Corneliu Ursescu, "Octav Mayer" Institute of Mathematics, Romanian Academy, Iaşi Branch, 8 Copou Blvd. 700505 Iaşi, Romania. email: corneliuursescu@yahoo.com

TANGENCY COUNTEREXAMPLES IN l^2

Abstract

In [6], an infinite dimensional curve is constructed which is fairly smooth near an accumulation point of its graph, but has a null tangent set near the accumulation point. We construct extremely smooth curves which still yield such an anomalous tangency behavior.

Let X be a Hilbert space, let $f: (r, +\infty) \to X$ be a function, and assume there exists an $x \in X$ such that $\liminf_{t \downarrow r} ||f(t) - x|| = 0$. Then $(r, x) \in \overline{\operatorname{graph}(f)}$ and so $(0,0) \in K_{\operatorname{graph}(f)}(r, x)$. Here the overbar () denotes the closure operator whereas K denotes a tangency concept of Bouligand and Severi.

The K-roots can be tracked down in the 1931 issue of Annales de la Société Polonaise de Mathématique, namely in the papers by Bouligand [2, p. 32] and Severi [5, p. 99]. At the beginning, the K-items were sets of *half-lines*. Later the K-items became sets of *points*. Rigorous translations of the half-line definitions of Bouligand and Severi into point definitions are made in [3, p. 240]. There it is also proved that the translated definitions are equivalent in normed spaces. Their equivalence in linear topological spaces follows from [7, pp. 567,8]. For further details on the history of the subject we refer to [4, p. 133] and [8, p. 342].

Currently, if T is a linear topological space, $S \subseteq T$, and $p \in T$ then $K_S(p)$ denotes the set of all points $q \in T$ such that

$$(0,q) \in \{(\rho,\tau) \in \mathbb{R} \times T; \rho > 0, p + \rho \tau \in S\}.$$

If T is a sequential space, i.e. there exists a sequence of points $\tau_n \in S$ converging to p whenever $S \subseteq T$ and $p \in \overline{S}$ (see [1, p. 101, Definition 3.1]),

Key Words: anomalous tangency

Mathematical Reviews subject classification: 49J52

Received by the editors May 18, 2007

Communicated by: Alexander Ólevskii

⁴⁴³

then $\mathbb{R} \times T$ is also a sequential space (see again [1, p. 102, Proposition 3.2]). Therefore $q \in K_S(p)$ if and only if there exist a sequence of real numbers $\rho_n > 0$ converging to 0 and a sequence of points $\tau_n \in T$ converging to q such that $p + \rho_n \tau_n \in S$.

If T is not a sequential space then the characterization above may fail since there exist $S \subseteq T$ and $p \in \overline{S}$ such that no sequence $\tau_n \in S$ converges to p. Then $0 \in K_S(p)$ but there exists no sequence $\rho_n > 0$ converging to $0 \in \mathbb{R}$ and no sequence $\tau_n \in T$ converging to $0 \in T$ such that $p + \rho_n \tau_n \in P$.

no sequence $\tau_n \in T$ converging to $0 \in T$ such that $p + \rho_n \tau_n \in P$. Now assume there exists $\rho \ge 0$ such that $\liminf_{t \downarrow r} \left| \frac{\|f(t) - x\|}{t - r} - \rho \right| = 0$. If $\rho = 0$ then $(1, 0) \in K_{\text{graph}}(r, x)$. Hence

$$\{(0,0)\} \subset K_{\operatorname{graph}(f)}(r,x). \tag{1}$$

If $\rho > 0$ and the linear space X is finite dimensional then there exists $\xi \in X$ such that $\|\xi\| = \rho$ and $(1,\xi) \in K_{\operatorname{graph}(f)}(r,x)$. Hence the strict inclusion (1) still holds. If $\rho > 0$ but the linear space X is infinite dimensional then the strict inclusion (1) may fail, which means

$$\{(0,0)\} = K_{\text{graph}(f)}(r,x).$$
(2)

In this regard a counterexample is given in [6, p. 273-4]. Turowska constructed a continuous function $f: (0, +\infty) \to l^2$ which satisfies the equality $\{(0,0)\} = K_{\text{graph}(f)}(0,0)$ but yields $\lim_{t\downarrow 0} ||f(t)|| = 0$ and $\liminf_{t\downarrow 0} |\frac{||f(t)||}{t} - \rho| = 0$ for all $\rho \in [\frac{1}{\sqrt{2}}, 1]$. That function is also fairly smooth in that it is piecewise affine and $||\dot{f}(t)|| = \sqrt{5}$ for almost all t > 0.

