Corneliu Ursescu, "Octav Mayer" Institute of Mathematics, Romanian Academy, Iaşi Branch, 8 Copou Blvd. 700505 Iaşi, Romania.
email: corneliuursescu@yahoo.com

TANGENCY COUNTEREXAMPLES IN l^{2}

Abstract

In [6], an infinite dimensional curve is constructed which is fairly smooth near an accumulation point of its graph, but has a null tangent set near the accumulation point. We construct extremely smooth curves which still yield such an anomalous tangency behavior.

Let X be a Hilbert space, let $f:(r,+\infty) \rightarrow X$ be a function, and assume there exists an $x \in X$ such that $\liminf _{t \downarrow r}\|f(t)-x\|=0$. Then $(r, x) \in$ $\overline{\operatorname{graph}(f)}$ and so $(0,0) \in K_{\operatorname{graph}(f)}(r, x)$. Here the overbar $\left(^{-}\right)$denotes the closure operator whereas K denotes a tangency concept of Bouligand and Severi.

The K-roots can be tracked down in the 1931 issue of Annales de la Société Polonaise de Mathématique, namely in the papers by Bouligand [2, p. 32] and Severi [5, p. 99]. At the beginning, the K-items were sets of half-lines. Later the K-items became sets of points. Rigorous translations of the half-line definitions of Bouligand and Severi into point definitions are made in [3, p. 240]. There it is also proved that the translated definitions are equivalent in normed spaces. Their equivalence in linear topological spaces follows from [7, pp. 567,8$]$. For further details on the history of the subject we refer to [4, p. 133] and [8, p. 342].

Currently, if T is a linear topological space, $S \subseteq T$, and $p \in T$ then $K_{S}(p)$ denotes the set of all points $q \in T$ such that

$$
(0, q) \in \overline{\{(\rho, \tau) \in \mathbb{R} \times T ; \rho>0, p+\rho \tau \in S\}}
$$

If T is a sequential space, i.e. there exists a sequence of points $\tau_{n} \in S$ converging to p whenever $S \subseteq T$ and $p \in \bar{S}$ (see [1, p. 101, Definition 3.1]),

[^0]then $\mathbb{R} \times T$ is also a sequential space (see again [1, p. 102, Proposition 3.2]). Therefore $q \in K_{S}(p)$ if and only if there exist a sequence of real numbers $\rho_{n}>0$ converging to 0 and a sequence of points $\tau_{n} \in T$ converging to q such that $p+\rho_{n} \tau_{n} \in S$.

If T is not a sequential space then the characterization above may fail since there exist $S \subseteq T$ and $p \in \bar{S}$ such that no sequence $\tau_{n} \in S$ converges to p. Then $0 \in K_{S}(p)$ but there exists no sequence $\rho_{n}>0$ converging to $0 \in \mathbb{R}$ and no sequence $\tau_{n} \in T$ converging to $0 \in T$ such that $p+\rho_{n} \tau_{n} \in P$.

Now assume there exists $\rho \geq 0$ such that $\liminf _{t \downarrow r}\left|\frac{\|f(t)-x\|}{t-r}-\rho\right|=0$. If $\rho=0$ then $(1,0) \in K_{\text {graph }}(r, x)$. Hence

$$
\begin{equation*}
\{(0,0)\} \subset K_{\operatorname{graph}(f)}(r, x) \tag{1}
\end{equation*}
$$

If $\rho>0$ and the linear space X is finite dimensional then there exists $\xi \in X$ such that $\|\xi\|=\rho$ and $(1, \xi) \in K_{\operatorname{graph}(f)}(r, x)$. Hence the strict inclusion (1) still holds. If $\rho>0$ but the linear space X is infinite dimensional then the strict inclusion (1) may fail, which means

$$
\begin{equation*}
\{(0,0)\}=K_{\operatorname{graph}(f)}(r, x) . \tag{2}
\end{equation*}
$$

In this regard a counterexample is given in [6, p. 273-4]. Turowska constructed a continuous function $f:(0,+\infty) \rightarrow l^{2}$ which satisfies the equality $\{(0,0)\}=$ $K_{\text {graph }(f)}(0,0)$ but yields $\lim _{t \downarrow 0}\|f(t)\|=0$ and $\liminf _{t \downarrow 0}\left|\frac{\|f(t)\|}{t}-\rho\right|=0$ for all $\rho \in\left[\frac{1}{\sqrt{2}}, 1\right]$. That function is also fairly smooth in that it is piecewise affine and $\|\dot{f}(t)\|=\sqrt{5}$ for almost all $t>0$.

