
RESEARCH Real Analysis Exchange
Vol. 33(2), 2007/2008, pp. 385–394
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ON FUNCTIONS TAKING THE SAME
VALUE ON MANY PAIRS OF POINTS

Abstract

Let 0 < p < 1, p 6= 1/2, and let I ⊂ R be an interval. We say that
the function f : I → R has property (Mp) if, whenever x, y ∈ I and
f(x) 6= f(y), then f

`
px + (1− p)y

´
= f

`
(1− p)x + py

´
. We prove that

(i) if f has property (Mp) and has a point of continuity in I, then f
is constant apart from a countable set;

(ii) if f is measurable and has property (Mp), then f is constant a.e.

As a corollary we obtain that if f is a derivative and has property (Mp),
then f is constant. Then we apply this result to solve a functional
equation that appears in a variant of the Matkowski-Sutô problem.

1 Introduction.

Our starting point is the functional equation

f
(
px+ (1− p)y

)
[g(y)− g(x)] = µ [f(x)g(y)− f(y)g(x)] (x, y ∈ I), (1)

where f and g are real valued functions defined on the nonempty interval I,
and the real numbers 0 < p < 1 and µ 6= 0 are given. This equation appears in
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the investigations of the Matkowski-Sutô problem [4, 5, 7, 9]. Now, changing
the roles of x and y in (1) we get

f((1− p)x+ py) [g(x)− g(y)] = µ [f(y)g(x)− f(x)g(y)] (2)

for every x, y ∈ I. Taking the sum of (1) and (2) we obtain[
f
(
px+ (1− p)y

)
− f

(
(1− p)x+ py

)]
[g(y)− g(x)] = 0 (x, y ∈ I). (3)

If g(x) = g(y) 6= 0, then (1) gives f(x) = f(y). On the other hand, if
g(x) 6= g(y), then (3) implies f

(
px+ (1− p)y

)
= f

(
(1− p)x+ py

)
. Therefore,

assuming g 6= 0, it follows from (1) that the function f has the following
property labeled by (Mp):

if x, y ∈ I and f(x) 6= f(y), then f(px+ (1− p)y) = f((1− p)x+ py).

In this paper we shall prove that if a function f has property (Mp) with a
p ∈ (0, 1), p 6= 1/2, and if f satisfies some regularity properties as well, then
f has to be constant apart from a small set. Then we shall apply these results
to the functional equation (1).

In the sequel by the term interval we shall always mean a nonempty open
subinterval of R. The Lebesgue measure on R will be denoted by λ.

2 Some Preliminary Results.

Our first result will be used in the investigation of measurable functions having
property (Mp), but it may have independent interest.

Lemma 1. Let I ⊂ R be an interval, and let A1, A2, . . . , An (n ∈ N) be
measurable subsets of I having positive measure in each subinterval of I.

Let G ⊂ R2 be an open set, and let the functions fi : G → R (i =
1, 2, . . . , n) be continuously differentiable. Suppose there is a point (x0, y0) ∈
G such that

(i) fi(x0, y0) ∈ I for every i = 1, . . . , n,

(ii) the gradient vectors vi = ∇fi(x0, y0) (i = 1, . . . , n) are nonzero, and

(iii) the unit vectors ±vi/|vi| (i = 1, . . . , n) are pairwise different.

Then there exists a point (x, y) ∈ G such that fi(x, y) ∈ Ai for every i =
1, 2, . . . , n.
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The proof of Lemma 1 is based on the following result, which is well-known;
see [8, 3.5. Corollary] for a substantial generalization. However, in order to
make this paper self-contained, and since the special case we need is easily
obtained, we provide a simple proof.

Lemma 2. Let the functions g1, . . . , gk and the partial derivatives ∂
∂x gi (i =

1, . . . , k) be defined and continuous in a neighbourhood of the point (a, b) ∈ R2,
and suppose that ∂

∂x gi(a, b) 6= 0 for every i = 1, . . . , k. Let A1, . . . , Ak be
measurable subsets of R, and let ci = gi(a, b) be a density point of Ai for every
i = 1, . . . , k. Then there is a δ > 0 such that the set

G(y) = {x : gi(x, y) ∈ Ai (i = 1, . . . , k)}

is nonempty for every y ∈ (b− δ, b+ δ).

