of a Lindelöf space. The invariance of these classes under some
operation is discussed. We also show that the density topology in Rn is
an example of both generalizations.

1 Preliminaries and Basic Properties

By (X,T ), or simply X, we denote a topological space on which, unless other-
wise stated, no separation axioms are assumed. Thus we define compactness
and paracompactness without T2 and the Lindelöfness without T3 (cf. [15]).
We will also consider some other covering properties of topological spaces, so
we recall the corresponding definitions.

A family U of sets in X is said to be locally countable if for each x ∈ X
there is a neighborhood W of x such that card{U ∈ U : U ∩W 6= ∅} ≤ ℵ0.

A topological space X is said to be:

• almost compact if for each open cover U of X there is a finite family
{U1, U2, . . . , Un} ⊂ U whose union is dense in X, [6, p.239];

• almost paracompact if for each open cover U of X there is a locally finite
family V of open subsets of X which refines U and whose union is dense in
X [17];

• para-Lindelöf if for each open cover U of X there is a locally countable open
cover V which refines U , [14].
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In regular spaces the compactness and the almost compactness (resp. para-
compactness and almost paracompactness) coincide [6, 17]. Examples of an
almost compact (almost paracompact) space which is not compact (paracom-
pact) are given in [1,p.270] and [8]. Furthermore, each T3 Lindelöf space is
paracompact and a T2 paracompact space is T4 [15, p.90, 85].

A topological space X will be called:

• almost Lindelöf if each open cover U of X contains at most countable family
{Un : n ∈ N} ⊂ U whose union is dense in X;

• almost para-Lindelöf if for each open cover U ofX there is a locally countable
family V of open subsets of X which refines U and whose union is dense in
X.

Then we have the following relations between the classes of spaces men-
tioned.

compact - Linfelöf

?

@
@R

@
@R

?

paracompact -para-Lindelöf

almost compact - almost Lindelöf

? ?

-almost paracompact almost para-Lindelöf

@
@R

@
@R

All inclusions (depicted by arrows) are proper in this diagram, which fol-
lows in part from previous remarks. Examples illustrating other cases will be
given in the sequel.

For a subset A in a topological space X the symbols clA, intA will be used
to denote the closure and the interior of A respectively.

Example 1.1. (a) Each separable space is almost Lindelöf.
(b) Each uncountable discrete space is almost para-Lindelöf but is not almost
Lindelöf.

Example 1.2. The Niemytzki plane is separable; so it is almost Lindelöf.
Furthermore, it is T3 and not T4. Therefore it is neither almost compact, nor
almost paracompact nor Lindelöf.
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Example 1.3. Let m be the Banach space of all bounded real sequences
with the usual norm ‖x‖ = supn∈N |tn|, where x = (t1, t2, . . .). Since m is
paracompact, it is also almost para-Lindelöf. We claim that m is not almost
Lindelöf. Suppose that this is not the case. By B(x, r) we denote the open
ball with center x and of radius r > 0. Then from the open cover U =
{B(x, 1/6) : x ∈ m} we can choose a countable family {B(xn, 1/6) : n ∈ N}
with cl

⋃∞
n=1B(xn, 1/6) = m. Now by A we denote the set of all x ∈m, x =

(t1, t2, . . .), such that tj ∈ {0, 1} for j ∈ N. The set A is uncountable and
‖x− y‖ = 1 for all x, y ∈ A, x 6= y. If x ∈ A, then B(x, 1/6) ∩B(xk, 1/6) 6= ∅
for some k ≥ 1; hence x ∈ B(xk, 1/3). Thus for some k ≥ 1 we have card(A ∩
B(xk, 1/3)) ≥ ℵ0. It follows that ‖x − y‖ < 2/3 for all x, y ∈ A ∩ B(xk, 1/3),
and this contradiction finishes the proof.

It follows from Examples 1.2 and 1.3 that almost Lindelöfness and almost
paracompactness are independent properties, but we have the following.

Theorem 1.4. If X is an almost paracompact (almost para-Lindelöf) space
in which every locally finite (locally countable) family of non-empty open sets
is countable, then X is almost Lindelöf.

Proof. Let U = {Us : s ∈ S} be an open cover of X. There exists a
locally finite (locally countable) family V of open sets which refines U and⋃
{V : V ∈ V} is dense in X. It follows from our assumptions that V is

countable; i.e., V = {Vn : n ∈ N}. For each n = 1, 2, . . . we fix Us(n) ∈ U with
Vn ⊂ Us(n); hence X = cl

⋃∞
n=1 Us(n).

Lemma 1.5. If X is an almost Lindelöf space, then every locally countable
family of non-empty open sets is at most countable.

Proof. Let U be a locally countable family of non-empty open sets in X.
For each x ∈ X we fix a neighborhood Vx which intersects at most countably
many sets belonging to U . The open cover {Vx : x ∈ X} contains a countable
family {Vxn

: n ∈ N} such that
⋃∞
n=1 Vxn

is dense. Since each set from U
intersects some Vxn

, it follows that cardU ≤ ℵ0.

