Ondřej Zindulka, Department of Mathematics, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 16000 Prague 6, Czech Republic.
email: zindulka@mat.fsv.cvut.cz

IS EVERY METRIC ON THE CANTOR SET σ-MONOTONE?

Definition 1. Let (X, d) be a metric space. X is said to be c-monotone if
(i) there is a linear order " $<$ " on X such that whenever $x<y<z$, then $d(x, y) \leq c \cdot d(x, z)$, and
(ii) open intervals $(a, b) \equiv\{x: a<x<b\}$ are open in X.
X is said to be monotone if X is c-monotone for some $c \in \mathbb{R}$, and σ-monotone if X is the countable union of monotone spaces.

The notions have applications in fractal geometry, see [2]. The following is proved in [1]. A metric space is monotone if and only if it is bi-Lipschitz equivalent to a 1-monotone space. A metric space with a dense monotone subspace is monotone. σ-monotone spaces have low topological dimension: If X is monotone and separable, then X (topologically) embeds into \mathbb{R} and if X is σ-monotone, then its topological dimension is at most 1 . But there are spaces with low dimension that are not σ-monotone: There exists a compact set $X \subset \mathbb{R}^{2}$ homeomorphic to $[0,1]$ that is not σ-monotone; in fact, each monotone subset of X is nowhere dense in X. It follows that X has a countable subspace that is not monotone, and a completely metrizable null-dimensional subspace that is not σ-monotone (recall that a topological space is null-dimensional if it has a base consisting of clopen sets). However, no example of a nulldimensional compact space that is not σ-monotone is known.

Question 1. Is there a compatible metric on the Cantor Ternary Set that is not σ-monotone?

[^0]
References

[1] Aleš Nekvinda and Ondřej Zindulka, Monotone spaces, (2008), preprint.
[2] Ondřej Zindulka, Universal measure zero, large Hausdorff dimension, and nearly Lipschitz maps, (2008), preprint.

[^0]: Key Words: Cantor set, monotone space, σ-monotone space
 Mathematical Reviews subject classification: 54E35, 54E45
 Received by the editors June 12, 2008