The question arises whether a counterexample could be still given in the case of an extremely smooth function. The answer is affirmative. In the following an infinitely differentiable function $f:(0,+\infty) \rightarrow l^{2}$ is constructed which satisfies the equality $\{(0,0)\}=K_{\operatorname{graph}(f)}(0,0)$ but $\frac{\|f(t)\|}{t}=1$ and $1 \leq$ $\|\dot{f}(t)\| \leq \sqrt{5}$ for all $t>0$. In fact we show that for every $L>1$ there exists an infinitely differentiable function $f:(r,+\infty) \rightarrow l^{2}$ (in short, $f \in$ $\left.C^{\infty}\left((r,+\infty) ; l^{2}\right)\right)$ which satisfies the equality (2) but has

$$
\begin{array}{r}
\frac{\|f(t)-x\|}{t-r}=1 \\
\text { and } 1 \leq\|\dot{f}(t)\| \leq L \tag{4}
\end{array}
$$

for all $t>r$ (see Theorem 1 below).
The condition $L>1$ cannot be replaced with the condition $L=1$. In fact if the function $f:(r,+\infty) \rightarrow l^{2}$ is locally absolutely continuous (in short, $\left.f \in A C_{\text {loc }}\left((r,+\infty) ; l^{2}\right)\right)$, if

$$
\begin{equation*}
\|\dot{f}(t)\| \leq 1 \tag{5}
\end{equation*}
$$

for almost all $t>r$, if $x=\lim _{t \downarrow r} f(t)$, and if the equality (3) holds for all $t>r$ then f satisfies the strict inclusion (1) (see the first remark following Theorem 2 below).
Theorem 1. For every $L>1$ there exists $f \in C^{\infty}\left((r,+\infty) ; l^{2}\right)$ which satisfies (2) but yields (3) and (4) for all $t>r$.

Proof. We can suppose, replacing the function f with the function $t \in$ $(0,+\infty) \rightarrow f(r+t)-x \in l^{2}$ if necessary, that $(r, x)=(0,0)$.

The proof of the theorem relies on an auxiliary result which concerns several items: a Hilbert space X; two points $x^{\prime} \in X$ and $x \in X$ such that $\left\|x^{\prime}\right\|=1$, $\|x\|=1$, and $\left\langle x^{\prime}, x\right\rangle=0$; two real numbers $\alpha^{\prime} \in \mathbb{R}$ and $\alpha \in \mathbb{R}$ such that $0<\alpha^{\prime}<\alpha$; a real number $\beta \in\left(0,\left(\alpha-\alpha^{\prime}\right) / 2\right)$; and a real number $L>0$ such that $1+\frac{\pi^{2}}{4}\left[\ln \left(\frac{\alpha-\beta}{\alpha^{\prime}+\beta}\right)\right]^{-2}<L^{2}$. The auxiliary result states that there exists a function $f \in C^{\infty}(\mathbb{R} ; X)$ which satisfies the equality (3), the inequalities (4) on \mathbb{R}, the affine equality $f(t)=t x^{\prime}$ on $\left(-\infty, \alpha^{\prime}+\beta\right]$, and the affine equality $f(t)=t x$ on $[\alpha-\beta,+\infty)$.

To prove the auxiliary result, choose $\gamma \in\left(\beta,\left(\alpha-\alpha^{\prime}\right) / 2\right)$ such that $1+$ $\frac{\pi^{2}}{4}\left[\left(\frac{\alpha-\gamma}{\alpha^{\prime}+\gamma}\right)\right]^{-2}<L^{2}$ and consider a function $h \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ with $h(\mathbb{R})=[0,1]$, such that $h(t)=0$ on both $\left(-\infty, \alpha^{\prime}+\beta\right]$ and $[\alpha-\beta,+\infty)$, and such that $h(t)=1$ on $\left[\alpha^{\prime}+\gamma, \alpha-\gamma\right]$. Furthermore define $g \in C^{\infty}(\mathbb{R} ; \mathbb{R})$ through $g(t)=\left[\int_{\alpha^{\prime}}^{t} \frac{h(s)}{s} d s\right]\left[\int_{\alpha^{\prime}}^{\alpha} \frac{h(s)}{s} d s\right]^{-1}$ and note that $g(t)=0$ on $\left(-\infty, \alpha^{\prime}+\beta\right]$ whereas $g(t)=1$ on $[\alpha-\beta,+\infty)$. Moreover $\operatorname{tg}(t) \leq\left[\int_{\alpha^{\prime}}^{\alpha} \frac{h(s)}{s} d s\right]^{-1} \leq$ $\left[\int_{\alpha^{\prime}+\gamma}^{\alpha-\gamma} \frac{h(s)}{s} d s\right]^{-1}=\left[\ln \left(\frac{\alpha-\gamma}{\alpha^{\prime}+\gamma}\right)\right]^{-1}$. Hence $1+\frac{\pi^{2}}{4}[t \dot{g}(t)]^{2}<L^{2}$. Now define $f \in C^{\infty}(\mathbb{R} ; X)$ through $f(t)=t \cos \left[g(t) \frac{\pi}{2}\right] x^{\prime}+t \sin \left[g(t) \frac{\pi}{2}\right] x$ and note that f satisfies (3) as well as both of the required affine equalities. Additionally $\dot{f}(t)=$ $\left[\cos \left(g(t) \frac{\pi}{2}\right)-\frac{\pi}{2} t \dot{g}(t) \sin \left(g(t) \frac{\pi}{2}\right)\right] x^{\prime}+\left[\sin \left(g(t) \frac{\pi}{2}\right)+\frac{\pi}{2} t \dot{g}(t) \cos \left(g(t) \frac{\pi}{2}\right)\right] x$. Hence $\|\dot{f}(t)\|^{2}=1+\frac{\pi^{2}}{4}[t \dot{g}(t)]^{2}, f$ satisfies (4), and the proof of the auxiliary result is accomplished.