Lemma 1.5 leads to the following two corollaries.

Corollary 1.6. A topological space X is a Lindelöf space if and only if it is
almost Lindelöf and para-Lindelöf. �

Corollary 1.7. [7, Coroll. 5.1.26]. Every separable paracompact space is a
Lindelöf space.

Theorem 1.8. If an almost para-Lindelöf space X contains a dense almost
Lindelöf subspace A, then X is almost Lindelöf.
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Proof. Let U = {Uj : j ∈ J} be an open cover of X. Then there is a
locally countable family V = {Vs : s ∈ S} of open sets which refines U and
cl

⋃
s∈S Vs = X. Since A is dense, {A∩Vs : s ∈ S} is a locally countable family

of non-empty open sets in the almost Lindelöf space A. According to Lemma
1.5, we have cardS ≤ ℵ0. Thus

X = clA = cl(
⋃
s∈S

A ∩ Vs) ⊂ cl
⋃
s∈S

Vs.

For each s ∈ S we choose j(s) ∈ J such that Vs ⊂ Uj(s); hence X =
cl(

⋃
s∈S Uj(s)) which completes the proof.

Theorem 1.9. If X is an almost Lindelöf (para-Lindelöf, almost para-Linde-
löf) space, then each open-closed subspace M in X is almost Lindelöf (para-
Lindelöf, almost para-Lindelöf).

Proof. Assume that X is almost para-Lindelöf. (For an almost Lindelöf or
a para-Lindelöf space the proof is analogous.) Let U = {Us : s ∈ S} be an
open in M cover of M ; then Us = M ∩ Vs, where Vs are open in X. For the
open cover {X \M} ∪ {Vs : s ∈ S} of X there is a locally countable family of
open sets {Wj : j ∈ J} which refines this cover and such that cl

⋃
j∈JWj = X.

Hence V = {Wj ∩M : j ∈ J} is a locally countable in M family of open sets
in M which refines U . Furthermore,

M = cl(M ∩X) = cl(M ∩ cl(
⋃
j∈J

Wj)) = cl(
⋃
j∈J

M ∩Wj) ⊂M,

which completes the proof.

As an immediate consequence of the above theorem, we obtain the following
theorem.

Theorem 1.10. Let
⊕

s∈S Xs be the topological sum of a family {Xs : s ∈ S}
of topological spaces such that Xs ∩Xs′ = ∅ for s, s′ ∈ S, s 6= s′.

(a) The sum
⊕

s∈S Xs is almost Lindelöf (para-Lindelöf) if and only if all Xs

are almost Lindelöf (para-Lindelöf) spaces and the set S is countable.

(b) The space
⊕

s∈S Xs is almost para-Lindelöf (almost paracompact) if and
only if all spaces Xs are almost para-Lindelöf (almost paracompact).

Example 1.11. Let X denote the Niemytzki plane and m the Banach space of
all bounded sequences of reals. It follows from Examples 1.2, 1.3 and Theorem
1.10 that the space X ⊕ m is almost para-Lindelöf, but it is neither para-
Lindelöf nor almost Lindelöf, nor almost paracompact.
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A topological space is said to be a P -space if the intersection of any count-
able family of open sets is again an open set [14].

Lemma 1.12. [14, Lemma 4.4]. If A is a locally countable family of subsets
in a P -space X, then cl(

⋃
{A : A ∈ A}) =

⋃
{clA : A ∈ A}.

Theorem 1.13. Let X be a T3 P -space.
(a) If X is almost Lindelöf, then it is a Lindelöf T4 space.
(b) If X is almost para-Lindelöf, then it is paracompact.

Proof. (a) Let U be an open cover of X. For each point x ∈ X we fix Ux ∈ U
and an open set Wx such that x ∈ Wx ⊂ clWx ⊂ Ux. Then we can choose a
countable family {Wxn

: n ∈ N} for which cl(
⋃∞
n=1Wxn

) = X. But according
to Lemma 1.12 we have cl(

⋃∞
n=1Wxn

) =
⋃∞
n=1 clWxn

. Hence {Uxn
: n ∈ N}

is a countable subcover chosen from U . As it is stated in [14, Prop. 4.2], each
Hausdorff Lindelöf P -space is normal; so item (a) is proved.
(b) Let U be an open cover of X. For each x ∈ X we fix Ux ∈ U and an
open set Wx satisfying x ∈ Wx ⊂ clWx ⊂ Ux. Then there exists a locally
countable family of open sets V1 which refines {Wx : x ∈ X} and such that
cl(

⋃
{V : V ∈ V1}) = X. From Lemma 1.12 we have cl(

⋃
{V : V ∈ V1}) =⋃

{clV : V ∈ V1}. Thus V = {clV : V ∈ V1} refines U . So we have shown that
for each open cover U there is a closed locally countable cover which refines
U . By [14, Th. 4.3], in each T3 P -space the last property is equivalent to
paracompactness.

Corollary 1.14. [14]. Let X be a T3 P -space. Then X is para-Lindelöf if
and only if it is paracompact.