The question arises whether a counterexample could be still given in the case of an extremely smooth function. The answer is affirmative. In the following an infinitely differentiable function $f: (0, +\infty) \to l^2$ is constructed which satisfies the equality $\{(0,0)\} = K_{\text{graph}(f)}(0,0)$ but $\frac{||f(t)||}{t} = 1$ and $1 \leq ||\dot{f}(t)|| \leq \sqrt{5}$ for all t > 0. In fact we show that for every L > 1 there exists an infinitely differentiable function $f: (r, +\infty) \to l^2$ (in short, $f \in C^{\infty}((r, +\infty); l^2))$ which satisfies the equality (2) but has

$$\frac{\|f(t) - x\|}{t - r} = 1 \tag{3}$$

and
$$1 \le \|f(t)\| \le L$$
 (4)

for all t > r (see Theorem 1 below).

The condition L > 1 cannot be replaced with the condition L = 1. In fact if the function $f: (r, +\infty) \to l^2$ is locally absolutely continuous (in short, $f \in AC_{loc}((r, +\infty); l^2))$), if

$$\|f(t)\| \le 1 \tag{5}$$

for almost all t > r, if $x = \lim_{t \downarrow r} f(t)$, and if the equality (3) holds for all t > r then f satisfies the strict inclusion (1) (see the first remark following Theorem 2 below).

Theorem 1. For every L > 1 there exists $f \in C^{\infty}((r, +\infty); l^2)$ which satisfies (2) but yields (3) and (4) for all t > r.

PROOF. We can suppose, replacing the function f with the function $t \in (0, +\infty) \to f(r+t) - x \in l^2$ if necessary, that (r, x) = (0, 0).

The proof of the theorem relies on an auxiliary result which concerns several items: a Hilbert space X; two points $x' \in X$ and $x \in X$ such that ||x'|| = 1, ||x|| = 1, and $\langle x', x \rangle = 0$; two real numbers $\alpha' \in \mathbb{R}$ and $\alpha \in \mathbb{R}$ such that $0 < \alpha' < \alpha$; a real number $\beta \in (0, (\alpha - \alpha')/2)$; and a real number L > 0 such that $1 + \frac{\pi^2}{4} \left[\ln \left(\frac{\alpha - \beta}{\alpha' + \beta} \right) \right]^{-2} < L^2$. The auxiliary result states that there exists a function $f \in C^{\infty}(\mathbb{R}; X)$ which satisfies the equality (3), the inequalities (4) on \mathbb{R} , the affine equality f(t) = tx' on $(-\infty, \alpha' + \beta]$, and the affine equality f(t) = tx on $[\alpha - \beta, +\infty)$.