We proceed now with the proof of the theorem. Let $L>1$, choose $\nu>1$ such that $1+\frac{\pi^{2}}{4}[\ln (\nu)]^{-2}<L^{2}$, define the real sequence α_{n} through $\alpha_{1}=1$ and $\alpha_{(n+1)}=\frac{\alpha_{n}}{\nu}$, and observe $(0,+\infty)=\cup_{n \in \mathbb{N}}\left[\alpha_{(n+1)}, \alpha_{n}\right) \cup[1,+\infty)$. Next we construct a function $f:(0,+\infty) \rightarrow l^{2}$ by using the above partition of the interval $(0,+\infty)$ and the standard orthonormal system $\left\{e_{n}\right\}$ in l^{2}.

On the interval $[1,+\infty)$, we define f through $f(t)=t e_{1}$. Let $n \in \mathbb{N}$. In order to define f on the interval $\left[\alpha_{(n+1)}, \alpha_{n}\right]$, observe $\frac{\alpha_{n}}{\alpha_{(n+1)}}=\nu$ and choose $\beta_{n} \in\left(0, \frac{\alpha_{n}-\alpha_{(n+1)}}{2}\right)$ sufficiently small so that

$$
1+\frac{\pi^{2}}{4}\left[\ln \left(\frac{\alpha_{n}-\beta_{n}}{\alpha_{(n+1)}+\beta_{n}}\right)\right]^{-2}<L^{2}
$$

According to the auxiliary result above there exists $f_{n} \in C^{\infty}\left(\mathbb{R} ; l^{2}\right)$ which satisfies the equality $\left\|f_{n}(t)\right\|=t$ on \mathbb{R}, the inequality $1 \leq\left\|\dot{f}_{n}(t)\right\|<L$ on \mathbb{R}, the affine equality $f_{(n+1)}(t)=t e_{(n+1)}$ on $\left(-\infty, \alpha_{(n+1)}+\beta_{n}\right]$, and the affine equality $f_{n}(t)=t e_{n}$ on $\left[\alpha_{n}-\beta_{n},+\infty\right)$. On the interval $\left[\alpha_{(n+1)}, \alpha_{n}\right]$ we define f through $f(t)=f_{n}(t)$. Due to the affine equalities satisfied by each f_{n} we get $f \in C^{\infty}\left((0,+\infty) ; l^{2}\right)$.