Finally we will give an example of a space which is not almost para-
Lindelöf. Given a cover U of X and a set M ⊂ X, let

St(M,U) =
⋃
{U ∈ U : U ∩M 6= ∅}.

A cover U is said to be a star refinement of another cover V if the family
{St(U,U)} : U ∈ U} is a refinement of V.

Example 1.15. Let X = {p = (x, y) ∈ R2 : x ≥ 0, y ≥ 0} \ {(0, 0)} and Ux =
{x} × [0,∞), Wy = [0,∞)× {y} for all x > 0, y > 0. For each p = (x, y) ∈ X
write

B(p) =


{{p}} if x > 0, y > 0
{Ux \ L : cardL ≤ ℵ0, p /∈ L} if x > 0, y = 0
{Wy \ L : cardL ≤ ℵ0, p /∈ L} if x = 0, y > 0.
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Then B =
⋃
{B(p) : p ∈ X} is a base of a Hausdorff topology τ on X. The

base B consists of open-closed subsets; so (X, τ) is a Tychonoff space. Let
Vn, n ∈ N, be open subsets of (X, τ) and p = (x, y) ∈

⋂∞
n=1 Vn. If x > 0, y > 0,

then {p} is an open set and thus p ∈ int
⋂∞
n=1 Vn. If x = 0, y > 0, then for each

n ∈ N there is at most countable set Ln such that p /∈ Ln and Wy \ Ln ⊂ Vn.
This implies Wy \

⋃∞
n=1 Ln ⊂

⋂∞
n=1 Vn and consequently p ∈ int

⋂∞
n=1 Vn. In

case x > 0, y = 0 we use the analogous argument. Thus we have shown that
(X, τ) is a P -space. Now we take the open cover U = {Ux : x > 0} ∪ {Wy :
y > 0} and let A be an open refinement of U . For each px = (x, 0), py =
(0, y), x 6= 0, y 6= 0, we fix neighborhoods Ux \ Lx,Wy \ Ly contained in some
fixed sets belonging to U . Then we can choose a point p0 = (x0, y0) such
that p0 ∈ (Ux0 \ Lx0) ∩ (Wy0 \ Ly0) and A1, A2 ∈ A with Ux0 \ Lx0 ⊂ A1

and Wy0 \ Ly0 ⊂ A2. Therefore (Ux0 \ Lx0) ∪ (Wy0 \ Ly0) ⊂ St(A1,A), thus
St(A1,A) is not contained in any set from U . So we have shown that the open
cover U has no any open star refinement, whence by [7, Th. 5.1.12] the space
(X, τ) is not paracompact. Applying Theorem 1.13(b) we obtain that (X, τ)
is not almost para-Lindelöf either.

2 Invariance under Mappings

Let X and Y be topological spaces and F : X → Y a multivalued map. For
any sets A ⊂ X,B ⊂ Y we will write as usually F (A) =

⋃
x∈A F (x), F+(B) =

{x ∈ X : F (x) ⊂ B}, and F−(B) = {x ∈ X : F (x) ∩B 6= ∅}.
A subset A of a topological space X is said to be:

• semi-open, if A ⊂ cl(intA);

• semi-closed, if X \A is semi-open.

The union (intersection) of any family of semi-open (semi-closed) sets is semi-
open (semi-closed). The intersection of all semi-closed sets containing A is
called the semi-closure of A; we will denote it by sclA [3,4,12]. For each set
A we have int(clA) = int(sclA), [3,4]. A multivalued map F : X → Y is said
to be:

• semi-open, if for each open set U ⊂ X the set F (U) is semi-open;

• closed, if for each closed set A ⊂ X the set F (A) is closed.

In the sequel we will use the following well known characterization of closed
multivalued maps.
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Lemma 2.1. A multivalued map F : X → Y is closed if and only if for each
point y ∈ Y and each open set U containing F−(y) there exists a neighborhood
V of y such that F−(V ) ⊂ U.

A multivalued map F : X → Y is said to be:

• upper semicontinuous, if for each open set V ⊂ Y the set F+(V ) is open;

• lower quasicontinuous, if for each open set V ⊂ Y the set F−(V ) is semi-
open [9].

If F is single-valued, then upper semicontinuity means continuity of F . More-
over, in this case lower quasicontinuity coincides with quasicontinuity [11, 12].

Lemma 2.2. A multivalued map F : X → Y is lower quasicontinuous if and
only if F (sclA) ⊂ clF (A) for each set A ⊂ X.

We omit the standard proof.

Theorem 2.3. Let X and Y be topological spaces and let F be an upper
semicontinuous and lower quasicontinuous multivalued map from X onto Y
such that F (x) has the Lindelöf property for each x ∈ X.
(a) If X is almost Lindelöf, then Y is also.
(b) Assume,in addition, that F is semi-open closed and F−(y) has the Lindelöf
property for each y ∈ Y. Then X is almost para-Lindelöf if and only if Y is
almost para-Lindelöf.