Proof. Replacing the function gi(x, y) by gi(x+a, y+b)−ci and the set Ai by
Ai−ci, we may assume that a = b = 0 and ci = 0 for every i = 1, . . . , k. Then,
multiplying the functions gi and the sets Ai by suitable nonzero constants,
we may also assume that ∂

∂x gi(a, b) = 1 for every i = 1, . . . , k. Put ε =
1/(6k). Since 0 is a density point of Ai, we may choose an h0 > 0 such that
λ([0, h] ∩ Ai) > (1 − ε)h for every 0 < h < h0 and i = 1, . . . , k. By the
continuity of the partial derivatives ∂

∂x gi, there exists a number 0 < h < h0

such that 1− ε < ∂
∂x gi(x, y) < 1 + ε for every x, y ∈ (−h, h) and i = 1, . . . , k.

Then, by the continuity of the functions gi, we can find a number 0 < δ < h
such that |gi(0, y)| < εh for every y ∈ (−δ, δ) and i = 1, . . . , k.

Let y ∈ (−δ, δ) be fixed, and put Bi = {x ∈ [0, h] : gi(x, y) /∈ Ai} (i =
1, . . . , k). Since ∂

∂x gi(x, y) > 1−ε for every x ∈ [0, h], the function gyi defined by
gyi (x) = gi(x, y) is strictly increasing in [0, h], and λ (gyi (Bi)) ≥ (1− ε) ·λ(Bi).
On the other hand, ∂

∂x gi(x, y) < 1 + ε implies gyi (h) − gyi (0) ≤ (1 + ε)h, and
thus we have gyi ([0, h]) ⊂ [−εh, (1 + 2ε)h] and

gyi (Bi) ⊂ [−εh, 0] ∪ ([0, h] \Ai) ∪ [h, (1 + 2ε)h].

Therefore, λ (gyi (Bi)) ≤ 4εh, (1 − ε) · λ(Bi) ≤ 4εh and λ(Bi) ≤ 4εh/(1 −
ε) < h/k for every i = 1, . . . , k. Consequently,

⋃k
i=1Bi cannot cover [0, h].

If x ∈ [0, h] \
⋃k
i=1Bi, then gi(x, y) ∈ Ai for every i = 1, . . . , k; that is, the

set G(y) is nonempty. Since this is true for every y ∈ (−h, h), the lemma is
proved.
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Proof of Lemma 1. We may assume that each of the sets Ai is d-open; that
is, every point of Ai is a density point of Ai. Indeed, otherwise we replace Ai
by Ai \Ni, where Ni is the null set consisting of the non-density points of Ai.

We prove the statement of the lemma by induction on n. As ∇f1(x0, y0) 6=
0, the range of f1 contains a neighbourhood of the point f1(x0, y0) ∈ I. As the
set A1 is dense in I, we have f1(x, y) ∈ A1 for a suitable (x, y). This proves
the statement for n = 1.

Let n > 1, and suppose the statement is true for n − 1. Let Ai, fi (i =
1, . . . , n) and (x0, y0) be as in the lemma. Since the unit vectors ±vi/|vi| are

different,
∂

∂x
fi(x0, y0) 6= 0 must hold for at least one i. We may assume that

∂

∂x
fn(x0, y0) 6= 0.

Let fn(x0, y0) = z0 ∈ I. By the implicit function theorem, there is a
neighbourhood U of (y0, z0) and there is a continuously differentiable function
h : U → R such that h(y0, z0) = x0, and fn

(
h(y, z), y

)
= z for every (y, z) ∈

U. Consider the functions gi(y, z) = fi
(
h(y, z), y

)
(i = 1, . . . , n) defined in U.

It is easy to check that the gradient vectors wi = ∇gi(y0, z0) (i = 1, . . . , n)
are nonzero, and the unit vectors ±wi/|wi| (i = 1, . . . , n) are different.

Since gn(y, z) = z, we have wn = ∇gn(y0, z0) = (0, 1). Therefore, the first

coordinate
∂

∂y
gi(y0, z0) of wi = ∇gi(y0, z0) is nonzero for every i = 1, . . . , n−1.

