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REGULATED FUNCTIONS ON
TOPOLOGICAL SPACES

Abstract

A regulated function on the real line is a real valued function whose
left-hand and right-hand limits exist at all points. In this paper we
examine a generalization of regulated functions to functions defined on
Davison Spaces, which are topological spaces with a little extra struc-
ture. Properties of such functions are discussed. Our main result con-
cerns the set of discontinuities of these functions. We also prove that
regulated functions defined on the natural numbers, with the cofinite
topology, coincide with convergent sequences.

1 Introduction.

In a short paper in 1979, T. M. K. Davison introduced a generalization of
regulated functions motivated by the question “what does a regulated function
on Rn look like?”. There seems to have been no other attempt to generalize
the idea of a regulated function to higher dimensions and, to the best of
our knowledge, these ideas of Davison have not been developed elsewhere. He
develops a theory to describe regulated functions from a topological space to R.
In this paper, we resurrect Davison’s beautiful generalization. We modify his
definition. We examine examples of regulated functions on R2 and the natural
numbers, whereby regulated functions coincide with convergent sequences. We
prove a result regarding the set of discontinuities of a regulated function.

A function f : [a, b]→ R is called regulated if its left-hand and right-hand
limits exist at all points. Examples of regulated functions on an interval [a, b]
include step functions, functions of bounded variation, càdlàg functions and
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continuous functions. Regulated functions were studied as far back as the early
twentieth century by Hobson [9]. Many results are known regarding regulated
functions defined on a closed subinterval of the real line. A regulated function
has countably many discontinuities and is the uniform limit of a sequence of
step functions. The class of bounded regulated functions is complete and forms
a Banach algebra. The class of functions of bounded variation is dense in the
class of regulated functions. See for example [2], [4], [5], [6], [8] and [12] for
more on regulated functions. More recently, it’s been shown that a function
is regulated if and only if it is of bounded φ-variation [14].

Regulated functions give an alternative introduction to the Riemann in-
tegral [1]. They also are important in the study of Fourier series [7]. Key
properties of the class provide an understanding of generalized differential and
integral equations [15]. Recently, applications have been found in the area of
mathematical hysteresis [10], and even more recently, applications have been
found in stochastic processes, see for example [11] and [13] .

In this paper, we introduce Davison’s generalization of a regulated function
in Section 2. To allow us to do this we introduce the idea of a Davison space
(X, τ, ω), which is a topological space, (X, τ), with an associated algebra of
sets, ω. We extend Davison’s definition so that the functions can map to a
normed vector space, and for certain results to a metric space. In Section 3,
we examine the Davison space on R that leads to regulated functions in the
classical sense. In Section 4, we examine regulated functions defined on the
natural numbers, N. We prove that, in this setting, regulated functions coin-
cide with convergent sequences. Section 5 briefly discusses regulated functions
on a subset of R2 and examines how to create examples of Davison spaces and
hence regulated functions.

In Section 6 we show that constant and continuous functions are regulated.
We introduce the definition of an ω-atom, which is the characteristic function
of an element of the algebra, ω, and an ω-molecule, which is a finite linear
combination of ω-atoms. We give a global characterization of a regulated
function on a compact set, and show that a function is regulated if and only
if it is the uniform limit of ω-molecules. The final section contains our main
theorem, which asserts that the set of discontinuities of a regulated function
is at most a countable collection of boundaries of elements in the associated
algebra.

2 Davison Spaces and Regulated Functions.

Davison [3], thought it reasonable to consider what a regulated function on
Rn should look like. To do this, Davison introduced the term appropriate
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family of sets as follows.

Definition 2.1. [Appropriate Family] Let X be a topological space. A
family F of subsets of X is appropriate if (i) F is a lattice with respect to
union and intersection of sets, (ii) if A,B ∈ F , and A ⊃ B, then A\B is in
F and (iii) the open sets of X which are in F form a basis for the topology
on X.

In other words, Davison requires F to be a ring of subsets of X whose
intersection with the topology forms a base for the topology. We now modify
Davison’s definition slightly. We use different terminology with the hope of
simplifying the definition. We also require that F contains the set itself, X;
i.e., that it is an algebra. We call the resulting triple, consisting of the set, the
topology and the algebra, a Davison space.

Definition 2.2. [Davison Space] A Davison space is a triple (X, τ, ω) where
(X, τ) is a topological space and ω is an algebra of sets on X, such that τ ∩ ω
is a base for τ .