Proof. (a) Let V be an open cover of Y . For x ∈ X we choose a count-
able cover Vx ⊂ V of F (x) and we set Vx =

⋃
{V : V ∈ Vx}. Since F is

upper semicontinuous, the family {F+(Vx) : x ∈ X} forms an open cover
of X. Now we choose a countable family {F+(Vxn) : n ∈ N} such that
cl(

⋃∞
n=1 F

+(Vxn)) = X. Hence we obtain

X = int(cl(
∞⋃
n=1

F+(Vxn))) = int(scl(
∞⋃
n=1

F+(Vxn)));

so X = scl(
⋃∞
n=1 F

+(Vxn
)). This fact and Lemma 2.2 give

Y = F (X) =F (scl(
∞⋃
n=1

F+(Vxn
))) ⊂ cl(F (

∞⋃
n=1

F+(Vxn
)))

⊂ cl(
∞⋃
n=1

Vxn) = cl(
⋃
{V : V ∈ Vxn , n ∈ N}).
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Thus V1 = {V : V ∈ Vxn , n ∈ N} is a countable subfamily whose union is
dense and (a) is thus proved.
(b) Suppose that X is almost para-Lindelöf and let V be an open cover of Y .
For each x ∈ X we choose a countable cover Vx of F (x), Vx ⊂ V, and we set
Vx =

⋃
{V : V ∈ Vx}. Since F is upper semicontinuous, U = {F+(Vx) : x ∈ X}

is an open cover of X. Then there exists a locally countable open refinement
U1 = {Uj : j ∈ J} of U such that cl(

⋃
j∈J Uj) = X. For each j ∈ J we fix a

point xj ∈ X for which Uj ⊂ F+(Vxj
). Then F (Uj) ⊂ Vxj

and F (Uj) is semi-
open. Hence U2 = {intF (Uj) ∩ V : j ∈ J, V ∈ Vxj} is an open refinement
of V. We show that U2 is locally countable. Let y ∈ Y . Since the set F−(y)
has the Lindelöf property and U1 is locally countable we can choose an open
set A ⊂ X such that F−(y) ⊂ A and the set J0 = {j ∈ J : A ∩ Uj 6= ∅}
is at most countable. By Lemma 2.1 there is a neighborhood W of y such
that F−(W ) ⊂ A. This implies {j ∈ J : F (Uj) ∩ W 6= ∅}} ⊂ J0, so W
intersects at most countably many sets F (Uj). Furthermore, each family Vxj

being countable, W intersects at most countably many sets belonging to U2.
We have thus shown that U2 is locally countable. Since the union of the family
U1 is dense we have

X = int(cl(
⋃
j∈J

Uj)) = int(scl(
⋃
j∈J

Uj))

and this implies X = scl(
⋃
j∈J Uj). Applying Lemma 2.2 we obtain

Y = F (X) = F (scl(
⋃
j∈J

Uj)) ⊂ cl(F (
⋃
j∈J

Uj))

which gives Y = cl(
⋃
j∈J F (Uj)). The sets F (Uj) are semi-open; so the last

equality implies cl(
⋃
j∈J intF (Uj)) = Y. On the other hand we have

cl(
⋃
j∈J

⋃
V ∈Vxj

intF (Uj) ∩ V ) = cl(
⋃
j∈J

(intF (Uj) ∩
⋃

V ∈Vxj

V ))

= cl(
⋃
j∈J

intF (Uj) ∩ Vxj )

= cl(
⋃
j∈J

intF (Uj)).

This implies cl(
⋃
j∈J

⋃
V ∈Vxj

intF (Uj) ∩ V ) = Y. Thus we have shown that
U2 is a locally countable open refinement of V whose union is dense and this
means that Y is almost para-Lindelöf.
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Conversely, assume that Y is almost para-Lindelöf. Consider the multival-
ued map G : Y → X defined by G(y) = F−(y). Then for any sets A ⊂ X,B ⊂
Y the equalities G−(A) = F (A) and G(B) = F−(B) hold. Hence G is upper
semicontinuous, lower quasicontinuous, semi-open and closed. Furthermore,
the sets G(y), G−(x) have the Lindelöf property for all x ∈ X, y ∈ Y. Thus
according to the proved part, X is almost para-Lindelöf.

Corollary 2.4. Let X, Y be topological spaces and a continuous surjection
f : X → Y be given.
(a) If X is almost Lindelöf, then so is Y .
(b) Assume, in addition, that f is semi-open, closed and f−1(y) has the Lin-
delöf property for each y ∈ Y. Then X is almost Lindelöf if Y is.

Corollary 2.5. Let f : X → Y be a continuous semi-open, closed surjection
such that f−1(y) has the Lindelöf property for each y ∈ Y. Then X is almost
para-Lindelöf if and only if Y is.

Lemma 2.6. [14, Th. 2.1]. A topological space X is a P -space if and only if
for each Lindelöf space Y the projection p : X × Y → X is a closed map.

Theorem 2.7. For a P -space X the following conditions are equivalent:
(a) X is almost para-Lindelöf;
(b) for each Lindelöf space Y the product X × Y is almost para-Lindelöf.