Finally, let $(\rho, \xi) \in K_{\operatorname{graph}(f)}(0,0)$. We have to show that $(\rho, \xi)=(0,0)$. Consider a sequence $\sigma_{i}>0$ converging to 0 , a sequence $\rho_{i} \in \mathbb{R}$ converging to ρ, and a sequence ξ_{i} converging to ξ such that $(0,0)+\sigma_{i}\left(\rho_{i}, \xi_{i}\right) \in \operatorname{graph}(f)$, which means $\sigma_{i} \rho_{i}>0$ and $f\left(\sigma_{i} \rho_{i}\right)=\sigma_{i} \xi_{i}$. In view of (3) $\sigma_{i} \rho_{i}=\sigma_{i}\left\|\xi_{i}\right\|$ and so $\rho=\|\xi\|$. Furthermore there exist a sequence n_{i} such that $\sigma_{i} \rho_{i} \in\left[\alpha_{\left(n_{i}+1\right)}, \alpha_{n_{i}}\right)$. Hence $\sigma_{i} \xi_{i}=f_{n_{i}}\left(\sigma_{i} \xi_{i}\right)$. Since the sequence $\sigma_{i} \rho_{i}$ converges to 0 , we can suppose, taking a subsequence of $\left(\sigma_{i}, \rho_{i}, \xi_{i}\right)$ if necessary, that the intervals $\left[\alpha_{\left(n_{i}+1\right)}, \alpha_{n_{i}}\right]$ are mutually disjoint and so the sets $\left\{e_{\left(n_{i}+1\right)}, e_{n_{i}}\right\}$ are also mutually disjoint. Therefore $\left\langle f_{n_{i}}\left(\sigma_{i} \rho_{i}\right), f_{n_{j}}\left(\sigma_{j} \rho_{j}\right)\right\rangle=0$ whenever $i \neq j$. Finally $\left\langle\xi_{i}, \xi_{j}\right\rangle=0$ whenever $i \neq j$ and so $\|\xi\|=0,(\rho, \xi)=(0,0)$ and the proof of the theorem is accomplished.

Theorem 2. Let $f \in A C_{l o c}\left((r,+\infty) ; l^{2}\right)$ satisfy the inequality (5) for almost all $t>r$, let $x=\lim _{t \downarrow r} f(t)$, and let f and x satisfy the equality (3) for all $t>r$. Then there exists $\xi \in l^{2}$ such that $\|\xi\|=1$ and $f(t)=x+(t-r) \xi$ for all $t>r$.

Proof. Let $g(t)=\frac{f(t)-x}{t-r}$ so that $g(t)+(t-r) \dot{g}(t)=\dot{f}(t)$ and note $\|g(t)\|=1$ as well as $\|g(t)+(t-r) \dot{g}(t)\| \leq 1$ for almost all $t>r$. Then $\langle g(t), \dot{g}(t)\rangle=0$ and so $\|\dot{g}(t)\|=0$ for almost all $t>r$. Finally there exists $\xi \in l^{2}$ such that $\|\xi\|=1$ and $g(t)=\xi$ for all $t>r$ and the conclusion follows.

In the setting of Theorem 2, since $(1, \xi) \in K_{\operatorname{graph}(f)}(r, x)$, the function f satisfies the strict inclusion (1). Theorem 2 remains valid if the particular (infinite dimensional) space l^{2} is replaced with a general (finite or infinite dimensional) Hilbert space X, but it may fail if l^{2} is replaced with a normed space X. For example, let X denote the vector space \mathbb{R}^{2} endowed with the l^{1}-norm, namely $\|x\|=\left|x_{1}\right|+\left|x_{2}\right|$, and let $f:(0,+\infty) \rightarrow X$ be given by $f_{1}(t)=\arctan t$ and $f_{2}(t)=t-\arctan t$. Then f is not a linear function although $\|f(t)\|=t$ and $\|\dot{f}(t)\|=1$.

References

[1] V. I. Averbuh \& O. G. Smoljanov, Different definitions of derivative in linear topological spaces, Uspehi Mat. Nauk., 23(4:142) (1968), 67-116.
[2] G. Bouligand, Sur les surfaces dépourvues de points hyperlimites (ou: un théorème d'existence du plan tangent), Annales Soc. Polonaise, 9 (1931), 32-41.
[3] S. Dolecki, Tangency and differentiation: some applications of convergence theory, Ann. Mat. Pura Appl., 130(4) (1982) 223-255.
[4] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
[5] F. Severi, Su alcune questioni di topologia infinitesimale, Annales Soc. Polonaise, 9 (1931), 97-108.
[6] M. Turowska, Tangent cones for spaces equipped with different norms, Tatra Mt. math. Publ. 34 (2006), 271-280.
[7] C. Ursescu, Tangent sets' calculus and necessary conditions for extremality, SIAM J. Control Optim. 20(4) (1982), 563-574.
[8] C. Ursescu, A view about some tangency concepts, in Differential Equations and Control Theory, V. Barbu, ed., vol. 250 of π Pitman Research Notes in Mathematics Series, Essex, England, 1991, 342-346, from University of Iaşi, Romania, Longman Scientific \& Technical Conference on Differential Equations and Control Theory, Iaşi (Romania) August 27 September 1, 1990.

[^0]: Key Words: anomalous tangency
 Mathematical Reviews subject classification: 49J52
 Received by the editors May 18, 2007
 Communicated by: Alexander Olevskii