Let

V = {(y, z) ∈ U :
∂

∂y
gi(y, z) 6= 0 (i = 1, . . . , n− 1)};

then V is a nonempty open subset of U. By the induction hypothesis, we can
find a point (y1, z1) ∈ V such that gi(y1, z1) ∈ Ai for every i = 1, . . . , n− 1.

Let Gi(z) = {y : gi(y, z) ∈ Ai} (i = 1, . . . , n − 1), and put G(z) =⋂n−1
i=1 Gi(z). By Lemma 2, the set G(z) is nonempty in a neighbourhood of

the point z1. Now An is dense in I, and thus we may choose a point z2 ∈ An
such that G(z2) 6= ∅. Let y2 ∈ G(z2) and x2 = h(y2, z2). Then fi(x2, y2) =
gi(y2, z2) ∈ Ai for every i = 1, . . . , n − 1, and fn(x2, y2) = z2 ∈ An. This
completes the proof.

Let A be an ideal of subsets of R. We say that A is admissible, if satisfies
the following conditions:

(i) A contains the finite sets.

(ii) If H ∈ A, then aH+b = {ax+b : x ∈ H} ∈ A for every a, b ∈ R, a 6= 0.



On Functions Taking the Same Value on Many Pairs 389

(iii) Whenever I1 ⊂ I2 ⊂ . . . is an increasing sequence of intervals, H ⊂ R,

and H ∩ Ik ∈ A for every k, then H ∩
∞⋃
k=1

Ik ∈ A.

It is clear that the ideals of all countable sets, all null sets or all sets of first
category are admissible. It is also easy to check that the ideal of all scattered
sets is admissible. (A set H is scattered if every nonempty subset of H has an
isolated point.) This shows that an admissible ideal need not be a σ-ideal.

Lemma 3. Let I be an interval, and suppose that f : I → R has property
(Mp), where 0 < p < 1 and p 6= 1/2. Let A be an admissible ideal. If J ⊂ I
is a subinterval, K ⊂ R and f(x) ∈ K for A-a.e. x ∈ J, then f(x) ∈ K for
A-a.e. x ∈ I.
Proof. We may assume that 0 < p < 1/2. Let a ∈ J be fixed, let

B = {x ∈ I : x > a, { y ∈ [a, x] : f(y) /∈ K } ∈ A},

and put b = supB. Since J ∩ (a, ∞) ⊂ B, we have a < b. We prove that
b = sup I.

Suppose b < sup I. For every x < b there is a unique y such that px+ (1−

p)y = b. Clearly, y =
b− px
1− p

. Then we have y > b, and also y ∈ I, assuming

that x ∈ (b−δ, b), if δ is small enough. If x runs through the interval (b−δ, b),
then y runs through a right hand side neighbourhood of the point b. Then it
follows from the definition of b that there exists a point x0 ∈ (b − δ, b) such

that f(y0) /∈ K, where y0 =
b− px0

1− p
.

By assumption, f(x) ∈ K for A-a.e. x ∈ (x0, b). For every such x we have
f(x) 6= f(y0), and thus, by property (Mp) we obtain

f((1− p)x+ py0) = f(px+ (1− p)y0). (4)

If η > 0 is small enough, and x runs through the interval (x0, x0 + η), then
the point (1− p)x+ py0 runs through a subinterval of (x0, b), since

x0 < (1− p)x0 + py0 < px0 + (1− p)y0 = b.

For A-a.e. x ∈ (x0, b) we have f(x) ∈ K, and thus, by (4), for A-a.e. x ∈
(x0, x0 + η) we have f((1 − p)x + py0) = f(px + (1 − p)y0) ∈ K. Since
px+ (1− p)y0 runs through a right hand side neighbourhood of b, this means
that in a suitable right hand side neighbourhood of b the values of f belong
to K, apart from a set belonging to A (cf. property (ii)). This, however,
contradicts the definition of b, which proves that b = sup I. Therefore, we
have f(x) ∈ K for A-a.e. x ∈ [a, sup I). A similar argument proves that for
A-a.e. x ∈ (inf I, a] we have f(x) ∈ K.
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3 (Mp) Functions with Regularity Properties.