Proof. According to Lemma 2.6, the projection p : X × Y → X is a con-
tinuous open closed map such that p−1(y) has the Lindelöf property for each
y ∈ X. Thus the conclusion follows from Theorem 2.3.

3 Hashimoto Topologies and Almost Para-Lindelöfness

Let P be an ideal of subsets in a topological space (X,T ). For any set A ⊂ X
we write

DP (A) = {x ∈ X : U ∩A /∈ P for each neighborhood U of x}.

If the following condition (∗) is satisfied

A ∈ P ⇐⇒ DP (A) = ∅ ⇐⇒ A ∩DP (A) = ∅, (∗)

then the family T (P ) = {U \H : U ∈ T,H ∈ P} is a topology on X [10]. The
T (P ) closure of any set A will be denoted clP A.

Lemma 3.1. [10]. If P is any ideal satisfying (∗) and T ∩ P = {∅}, then for
every U ∈ T, H ∈ P, the equalities clP (U \ H) = cl(U \ H) = clU = clP U
hold.
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Theorem 3.2. Let P be an ideal of subsets in a topological space (X,T ) sat-
isfying (∗) and T ∩ P = {∅}. Then:
(a) (X,T ) is an almost Lindelöf space if and only if (X,T (P )) is almost Lin-
delöf.
(b) (X,T ) is an almost para-Lindelöf space if and only if (X,T (P )) is almost
para-Lindelöf.

Proof. (b) Assume that (X,T ) is almost para-Lindelöf and let U be a T (P )-
open cover of X; U = {Uj \ Hj : j ∈ J} where Uj ∈ T,Hj ∈ P for each
j ∈ J. The family U1 = {Uj : j ∈ J} is a T -open cover of X; so there
exists a T -open T -locally countable refinement V1 = {Vs : s ∈ S} of U1 such
that cl(

⋃
s∈S Vs) = X. For each s ∈ S we fix js ∈ J with Vs ⊂ Ujs . Then

V = {Vs \Hjs : s ∈ S} is a T (P )-open T (P )-locally countable refinement of U .
Let x ∈ X and let W \H be a T (P )-open neighborhood of x. Then W ∩Vs 6= ∅
for some s ∈ S. Thus (W \H)∩ (Vs \Hjs) = (W ∩ Vs) \ (H ∪Hjs) 6= ∅. So we
have shown that

⋃
s∈S(Vs \ Hjs) is T (P )-dense, and consequently (X,T (P ))

is almost para-Lindelöf.
Conversely, suppose that (X,T (P )) is almost para-Lindelöf and let U =

{Uj ; j ∈ J} be a T -open cover of X. The assumptions and the condition T ⊂
T (P ) imply the existence of a T (P )-open T (P )-locally countable refinement
V1 = {Vs \ Hs : s ∈ S}, Vs ∈ T,Hs ∈ P , of U such that

⋃
s∈S(Vs \ Hs) is

T (P )-dense. For each s ∈ S we fix js ∈ J for which Vs \ Hs ⊂ Ujs . Then
V = {Vs ∩ Ujs : s ∈ S} is a T -open T -locally countable refinement of U and⋃
s∈S(Vs ∩ Ujs) is T -dense. Hence (X,T ) is almost para-Lindelöf.

The proof of item (a) is quite analogous; so we omit it.

Given any topological space (X,T ), we denote by SO(X,T ) the class of
all its semi-open subsets. The equality SO(X,T ) = SO(X,T1) induces the
equivalence relation on the family of all topologies on X. The class [T ] of all
topologies equivalent to T has the finest one Tα. This is exactly the topology
T (P ), where P is the ideal of all T -nowhere dense sets in X, [2, 5]. Thus as a
consequence of Theorem 3.2 we have the following corollary.

Corollary 3.3. If a topological space (X,T ) is almost Lindelöf (almost para-
Lindelöf), then all topologies belonging to the equivalence class [T ] have the
same property.

A bijective map from (X,T ) onto (Y, τ) is said to be a semi-homeomorphism
if for any semi-open sets A ⊂ X,B ⊂ Y the sets f(A) and f−1(B) are semi-
open [2, 5].

Theorem 3.4. Almost Lindelöfness and almost para-Lindelöfness are invari-
ant under semi-homeomorphisms.
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Proof. If f : (X,T )→ (Y, τ) is a semi-homeomorphism, then f : (X,Tα)→
(Y, τα) is a homeomorphism, [2. 5]. Thus the proof is a consequence of Theo-
rem 3.2 and Corollary 2.4.

4 Covering Properties of the Density Topology

The result of this section is closely related to the notion of the almost para-
Lindelöfness discussed above.

