Pieter C. Allaart, Department of Mathematics, University of North Texas, P.O.Box 311430, Denton, Texas 76203-1430. email: allaart@unt.edu
R. Daniel Mauldin, Department of Mathematics, University of North Texas, P.O.Box 311430, Denton, Texas 76203-1430. email: mauldin@unt.edu

A POLYNOMIAL FIXED-POINT PROBLEM

This problem arose in an earlier, unsuccessful, attempt to answer a question about the Dubins-Freedman construction of random distributions that has in the meantime been answered affirmatively in the paper [1].

For $n \in \mathbf{N}$, let \mathcal{P}_{n} denote the set of polynomials of the form

$$
\sum_{i=0}^{2 k} x^{n-s(i)}(1-x)^{s(i)}
$$

where $0 \leq k \leq 2^{n-1}-1$ and $s(i)$ is the number of 1's in the binary expansion of i. Thus,

$$
\begin{aligned}
& \mathcal{P}_{1}=\{x\}, \\
& \mathcal{P}_{2}=\left\{x^{2}, x^{2}+2 x(1-x)\right\}, \\
& \mathcal{P}_{3}=\left\{x^{3}, x^{3}+2 x^{2}(1-x), x^{3}+3 x^{2}(1-x)+x(1-x)^{2},\right. \\
&
\end{aligned}
$$

etc.
Let $\mathcal{P}=\cup_{n=1}^{\infty} \mathcal{P}_{n}$. Note that all members of \mathcal{P} are partition polynomials which map 0 to 0 and 1 to 1 , and are increasing in between. (A partition polynomial is a polynomial of the form $\sum_{i=0}^{n} a_{i} x^{i}(1-x)^{n-i}$, where each a_{i} is integer with $0 \leq a_{i} \leq\binom{ n}{i}$.) However, there are many increasing partition polynomials with this property which are not members of \mathcal{P}. (For example, $x^{3}+x^{2}(1-x)+x(1-x)^{2}$.)

Let \mathcal{L} denote the set of those members of \mathcal{P} which are $<x$ on $(0,1)$, and \mathcal{R} the set of those members of \mathcal{P} which are $>x$ on $(0,1)$. Then $\mathcal{P}=\mathcal{L} \cup\{x\} \cup \mathcal{R}$. Furthermore, if $p \in \mathcal{R}$ then $p(x)=x+(1-x) r(x)$ for some $r \in \mathcal{P}$; and if $q \in \mathcal{L}$ then $q(x)=x s(x)$ for some $s \in \mathcal{P}$.

Received by the editors June 12, 2008

Conjecture 1. Let $p \in \mathcal{R}$ and $q \in \mathcal{L}$. Then the equation $p(q(x))=x$ has a unique root in $(0,1)$.

Some easy observations:

- The rotation of any member of \mathcal{R} by 180° about $(1 / 2,1 / 2)$ is a member of \mathcal{L}, and vice versa. That is, $p \in \mathcal{R} \Rightarrow 1-p(x)=q(1-x)$ for some $q \in \mathcal{L}$.
- It is clear that $x^{2} \mid q(x)$ for all $q \in \mathcal{L}$, so $q^{\prime}(0)=0$. Similarly, $p^{\prime}(1)=0$ for $p \in \mathcal{R}$. As a result, the function $f(x)=p(q(x))-x$ satisfies $f^{\prime}(0)=$ $f^{\prime}(1)=-1$ and $f(0)=f(1)=0$. Thus, f has at least one root in $(0,1)$, and has an odd number of total roots, counting multiplicity.
- It is clear that the statement of the conjecture is equivalent to the statement that $q(p(x))-x$ has a unique root in $(0,1)$.

Conjecture 2. If $p \in \mathcal{R}$ and $q \in \mathcal{L}$, then $q(p(x))>p(q(x))$ in $(0,1)$.
(It is not clear how this would help to prove the first conjecture.)

References

[1] P. C. Allaart and R. D. Mauldin (2008), Injectivity of the Dubins-Freedman construction of random distributions, preprint, University of North Texas.