Theorem 4. Let 0 < p < 1, p 6= 1/2, and suppose that the function f : I → R
has property (Mp) in the interval I. If f has at least one point of continuity,
then f is constant in I, apart from a countable set.

Proof. Let f be continuous at the point a ∈ I. Then, for every positive
integer n there is a subinterval Jn ⊂ I such that f(Jn) ⊂ Kn = (f(a) −
1/n, f(a) + 1/n). Applying Lemma 3 to the ideal of countable sets we obtain
that f(x) ∈ Kn on I except at the points of a countable set. This implies that

f(x) ∈
∞⋂
n=1

Kn = {f(a)} for every x ∈ I except at the points of a countable

set.

Corollary 5. Let 0 < p < 1, p 6= 1/2, and suppose that the function f : I → R
has property (Mp) in the interval I. If f has at least one point of continuity
and has the Darboux property, then f is constant.

Proof. By Theorem 4, f is constant in I, apart from a countable set. If f is
not constant and Darboux, then the range of f contains an interval, which is
impossible.

Corollary 6. Let 0 < p < 1, p 6= 1/2, and suppose that the function f : I → R
has property (Mp) in the interval I. If f is a derivative, then f is constant.

Proof. Every derivative is Darboux and Baire 1, hence continuous at the
points of a dense set.

Theorem 7. Let 0 < p < 1, p 6= 1/2, and suppose that the function f : I → R
has property (Mp) in the interval I. If f is measurable, then f is a.e. constant
in I.

Proof. Suppose f is not constant a.e. in I. Then there is a real number a
such that both of the sets B = {x ∈ I : f(x) < a} and C = {x ∈ I : f(x) ≥ a}
have positive measure. We shall distinguish between two cases.

I. Suppose that both of B and C are of positive measure in every subin-
terval of I. Then put A1 = B, A2 = C, A3 = B, A4 = C, and f1(x, y) =
x, f2(x, y) = px + (1 − p)y, f3(x, y) = (1 − p)x + py, f4(x, y) = y for every
(x, y) ∈ I2. Since the gradient vectors v1 = (1, 0), v2 = (p, 1−p), v3 = (1−p, p)
and v4 = (0, 1) are nonzero, and the unit vectors ±vi/|vi| (i = 1, 2, 3, 4) are
different, we may apply Lemma 1 to the sets Ai and functions fi : G = I2 →
I (i = 1, 2, 3, 4). We find a point (x, y) ∈ I2 such that x ∈ B, px+(1−p)y ∈ C,
(1 − p)x + py ∈ B, and y ∈ C. Then f(x) < a < f(y). By property (Mp), we
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have f(px+ (1− p)y) = f((1− p)x+ py), which contradicts px+ (1− p)y ∈ C
and (1− p)x+ py ∈ B.

II. Now suppose that there is an interval J ⊂ I such that at least one of
the sets B ∩ J and C ∩ J is of measure zero. Then we put

g(x) =
{

0 if x ∈ B,
1 if x ∈ C.

It is clear that the function g has property (Mp) in I. Since g is constant a.e.
in J, it follows from Lemma 3 when applied to the ideal of null sets, that g
is a.e. constant in I. This, however, contradicts the condition that B and C
both have positive measure.

Remark 8. In possession of the previous theorem we can give a second proof
of Corollary 6.

Proof. Suppose f : I → R is a derivative and has property (Mp). Then, by
Theorem 7, f is a.e. constant in I. But then f has to be constant in I. Indeed,
suppose that f(x) = b a.e. in I, and there is point x0 ∈ I such that f(x0) 6= b.
Let J be an interval such that f(x0) ∈ J and b /∈ J. Then f−1(J) is nonempty
and thus, by the Denjoy-Clarkson property of derivatives [1, 3, 6], f−1(J) is
of positive measure. This, however, contradicts the fact that f(x) = b a.e.