It can be shown that this definition is equivalent to the definition of an
appropriate family provided the appropriate family contains the whole space.
Next, we give a version of Davison’s generalization of the concept of a regulated
function. In [3], Davison’s definition is for real valued functions. We allow
functions have values in any normed vector space.

Definition 2.3. [Regulated Function] Let (X, τ, ω) be a Davison space and
(Y, ‖·‖) a normed vector space. Then f : X → Y is said to be ω-regulated
at x ∈ X if given ε > 0, there exist A1, A2, ..., An ∈ ω such that ∪n

i=1Ai is a
neighbourhood of x and ‖f(s)− f(t)‖ < ε for s, t ∈ Ai, i = 1, ..., n. We say f
is ω-regulated on X if it is ω-regulated at x for all x ∈ X.

If it is clear with which algebra we are dealing we omit ω and just use the
term regulated. This definition can easily be generalized when Y is a metric
space. This definition of a regulated function coincides with the classical
definition if we take the usual topology on R and the algebra generated by
open intervals. We call such a function R-regulated. In other words, to say a
function is R-regulated is to say that the left and right limits exist at all point
in R. In the next section we examine R-regulated functions.

3 R-Regulated Functions.

Let τ be the usual topology on R. Let ω be the algebra generated by intervals
of the form (a, b),−∞ ≤ a < b ≤ +∞. Then (R, τ, ω) is a Davison space.
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The algebra ω consists of finite unions of intervals of all types; open, closed,
half-open, half-closed and singletons. The usual topology on R is the topology
generated by open intervals. Thus, ω ∩ τ contains these open intervals and
hence is a base for τ.

Example 3.1. Consider the function

H(x) =

 −1, x < 0,
0, x = 0,
1, x > 0.

Then H is regulated at x = 0, which is seen by taking A1 = (−a, 0), A2 = {0},
A3 = (0, a), for any a > 0. For x > 0, take A = (0,∞) and for x < 0 take
A = (−∞, 0). Thus, H is regulated on R.

Another interesting R-regulated function is Thomae’s function.

Example 3.2. Let g : [0, 1]→ R be Thomae’s function defined by

g(x) =
{ 1

q , x = p
q ,

0, x /∈ Q,

where p and q are coprime positive integers and Q denotes the rational num-
bers. Then g is R-regulated.

Proof. Let ε > 0 be given. By the Archimedean property there exists N ∈ N
such that 1

ε < N . Now, there are at most finitely many values of x such
that |g(x)| > 1

N , precisely
∑N−1

i=1 φ(i) values, where φ(n) is the Euler-phi
function, defined as the number of natural numbers less than and coprime with
n. Thus, there are at most finitely many values {xi}ni=1 such that |g(xi)| > ε.
So, for all but finitely many values of x ∈ [0, 1], |g(x)− 0| < ε, for ε > 0.
Let δ = mini

|c−xi|
2 . For c ∈ (0, 1) consider A1 = {c}, A2 = (c − δ, c) and

A3 = (c, c + δ). Then A = A1 ∪ A2 ∪ A3 is a neighbourhood of c and for
i ∈ {1, 2, 3}, s, t ∈ Ai => |g(s)− g(t)| < ε. For c = 0, choose A = A1 ∪ A3

and for c = 1 take A = A1 ∪A2.

In fact, any function defined on [0, 1] as follows is regulated. Let {an}∞n=1

be a null sequence. Enumerate the rational numbers in any way, r1, r2, r3, ...
and define

f(x) =
{
ai, x = ri,
0, x /∈ Q.

Then, using a similar argument to that used in the last example it can be
shown that f is R-regulated.
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4 Regulated Functions on N.

Example 4.1. Let N denote the natural numbers and let τ be the cofinite
topology on N (that is A ∈ τ if the complement of A, Ac, is finite or A = ∅,
where A is a subset of N). Let ω be the cofinite algebra (that is A ∈ ω if A or
Ac is finite). Then (N, τ, ω) is a Davison space.

Proof. First, we show τ is a topology on N. Clearly, N and ∅ are contained
in τ. Let A,B ∈ τ. Then Ac and Bc are finite. Hence, Ac ∪Bc is finite. Thus,
(A ∩ B)c is finite and A ∩ B ∈ τ . Also, if Ai ∈ τ, i ∈ I, then Ac

i is finite
for i ∈ I. So, ∩i∈IA

c
i , being an arbitrary intersection of finite sets is finite.