To prove the auxiliary result, choose $\gamma \in (\beta, (\alpha - \alpha')/2)$ such that $1 + \frac{\pi^2}{4} \left[\left(\frac{\alpha - \gamma}{\alpha' + \gamma} \right) \right]^{-2} < L^2$ and consider a function $h \in C^{\infty}(\mathbb{R}; \mathbb{R})$ with $h(\mathbb{R}) = [0, 1]$, such that h(t) = 0 on both $(-\infty, \alpha' + \beta]$ and $[\alpha - \beta, +\infty)$, and such that h(t) = 1 on $[\alpha' + \gamma, \alpha - \gamma]$. Furthermore define $g \in C^{\infty}(\mathbb{R}; \mathbb{R})$ through $g(t) = \left[\int_{\alpha'}^t \frac{h(s)}{s} ds \right] \left[\int_{\alpha'}^{\alpha} \frac{h(s)}{s} ds \right]^{-1}$ and note that g(t) = 0 on $(-\infty, \alpha' + \beta]$ whereas g(t) = 1 on $[\alpha - \beta, +\infty)$. Moreover $t\dot{g}(t) \leq \left[\int_{\alpha'}^{\alpha} \frac{h(s)}{s} ds \right]^{-1} \leq \left[\int_{\alpha' + \gamma}^{\alpha - \gamma} \frac{h(s)}{s} ds \right]^{-1} = \left[\ln \left(\frac{\alpha - \gamma}{\alpha' + \gamma} \right) \right]^{-1}$. Hence $1 + \frac{\pi^2}{4} [t\dot{g}(t)]^2 < L^2$. Now define $f \in C^{\infty}(\mathbb{R}; X)$ through $f(t) = t \cos \left[g(t) \frac{\pi}{2} \right] x' + t \sin \left[g(t) \frac{\pi}{2} \right] x$ and note that f satisfies (3) as well as both of the required affine equalities. Additionally $\dot{f}(t) = \left[\cos \left(g(t) \frac{\pi}{2} \right) - \frac{\pi}{2} t \dot{g}(t) \sin \left(g(t) \frac{\pi}{2} \right) \right] x' + \left[\sin \left(g(t) \frac{\pi}{2} \right) + \frac{\pi}{2} t \dot{g}(t) \cos \left(g(t) \frac{\pi}{2} \right) \right] x$. Hence $\|\dot{f}(t)\|^2 = 1 + \frac{\pi^2}{4} [t\dot{g}(t)]^2$, f satisfies (4), and the proof of the auxiliary result is accomplished.

We proceed now with the proof of the theorem. Let L > 1, choose $\nu > 1$ such that $1 + \frac{\pi^2}{4} [\ln(\nu)]^{-2} < L^2$, define the real sequence α_n through $\alpha_1 = 1$ and $\alpha_{(n+1)} = \frac{\alpha_n}{\nu}$, and observe $(0, +\infty) = \bigcup_{n \in \mathbb{N}} [\alpha_{(n+1)}, \alpha_n) \cup [1, +\infty)$. Next we construct a function $f: (0, +\infty) \to l^2$ by using the above partition of the interval $(0, +\infty)$ and the standard orthonormal system $\{e_n\}$ in l^2 .

On the interval $[1, +\infty)$, we define f through $f(t) = te_1$. Let $n \in \mathbb{N}$. In order to define f on the interval $[\alpha_{(n+1)}, \alpha_n]$, observe $\frac{\alpha_n}{\alpha_{(n+1)}} = \nu$ and choose $\beta_n \in (0, \frac{\alpha_n - \alpha_{(n+1)}}{2})$ sufficiently small so that

$$1 + \frac{\pi^2}{4} \left[\ln \left(\frac{\alpha_n - \beta_n}{\alpha_{(n+1)} + \beta_n} \right) \right]^{-2} < L^2.$$

According to the auxiliary result above there exists $f_n \in C^{\infty}(\mathbb{R}; l^2)$ which satisfies the equality $||f_n(t)|| = t$ on \mathbb{R} , the inequality $1 \leq ||\dot{f}_n(t)|| < L$ on \mathbb{R} , the affine equality $f_{(n+1)}(t) = te_{(n+1)}$ on $(-\infty, \alpha_{(n+1)} + \beta_n]$, and the affine equality $f_n(t) = te_n$ on $[\alpha_n - \beta_n, +\infty)$. On the interval $[\alpha_{(n+1)}, \alpha_n]$ we define f through $f(t) = f_n(t)$. Due to the affine equalities satisfied by each f_n we get $f \in C^{\infty}((0, +\infty); l^2)$.