4 Application to the Equation (1).

In one of the variants of the Matkowski-Sutô problem [4, 5] the unknown func-
tions f, g : I → R satisfy equation (1) and, in addition, have the representation
f = φ′ ◦φ−1 and g = ψ′ ◦φ−1, where φ and ψ are differentiable on an interval
J, φ maps J onto I, and φ′(x) · ψ′(x) 6= 0 for every x ∈ J. It is clear that in
this case 1/f is the derivative of the function φ−1. Thus the following theorem
gives the complete solution of (1) under this extra condition.

Theorem 9. Let 0 < p < 1, p 6= 1/2, and µ 6= 0, 1. Let I be an interval, and
suppose that the functions f, g : I → R \ {0} satisfy the functional equation
(1). If 1/f is a derivative on I, then f and g are both constants on I.

Proof. As we saw in the introduction, f satisfies condition (Mp). Then, obvi-
ously, 1/f also satisfies (Mp). Since 1/f is a derivative, it follows from Corollary
6 that 1/f is a (nonzero) constant, and thus f is a nonzero constant as well.
Then (1) gives g(y)− g(x) = µ(g(y)− g(x)) for every x, y ∈ I. By µ 6= 1 this
implies g(y)− g(x) = 0 for every x, y ∈ I, and thus g is also constant.
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5 Further Results on Functions with the (Mp) Property.

Let K be a proper subfield of R, and let

f(x) =
{

1 if x ∈ K,
0 if x /∈ K. (5)

Then the function f has property (Mp) on R for every p ∈ K ∩ (0, 1). Indeed,
if x, y ∈ I and f(x) 6= f(y), then x ∈ K and y /∈ K or x /∈ K and y ∈ K. Thus
none of the numbers px+ (1− p)y and (1− p)x+ py belongs to K, and hence
f(px+ (1− p)y) = 0 = f

(
(1− p)x+ py

)
.

Now, one can prove that R has nonmeasurable subfields1. If K is a nonmea-
surable subfield of R, then (5) defines a nonmeasurable function with property
(Mp) for every p ∈ Q∩(0, 1). One can also prove that there is a subfield K ⊂ R
of measure zero and of the cardinality of continuum2. Then (5) shows that
there exists a function f having the (Mp) property for every p ∈ Q ∩ (0, 1)
such that f = 0 a.e., but f 6= 0 on a set of cardinality of continuum.

Next we show that there exist nonconstant functions with the Darboux
property and having the (Mp) property for every p ∈ Q ∩ (0, 1). This is an
immediate consequence of the following result.

Theorem 10. There exists a function f : R→ R such that

(i) for every x, y ∈ R, if f(x) 6= f(y), then f takes the same value on the
numbers px+ qy for every p, q ∈ Q \ {0}, and

(ii) f takes every value in every interval.

Proof. Let H be a Hamel base of R, and let {hα : α < κ} be a well-ordering
of H, where h0 = 1 and κ is the initial ordinal of the continuum. Let Lα
denote the linear space over Q generated by the elements {hβ : β ≤ α} . (That
is, Lα is the set of all linear combinations of these elements with rational
coefficients.) Clearly, for every x ∈ R there is a minimal ordinal φ(x) such
that 1 ≤ φ(x) < κ and x ∈ Lφ(x). We define φ(0) = 1. It is easy to see that
if φ(x) < φ(y), then φ(px + qy) = φ(y) for every p, q ∈ Q \ {0} . Now Lα is

1This is probably a piece of folklore; it was also posed as Problem 1 of the 2007 Miklós
Schweitzer Memorial Competition in Mathematics [11]. There are many ways to prove the
statement. Take, for example, any maximal subfield of R not containing a fixed irrational
number.

2See also [11]. A possible construction is the following. By a theorem of J. von Neumann
[10], there is a nonempty perfect set P ⊂ R such that the elements of P are algebraically
independent over Q. If P ′ is a nonempty proper perfect subset of P, then the field generated
by P ′ is a proper measurable (in fact, Fσ) subfield of R, and then it has to be of measure
zero.
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periodic modulo every nonzero rational number, and thus the function φ takes
every ordinal 1 ≤ α < κ in every interval. Therefore, if ψ is a bijection from
{α : 1 ≤ α < κ} onto R, then the function f = ψ ◦ φ satisfies (i) and (ii).
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