Whence, (∪i∈IAi)c is finite and ∪i∈IAi ∈ τ. Hence, τ is a topology. Next,
we’ll show ω is an algebra. Again, clearly ∅,N ∈ ω. Let A ∈ ω. Then A or
its complement is finite. Thus, Ac is finite or its complement is finite. Thus,
Ac ∈ ω. Finally, let A,B ∈ ω. Then if A and B are both finite, A ∪B is finite
and hence contained in ω. If at least one of A or B has finite complement, then
Ac ∩ Bc = (A ∪ B)c is finite and A ∪ B ∈ ω. We have shown ω is an algebra.
Recall that τ consists of all subsets of N with finite complement and ∅. All
these sets are contained in ω. So ω ∩ τ is a base for τ. In fact, ω ∩ τ = τ.

A function which is regulated with respect to this Davison space is called
N-regulated. We note that this Davison space is in fact compact. We include
a proof of this result as a reference could not be found.

Proposition 4.2. Let τ be the cofinite topology on N. Then N is compact.

Proof. Let Ai, i ∈ I, be an open cover for N. Thus, each Ai is of the form
{m1,m2, ...,mli , ni , ni + 1, ni + 2, ...} = {m1,m2, ...,mli} ∪N\{1, 2, ..., ni − 1}
where mj ∈ N for all j and mli , ni

∈ N. Let B be an element of the open cover.
There are only finitely many natural numbers not in B, say {r1, r2, ..., rj1}.
But, Ai, i ∈ I, is an open cover for N so there exists ik ∈ I such that rk ∈ Aik

for all k = 1, ..., ji. Then B,Ai1 , ..., Aij1
is a finite open cover for N. Thus, N

is compact.

Theorem 4.3. Let Y be a normed vector space. A function f : N → Y is
N-regulated if and only if {f(n)}∞n=1 is a convergent sequence.

Proof. Suppose {f(n)}∞n=1 is a convergent sequence. Then given ε > 0, there
exists N ∈ N, such that m,n ≥ N => ‖f(n) − f(m)‖ < ε. Let p ∈ N. Let
ε > 0 be given. We want to show f is regulated at p. Let A1 = {p} and
A2 = {N,N + 1, ...}. Then A = A1 ∪ A2 is an open set containing p, and
s, t ∈ Ai, i = 1, 2 => ‖f(s)− f(t)‖ < ε. So, f is regulated at p. Since p ∈ N is
arbitrary, f is regulated on N.
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Suppose f : N→ Y is regulated. Then given x ∈ N and ε > 0 there exists
Ai ∈ ω, i = 1, ..., k such that A1 ∪ A2 ∪ ... ∪ Ak is a neighbourhood of x and
s, t ∈ Ai => ‖f(s) − f(t)‖ < ε. Suppose {f(n)}∞n=1 is not convergent. Then
for any N there exists N1 and N2 ≥ N such that ‖f(N1)− f(N2)‖ > ε. Thus,
there does not exist j ∈ {1, ..., k} such that {N,N+1, N+2, ...} ⊂ Aj for some
fixed N . Thus, each Ai is finite. Hence, A1 ∪ A2 ∪ ... ∪ Ak is finite. But, any
neighbourhood of x must contain a set of the form {N0, N0 + 1, ...} for some
fixed N0 since any non trivial open set has finite complement. Thus, there does
not exist a finite collection of A′is such that A1∪A2...∪Ak is a neighbourhood
of x and s, t ∈ Ai => ‖f(s)−f(t)‖ < ε. Thus, f cannot be regulated at x. We
get a contradiction. Thus, {f(n)}∞n=1 has to be a convergent sequence.

Example 4.4. Let f : N → R be defined by f(n) = 1/n for n ∈ N. Then
f is N-regulated on N, but since a function is continuous with respect to the
cofinite topology if and only if it is constant, f is nowhere continuous on N.

Monotone functions f : [a, b] → R are R-regulated, but, in general mono-
tone functions need not be regulated as the following example illustrates.

Example 4.5. Consider f : N → R given by f(n) = n where (N, τ, ω) is the
Davison space described in Example 4.1. Clearly, f is monotonic increasing,
but by Theorem 4.3, since {f(n)}∞n=1 is not a convergent sequence, f is not
N-regulated.

5 More Examples of Regulated Functions.

Example 5.1 (Regulated on R2). Let Ω be a compact subset of R2. Let τ
be the usual topology on R2 and ω the algebra of sets with finite perimeter
(See [16], Chapter 4, Section 2). Then this is a Davison space. We call a
function regulated with respect to this Davison space an R2-regulated function.
For example the characteristic function of a set with finite perimeter is R2-
regulated (See Lemma 6.5).

We can also find examples of regulated functions on Zd, with the cofinite
topology, where Z denotes the integers and Rn for n ≥ 3. So how do we
manufacture a Davison space? Here are some possible ways.