Finally, let $(\rho, \xi) \in K_{\text{graph}(f)}(0, 0)$. We have to show that $(\rho, \xi) = (0, 0)$. Consider a sequence $\sigma_i > 0$ converging to 0, a sequence $\rho_i \in \mathbb{R}$ converging to ρ , and a sequence ξ_i converging to ξ such that $(0,0) + \sigma_i(\rho_i,\xi_i) \in \text{graph}(f)$, which means $\sigma_i\rho_i > 0$ and $f(\sigma_i\rho_i) = \sigma_i\xi_i$. In view of (3) $\sigma_i\rho_i = \sigma_i||\xi_i||$ and so $\rho = ||\xi||$. Furthermore there exist a sequence n_i such that $\sigma_i\rho_i \in [\alpha_{(n_i+1)}, \alpha_{n_i}]$. Hence $\sigma_i\xi_i = f_{n_i}(\sigma_i\xi_i)$. Since the sequence $\sigma_i\rho_i$ converges to 0, we can suppose, taking a subsequence of $(\sigma_i, \rho_i, \xi_i)$ if necessary, that the intervals $[\alpha_{(n_i+1)}, \alpha_{n_i}]$ are mutually disjoint and so the sets $\{e_{(n_i+1)}, e_{n_i}\}$ are also mutually disjoint. Therefore $\langle f_{n_i}(\sigma_i\rho_i), f_{n_j}(\sigma_j\rho_j) \rangle = 0$ whenever $i \neq j$. Finally $\langle \xi_i, \xi_j \rangle = 0$ whenever $i \neq j$ and so $||\xi|| = 0$, $(\rho, \xi) = (0, 0)$ and the proof of the theorem is accomplished.

Theorem 2. Let $f \in AC_{loc}((r, +\infty); l^2)$ satisfy the inequality (5) for almost all t > r, let $x = \lim_{t \downarrow r} f(t)$, and let f and x satisfy the equality (3) for all t > r. Then there exists $\xi \in l^2$ such that $\|\xi\| = 1$ and $f(t) = x + (t - r)\xi$ for all t > r.

PROOF. Let $g(t) = \frac{f(t)-x}{t-r}$ so that $g(t) + (t-r)\dot{g}(t) = \dot{f}(t)$ and note ||g(t)|| = 1as well as $||g(t) + (t-r)\dot{g}(t)|| \le 1$ for almost all t > r. Then $\langle g(t), \dot{g}(t) \rangle = 0$ and so $||\dot{g}(t)|| = 0$ for almost all t > r. Finally there exists $\xi \in l^2$ such that $||\xi|| = 1$ and $g(t) = \xi$ for all t > r and the conclusion follows.

In the setting of Theorem 2, since $(1,\xi) \in K_{\text{graph}(f)}(r,x)$, the function f satisfies the strict inclusion (1). Theorem 2 remains valid if the particular (infinite dimensional) space l^2 is replaced with a general (finite or infinite dimensional) Hilbert space X, but it may fail if l^2 is replaced with a normed space X. For example, let X denote the vector space \mathbb{R}^2 endowed with the l^1 -norm, namely $||x|| = |x_1| + |x_2|$, and let $f : (0, +\infty) \to X$ be given by $f_1(t) = \arctan t$ and $f_2(t) = t - \arctan t$. Then f is not a linear function although ||f(t)|| = t and $||\dot{f}(t)|| = 1$.

References

 V. I. Averbuh & O. G. Smoljanov, Different definitions of derivative in linear topological spaces, Uspehi Mat. Nauk., 23(4:142) (1968), 67–116.

- [2] G. Bouligand, Sur les surfaces dépourvues de points hyperlimites (ou: un théorème d'existence du plan tangent), Annales Soc. Polonaise, 9 (1931), 32-41.
- [3] S. Dolecki, Tangency and differentiation: some applications of convergence theory, Ann. Mat. Pura Appl., 130(4) (1982) 223-255.
- [4] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I, volume 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.
- [5] F. Severi, Su alcune questioni di topologia infinitesimale, Annales Soc. Polonaise, 9 (1931), 97–108.
- [6] M. Turowska, Tangent cones for spaces equipped with different norms, Tatra Mt. math. Publ. 34 (2006), 271–280.
- [7] C. Ursescu, Tangent sets' calculus and necessary conditions for extremality, SIAM J. Control Optim. 20(4) (1982), 563–574.
- [8] C. Ursescu, A view about some tangency concepts, in Differential Equations and Control Theory, V. Barbu, ed., vol. 250 of π Pitman Research Notes in Mathematics Series, Essex, England, 1991, 342–346, from University of Iaşi, Romania, Longman Scientific & Technical Conference on Differential Equations and Control Theory, Iaşi (Romania) August 27 September 1, 1990.

Corneliu Ursescu