By τ we mean the standard topology in Rn, whereas the ordinary density
topology in Rn will be denoted by τd, [13, p.167]. The symbol cldE will stand
for the closure of E ⊂ Rn in the topology τd. The Lebesgue measure of E ⊂ Rn
will be denoted by |E|. The topological space (Rn, τd) is completely regular
(This follows from [13]: (a) on p.198 and Coroll. 3.13.), but it is not normal.
(This is a consequence of Th. 6.23; Ex. 6.24; Coroll. 2.14 and Th. 2.1 in [13].)
On the other hand, as it was mentioned in Section 1, each T3 Lindelöf space is
a paracompact T4 space. Thus (Rn, τd) is neither Lindelöf nor paracompact.
We will prove the following covering property of (Rn, τd) which is stronger
than the almost Lindelöfness.

Theorem 4.1. The space (Rn, τd) has the following property:
For each τd-open cover U of Rn there exists a τd-open refinement W of U such
that
(i) the elements of W are pairwise disjoint (Hence W is at most countable.);
(ii) cld(

⋃
{W : W ∈ W}) = Rn.

Proof. Let U be a τd-open cover of Rn. The construction ofW will be carried
out inductively.
1st step. For each x ∈ Rn we fix an E(x) ∈ U with x ∈ E(x). For each
x ∈ Rn we let V(x) be the family of all τ -closed cubes Q(x), centered at x,
with edges parallel to the coordinate axes, and such that

|Q(x) ∩ E(x)| > 2
3
|Q(x)| for each Q(x) ∈ V(x). (1)

Let V =
⋃
x∈Rn V(x). Since each x is a point of density of the corresponding

E(x) ∈ V(x) we have inf{diamQ(x) : Q(x) ∈ V(x)} = 0 for each x; so we
have that V is a Vitali cover of Rn. By the Vitali covering theorem there
exists a family of pairwise disjoint cubes {Q(xj) : j ∈ N} extracted from
V so that |Rn \

⋃
j∈N Q(xj)| = 0. By (1) there is a corresponding family

{E(xj) : j ∈ N} ⊂ U such that

|Q(xj) ∩ E(xj)| >
2
3
|Q(xj)| (2)
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for all j ∈ N. Aiming at a “uniformization” of our notations in the sequel, we
will write {Qi1 : i1 ∈ N} and {Ei1 : i1 ∈ N} instead of {Q(xj) : j ∈ N} and
{E(xj) : j ∈ N}, respectively. So by (2) there exist τ -open sets Gi1 such that
intQi1 \ Ei1 ⊂ Gi1 ⊂ intQi1 and |Gi1 | < 1

3 |Qi1 | for i1 ∈ N.
To summarize, on the first step we have constructed:

• a family of τ -closed pairwise disjoint cubes {Qi1 : i1 ∈ N};

• a family of τd-open sets {Ei1 : i1 ∈ N} ⊂ U ;

• a family of τ -open sets {Gi1 : i1 ∈ N};

so that the following conditions are satisfied for each i1 ∈ N :

intQi1 \ Ei1 ⊂ Gi1 ⊂ intQi1 ,

|Gi1 | <
1
3
|Qi1 |,

|Rn \
⋃
i1∈N

Qi1 | = 0,

|Qi1 ∩ Ei1 | >
2
3
|Qi1 |.

2nd step. We will define the second induction step, since the first one is
not entirely “typical”. We proceed just like on the first step but this time
the Vitali cover will be constructed for each Gi1 , i1 ∈ N. Namely, given any
x ∈ Gi1 , we fix a set Ei1(x) ∈ U , x ∈ Ei1 . Since x is a density point of Ei1(x),
there is a family Vi1(x) consisting of τ -closed cubes Qi1(x) centered at x, with
edges parallel to the coordinate axes, such that x ∈ Qi1(x) ⊂ Gi1 and

|Qi1(x) ∩ Ei1(x)| > 2
3
|Qi1(x)| (3)

for each Qi1(x) ∈ Vi1(x). (One should carefully distinguish between Qi1 and
Qi1(x) as well as between Ei1 and Ei1(x). This warning extends to similar
notation with multiindexes to come.) As in the first step, for each x ∈ Gi1 ,
we have inf{diamQi1(x) : Qi1(x) ∈ Vi1(x)} = 0, whence it follows that

Vi1 =
⋃
{Vi1(x) : x ∈ Gi1} (4)

forms a Vitali cover of Gi1 . Therefore there exists a family {Qi1(xj) : j ∈ N}
of pairwise disjoint τ -closed cubes from Vi1 such that |Gi1 \

⋃
j∈N Qi1(xj)| = 0

and

|Qi1(xj) ∩ Ei1(xj)| >
2
3
|Qi1(xj)| (5)
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for all i1, j ∈ N, where, of course, Ei1(xj) ∈ U is a set in (3) with x = xj .
Keeping in mind the uniformization of our notations, we will write again

Qi1i2 and Ei1i2 instead of Qi1(xj) and Ei1(xj) respectively. In view of (5) we
can fix, in each intQi1i2 , a τ -open set Gi1i2 so that we have

intQi1i2 \ Ei1i2 ⊂ Gi1i2 ⊂ intQi1i2

and |Gi1i2 | < 1
3 |Qi1i2 |.