• Start with a topological space (X, τ). Generate the smallest algebra, ω,
containing τ. Then (X, τ, ω) is a Davison space.

• Take any collection of sets in X. Generate the smallest topology τ con-
taining the collection. Find the smallest algebra, ω, containing τ. Then
(X, τ, ω) is a Davison space.
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• We could also start with a class of functions with certain properties and
pick a suitable algebra and topology so that the functions are regulated.

6 Vector-Valued Regulated Functions.

In Section 4 we saw that monotone functions need not be regulated and it
is possible to have a regulated function which is discontinuous everywhere.
Next we look at some results which are true for all regulated functions. We
state some results from Davison’s paper [3] in a more generalized version than
Davison. First we introduce some notation.

Notation. Let X denote a Davison space, (X, τ, ω), and Y denote a normed
vector space, (Y, ||.||). Let S = S(X,Y ) denote the class of regulated functions
from X to Y.

The following result shows that the class of regulated functions is non-
empty.

Proposition 6.1. Constant functions are regulated.

Proof. Let f(x) = a for all x ∈ X and some a ∈ Y . Then independent of
ε > 0 given, choose X itself as a neighbourhood of a point x ∈ X. Then for
s, t ∈ X, ‖f(s)− f(t)‖ = ‖a− a‖ = 0 < ε. Since X is contained in any algebra
on X, f is regulated.

One would hope that continuous functions are regulated and indeed they
are. In [3], Davison comments that continuous functions on a locally compact
space are regulated. We generalize and prove this result.

Proposition 6.2. Let (X, τ, ω) be a Davison space. If f is continuous on X,
then f is ω-regulated on X.

Proof. Let f : X → Y be continuous. Thus, given x ∈ X and ε > 0 there
exists a neighbourhood of x, Nx, such that z ∈ Nx implies ‖f(x)− f(z)‖ < ε

2 .
Since (X, τ, ω) is a Davison space, ω ∩ τ is a base for τ. So, ω contains a base
for τ. Hence, there exists an open set Bx ∈ ω ∩ τ ⊂ ω such that x ∈ Bx ⊂ Nx.
Thus, Bx ∈ ω and x ∈ Bx. Since Bx ⊂ Nx, s, t ∈ Bx => ‖f(s)− f(t)‖ ≤
‖f(s)− f(x)‖+ ‖f(x)− f(t)‖ < ε

2 + ε
2 = ε. Thus, f is regulated at x. Since x

is arbitrary f is regulated at all x ∈ X.

We note that if the algebra in a Davison space is contained in the topology,
then all regulated functions are continuous.
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Definition 6.3. [ω-atom] We call χA the characteristic function of A, an
ω-atom, where A ∈ ω.

Definition 6.4. [ω-molecule] We call a finite linear combination of ω-atoms
an ω-molecule.

Lemma 6.5. Let A ∈ ω. Then an ω-atom, the characteristic function of A,
is regulated.

This follows directly from the definition of a regulated function taking
A1 = A and A2 = X\A.

Lemma 6.6. S(X,Y ) is a linear subspace of the vector space of all functions
from X to Y.

Thus, ω-molecules, being finite linear combinations of ω-atoms, are regu-
lated. Here, ω-molecules play the same role as step functions play for classical
regulated functions f : [a, b] → R. The next result gives a global character-
ization of a regulated function on a compact set. We note that Davison, [3]
proved the following for Y = R and that our proof is similar to Davison’s but
is included for completeness.

Theorem 6.7. Let X be compact. Then f : X → Y is ω-regulated if and
only if given ε > 0, there exist A1, A2, ..., An ∈ ω, n ∈ N such that (i) X =
A1 ∪A2 ∪ ... ∪An and (ii) if s, t ∈ Ai, then ‖f(s)− f(t)‖ < ε, i = 1, 2, ..., n.

Proof. Suppose f is ω-regulated. Let ε > 0 be given. For each x ∈ X, there
exist B1, ..., Bk ∈ ω, for some k ∈ N, such that s, t ∈ Bi => ‖f(s)− f(t)‖ < ε
and Bx = ∪k

i=1Bi is a neighbourhood of x. Consider the family of sets {Bx : x ∈
X}. This family forms an open cover of X. Since X is compact there exists
a finite subcollection of {Bx : x ∈ X} that covers X, say Bx1 ,Bx2 , ...,Bxm ,
m ∈ N. Each Bxi

is a finite collection of elements of ω, Ai1,..., Aip
, some

p ∈ N, where s, t ∈ Aij
=> ‖f(s)− f(t)‖ < ε. Thus ∪m

i=1Bxi
is a finite

collection of elements of ω,Aij
, such that their union is X and s, t ∈ Aij

=>
‖f(s)− f(t)‖ < ε.

Conversely, suppose that, given ε > 0 there exists a finite collection of
elements Ai ∈ ω, such that ∪n

i=1Ai = X and s, t ∈ Ai implies ‖f(s)− f(t)‖ <
ε. We want to show that f is ω-regulated. Let x ∈ X. Then x ∈ Ai for some
i ∈ {1, 2, ..., n} and X is a neighbourhood of x. Also s, t ∈ Ai implies that
‖f(s)− f(t)‖ < ε. Hence, f is ω-regulated at x. Since x is arbitrary f is
ω-regulated at x for all x ∈ X.

Lemma 6.8. If X is compact, then ω-regulated functions are bounded.



Regulated Functions on Topological Spaces 413

Lemma 6.9. If X is compact, then S(X,Y ) with the supremum norm, ‖f‖∞ =
sup{‖f(x)‖ : x ∈ X}, is closed in B(X,Y ), the set of bounded functions from
X to Y .

The proofs of these two lemmas are similar to those given by Davison in
[3].

Theorem 6.10. Let (X, τ, ω) be a compact Davison space. Then a function
from X to Y is ω-regulated if and only if it is the uniform limit of ω-molecules.

We include the proof of this theorem because we use different terminology
to Davison and generalize the setting, but we emphasize that the ideas stem
from Davison’s in [3].

Proof. Let f be regulated and ε > 0 be given. By Theorem [6.7], there exists
A1, A2, ..., An ∈ ω such that (i) X = A1 ∪ ... ∪ An and (ii) if s, t ∈ Ai, then
‖f(s)− f(t)‖ < ε

2 . Let B1 = A1 and Bi = Ai\∪i−1
j=1Bj . Then Bi ∈ ω, since

an algebra is closed under finite unions and differences. Also, Bi ∩Bj = ∅ for
i 6= j, ∪n

i=1Bi = X and ‖f(s) − f(t)‖ < ε for s, t ∈ Bi. Choose any xi ∈ Bi.
Define the ω-molecule, s, as follows:

s(x) = f(xi), x ∈ Bi.

Recall that an ω-molecule is a finite linear combination of ω-atoms and an ω-
atom is the characteristic function of A, where A ∈ ω. So, s =

∑m
i=1 f(xi)χBi

.
We have shown that given ε > 0 there exists an ω-molecule, s, such that
‖f − s‖∞ < ε. Thus, f is the uniform limit of ω-molecules.

By Lemma 6.9, the limit of a uniformly convergent sequence of regulated
functions is regulated. Since an ω-molecule is regulated, a uniformly conver-
gent sequence of ω-molecules is regulated.

7 Discontinuities of a Regulated Function.

The set of discontinuities of an ω-atom is the boundary of an element in
ω. Since an ω-molecule is a finite linear combination of ω-atoms, the set of
discontinuities of an ω-molecule is at most a finite union of boundaries of
elements in ω. This leads us to our main result.

Theorem 7.1. Let (X, τ, ω) be a compact Davison space and f : X → Y an
ω-regulated function. The set of discontinuities of f is at most a countable
union of boundaries of elements of the algebra, ω.
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Proof. Since f is regulated and X is compact, f is the uniform limit of a
sequence, fn, of ω-molecules. Let An denote the set of points of continuity of
fn. Let A = ∩∞n=1An. Then A is a subset of the set of points of continuity
of f . Let B denote the set of points of discontinuity of f. Thus, B ⊆ Ac =
(∩∞n=1An)c = ∪∞n=1A

c
n. Note that each Ac

n is a finite union of boundaries of
elements of ω. Hence, B is at most a countable union of boundaries of elements
of ω.

This provides a simple proof of the following classical result.

Corollary 7.2. Let f : [a, b]→ R be an R-regulated function. Then f has at
most countably many discontinuities.

Also, as a consequence of Theorem 7.1 the set of discontinuities of an R2-
regulated function, described in Example 5.1, is at most a countable collection
of rectifiable curves.
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Pavel Krejč́ı and Dr. Pat McCarthy for their useful comments and suggestions.
The author would also like to express sincere thanks to Professor Finbarr Hol-
land for his time, patience and encouragement during this work on regulated
functions.

References

[1] S. K. Berberian, Regulated functions: Bourbaki’s alternative to the Rie-
mann integral, Amer. Math. Monthly, 86(3) (1979), 208–211.
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