Thus on the second induction step we have constructed for each i1 ∈ N:

• a family of τ -closed pairwise disjoint cubes {Qi1i2 : i2 ∈ N};

• a family of τd-open sets {Ei1i2 : i2 ∈ N} ⊂ U ;

• a family of τ -open sets {Gi1i2 : i2 ∈ N};

so that the following conditions are satisfied for all i1, i2 ∈ N

intQi1i2 \ Ei1i2 ⊂ Gi1i2 ⊂ intQi1i2 ;

|Gi1i2 | <
1
3
|Qi1i2 |;

|Gi1 | =
∑
i2

|Qi1i2 |;

|Qi1i2 ∩ Ei1i2 | >
2
3
|Qi1i2 |;

Qi1i2 ⊂ Gi1 .

Now we are in a position to pass to the general case. Namely, suppose that
for a natural k > 2 we have already constructed:
(I). The families {Qi1}, {Qi1i2} , . . . , {Qi1...ik}; each family

{Qi1...is} = {Qi1...is : (i1 . . . is) ∈ Ns},

1 ≤ s ≤ k, being composed of pairwise disjoint τ -closed cubes.
(II). The families of τd-open sets {Ei1}, {Ei1i2}, . . . , {Ei1...ik}, each family

{Ei1...is} = {Ei1...is : (i1 . . . is) ∈ Ns},

1 ≤ s ≤ k, being composed of some elements of the cover U .
(III). The families of τ -open sets {Gi1}, {Gi1i2}, . . . , {Gi1...ik}, so that the
following conditions are satisfied:
(IV). intQi1...is \ Ei1...is ⊂ Gi1...is ⊂ intQi1...is , 1 ≤ s ≤ k;
(V). |Gi1...is | < 1

3 |Qi1...is |, 1 ≤ s ≤ k;
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(VI).|Gi1...is | =
∑
is+1
|Qi1...isis+1 |, 1 ≤ s ≤ k − 1;

(VII).|Qi1...is ∩ Ei1...is | > 2
3 |Qi1...is |, 1 ≤ s ≤ k;

(VIII).Qi1...isis+1 ⊂ Gi1...is , 1 ≤ s ≤ k − 1.
Observe that from (IV), (VIII) one gets immediately

Qi1...isis+1 ⊂ intQi1...is .

Now, to define the families {Qi1...ik+1}, {Ei1...ik+1}, {Gii...ik+1}, as before
we construct a Vitali cover of each set Gi1...ik ⊂ intQi1...ik , (i1 . . . ik) ∈ Nk,
repeating, in fact, the argument we used for Gi1 on step two. As a result, we
obtain:

• a family of pairwise disjoint τ -closed cubes {Qi1...ikik+1}, Qi1...ikik+1 ⊂
Gi1...ik ;

• a family of τd-open sets {Ei1...ikik+1} ⊂ U ;

• a family of τ -open sets {Gi1...ikik+1}, with Gi1...ikik+1 ⊂ intQi1...ikik+1 ;

so that the properties (IV), (V), (VII) are satisfied for s = k + 1 and the
properties (VI), (VIII) are satisfied for s = k. The verification of these facts
is immediate, and we omit it to avoid quite unnecessary repetitions.

We have thus obtained inductively the three sequences of families of sets:

{Qi1}, {Qi1i2}, {Qi1...ik}, . . .
{Ei1}, {Ei1i2}, {Ei1...ik}, . . .
{Gi1}, {Gi1i2}, {Gi1...ik}, . . .

satisfying the conditions (IV)–(VIII) for all k ∈ N.
Given a Lebesgue measurable set A ⊂ Rn, we let D(A) be the set of all

density points of A belonging to A. It is clear that D(A) is a τd-open set.
Let us consider the following families of sets

{D((intQi1...ik ∩ Ei1...ik) \Gi1...ik) : (i1 . . . ik) ∈ Nk}, k ∈ N. (6)

Evidently, elements of (6) are τd-open sets, each of them being contained in
some element of U , so

W =
∞⋃
k=1

{{D((intQi1...ik ∩ Ei1...ik) \Gi1...ik) : (i1 . . . ik) ∈ Nk}}
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is a refinement of U . It is also clear that each family (6) is composed of pair-
wise disjoint sets (for the cubes {Qi1...ik} are pairwise disjoint whenever k
is fixed). Next we shall verify that all elements of W are pairwise disjoint.
It is sufficient, in view of the previous remark, to show that sets belonging
to different families (6) are disjoint. To this end we take two multiindexes
(i1 . . . ik), (j1 . . . jm), m > k, and we check that

D((intQi1...ik ∩ Ei1...ik) \Gi1...ik) ∩D((intQj1...jm ∩ Ej1...jm) \Gj1...jm) = ∅. (7)

There are two cases to consider. At first let (i1 . . . ik) 6= (j1 . . . jk). Then
obviously

Qi1...ik ∩Qj1...jk = ∅; (8)

but since Qj1...jk...jm ⊂ Qj1...jk , the relation (8) yields Qi1...ik ∩ Qj1...jm = ∅,
whence (7) follows. In the second case suppose that (i1 . . . ik) = (j1 . . . jk).
Since m > k we get by (IV), (VIII) that

Qj1...jm−1jm ⊂ Gj1...jm−1 ⊂ Gj1...jm−2 ⊂ · · · ⊂ Gj1...jk ⊂ Gi1...ik ,

whence Qj1...jm ∩Ej1...jm \Gj1...jm ⊂ Gi1...ik which again immediately implies
(7).

So the family W is composed of pairwise disjoint τd-open sets and forms a
refinement of U . It remains to show that

cld(
⋃
{W : W ∈ W}) = Rn. (9)

Since sets of measure zero are τd-nowhere dense, we easily observe that the
proof of (9) reduces to showing that for each fixed i1 ∈ N we have

|Qi1 \
∞⋃
k=1

⋃
(i1...ik)∈Nk

((intQi1...ik ∩ Ei1...ik) \Gi1...ik | = 0

or, “more explicitly”, what amounts to the same,

|Qi1 \ {((intQi1 ∩ Ei1) \Gi1) ∪
⋃
i2

((intQi1i2 ∩ Ei1i2) \Gi1i2)∪

· · · ∪
⋃
i2...ik

((intQi1i2...ik ∩ Ei1i2...ik) \Gi1i2...ik) ∪ . . . | = 0.
(10)

Note that “D” is omitted here. Now we shall prove (10). First we write the
almost trivial equality

intQi1 = ((intQi1 ∩ Ei1) \Gi1) ∪Gi1 . (11)
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In view of the Vitali cover of Gi1 we may write

Gi1 =
⋃
i2

Qi1i2 ∪Hi1 , |Hi1 | = 0 (12)

where all terms in (12) are disjoint. By substituting (12) into the last term of
(11) we get

intQi1 = ((intQi1 ∩ Ei1) \Gi1) ∪
⋃
i2

intQi1i2 ∪Hi1 . (13)

Applying the decomposition of type (11) for intQi1i2 we obtain

intQi1i2 = ((Qi1i2 ∩ Ei1i2) \Gi1i2) ∪Gi1i2
and after substituting it into (13) we get

intQi1 =((intQi1 ∩ Ei1) \Gi1) ∪
⋃
i2

((intQi1i2 ∩ Ei1i2) \Gi1i2)

∪
⋃
i2

Gi1i2 ∪Hi1 .
(14)

Next we repeat the procedure applying (VI) to Gi1i2 which yields

Gi1i2 =
⋃
i3

Qi1i2i3 ∪Hi1i2 , |Hi1i2 | = 0, (15)

all the terms in (15) being, of course, disjoint. Again, rewriting intQi1i2i3 in
the form (11) we get

intQi1i2i3 = ((intQi1i2i3 ∩ Ei1i2i3) \Gi1i2i3) ∪Gi1i2i3
which, in view of (15), permits to rewrite (14) as

intQi1 = ((intQi1 ∩ Ei1) \Gi1) ∪
⋃
i2

((intQi1i2 ∩ Ei1i2) \Gi1i2)

∪
⋃
i2i3

((intQi1i2i3 ∩ Ei1i2i3) \Gi1i2i3) ∪
⋃
i2i3

Gi1i2i3 ∪
⋃
i2

Hi1i2 ∪Hi1 .

Now it is clear that by the evident induction procedure, we have for each
k ∈ N, k > 2,

intQi1 = Ai1 ∪
⋃
i2

Ai1i2 ∪ · · · ∪
⋃
i2...ik

Ai1...ik ∪
⋃
i2...ik

Gi1...ik

∪Hi1 ∪
⋃
i2

Hi1i2 ∪ · · · ∪
⋃

i2...ik−1

Hi1...ik−1 ,
(16)
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where

Ai1...is = ((intQi1...is ∩ Ei1...is) \Gi1...is), 1 ≤ s ≤ k,

and all Hi1...is , 1 ≤ s ≤ k − 1, are null sets. From (16) it follows that the
proof of (10) amounts to showing that

lim
k→∞

|
⋃
i2...ik

Gi1...ik | = 0. (17)

The required estimate (17) could be easily carried out using properties (V),
(VI) consecutively:

|
⋃
i2...ik

Gi1...ik | ≤
∑
i2...ik

|Gi1...ik | ≤ 3−1
∑
i2...ik

|Qi1...ik |

= 3−1
∑

i2...ik−1

|Gi1...ik−1 | ≤ 3−2
∑

i2...ik−1

|Qi1...ik−1 |

= 3−2
∑

i2...ik−2

|Gi1...ik−2 | ≤ · · ·

≤ 32−k
∑
i2

|Gi1i2 | ≤ 31−k
∑
i2

|Qi1i2 | = 31−k|Gi1 | ≤ 3−k|Qi1 |

whence we get (17). Finally, (10) and therefore (9), follow from (16) and (17),
thereby completing the whole proof.

Corollary 4.2. (Rn, τd) is an almost Lindelöf space.
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