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THE PERSISTENCE OF ω-LIMIT SETS
UNDER PERTURBATION OF THE

GENERATING FUNCTION

Abstract

We consider the set valued function Ω taking f in C(I, I) to its
collection of ω-limit sets Ω(f) = {ω(x, f) : x ∈ I}, and consider how
Ω(f) is affected by pertubations of f . Our main result characterizes
those functions f in C(I, I) at which Ω is upper semicontinuous, so that
whenever g is sufficiently close to f , every ω-limit set of g is close to
some ω-limit set of f in the Hausdorff metric space. We also develop
necessary and sufficient conditions for a function f in C(I, I) to be a
point of lower semicontinuity of the map Ω.

1 Introduction

At the Twentieth Summer Symposium in Real Analysis, A. M. Bruckner posed
several questions regarding the iterative stability of continuous functions as
they undergo small perturbations, as well as why these questions are of general
interest [B]. In particular, how are the set of ω-limit points and the collection of
ω-limit sets of a function affected by slight changes in that function? As Bruck-
ner discusses in [B], we may also want to ask these questions when restricting
our attention to particular subsets of C(I, I), such as those functions that are
in some way nonchaotic, or those functions that satisfy a particular smoothness
condition. As one sees from various examples found in [B] and [TH], in gen-
eral, both the set of ω-limit points and the collection of ω-limit sets of a typical
function are affected dramatically by arbitrarily small perturbations. In [TH2]
we make some progress towards understanding the continuity structure of the
maps f 7→ ∪x∈Iω(x, f) and f 7→ {ω(x, f) : x ∈ I}. We take (K,H) to be the
class of nonempty closed sets K in I endowed with the Hausdorff metric H,
and let (K∗, H∗) consist of the nonempty closed subsets of K. We are then
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able to characterize those functions at which Λ : (C(I, I), ‖ ◦ ‖) → (K,H)
given by f 7→ Λ(f) = ∪x∈Iω(x, f) is continuous, as well as characterize the
points of continuity of the map Ω : (C(I, I), ‖ ◦ ‖) → (K∗, H∗) given by
f 7→ Ω(f) = {ω(x, f) : x ∈ I} when we restrict the domain of Ω to those
continuous functions possessing zero topological entropy. These results are
presented in the following two theorems.

Theorem 1.1. The map Λ : (C(I, I), ‖◦‖)→ (K,H) is continuous at f if and
only if the stable periodic points of f are dense in the set of chain recurrent
points of f .

Theorem 1.2. Let E = {f ∈ C(I, I) : h(f) = 0}. Then Ω : (E, ‖ ◦ ‖) →
(K∗, H∗) is continuous at f if and only if either of the following equivalent
conditions hold:

1. The stable periodic points of f are dense in the set of chain recurrent
points of f .

2. Every periodic point of f is stable, and every simple system of f has
nonempty interior.

It is interesting to note that if a continuous function possesses zero topo-
logical entropy, then Ω : (E, ‖ ◦ ‖) → (K∗, H∗) is continuous there if and
only if Λ : (C(I, I), ‖ ◦ ‖) → (K,H) is continuous there. In this paper we
build upon the results of [TH2] as we investigate the continuity structure of
Ω without any domain restrictions. In particular, we develop necessary and
sufficient conditions for Ω to be lower semicontinuous at f , and characterize
those functions at which Ω is upper semicontinuous.

We proceed through several sections. In section 2 we present the notation
and definitions we will use throughout the balance of the paper. Section 3
is dedicated to the development of necessary and sufficient conditions on a
function f ∈ C(I, I) which insure that it is a point of lower semicontinuity of
Ω : (C(I, I), ‖◦‖)→ (K∗, H∗) , and in section 4 we characterize those functions
at which Ω is upper semicontinuous. We conclude our work in section 5 with
a few observations and a brief discussion of open problems.

2 Preliminaries

We shall be concerned with the class C(I, I) of continuous functions mapping
the unit interval I = [0, 1] into itself, and the iterative properties this class
of functions possesses. For f in C(I, I) and any integer n ≥ 1, fn denotes
the nth iterate of f . Let P (f) represent those points x ∈ I that are periodic
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under f , and if x is a periodic point of period n for which fn(x) − x is not
unisigned in any deleted neighborhood of x, then x is called a stable periodic
point; we let S(f) represent the stable periodic points of f . For each x in
I, we call the set of all subsequential limits of the sequence {fn(x)}∞n=0 the
ω-limit set of f generated by x, and write ω(x, f). Let Λ(f) = ∪x∈Iω(x, f)
represent the ω-limit points of f , while Ω(f) = {ω(x, f) : x ∈ I} denotes the
set composed of the ω-limit sets of f . Now, let ε > 0 be given, and take x
and y to be any points in [0, 1]. An ε-chain from x to y with respect to a
function f is a finite set of points {x0, x1, ..., xn} in [0, 1] with x = x0, y = xn
and | f(xk−1)−xk |< ε for k = 0, 1, ..., n−1. We call x a chain recurrent point
of f if there is an ε-chain from x to itself for any ε > 0, and write x ∈ CR(f).
We note that for every f in C(I, I), Λ(f) ⊆ CR(f).

In addition to the usual, Euclidean metric d on I = [0, 1], we will be working
in three metric spaces. Within C(I, I) we will use the supremum metric given
by ‖f − g‖ = sup{| f(x) − g(x) |: x ∈ I}. Our second metric space (K,H)
is composed of the class of nonempty closed sets K in I endowed with the
Hausdorff metric H given by H(E,F ) = inf{δ > 0 : E ⊂ Bδ(F ), F ⊂ Bδ(E)},
where Bδ(F ) = {x ∈ I : d(x, y) < δ, y ∈ F}. This space is compact [BBT].
Our final metric space (K∗, H∗) consists of the nonempty closed subsets of
K. Thus, K ∈ K∗ if K is a nonempty family of nonempty closed sets in I
such that K is closed in K with respect to H. We endow K∗ with the metric
H∗ so that K1 and K2 are close with respect to H∗ if each member of K1 is
close to some member of K2 with respect to H, and vice versa. This metric
space is also compact [B]. Our interest in, and the utility of, the spaces (K,H)
and (K∗, H∗) stem from the following two theorems from [BCl] and [BBHS],
respectively.

Theorem 2.1. For any f in C(I, I), the set Λ(f) is closed in I.

Theorem 2.2. For any f in C(I, I), the set Ω(f) is closed in K,H).

To a large extent, the work of [B], [TH] and [TH2] investigates the iterative
stability of f ∈ C(I, I) under small perturbations by studying the continuity
structure of the maps Λ : (C(I, I), ‖ ◦ ‖) → (K,H) given by f 7→ Λ(f), and
Ω : (C(I, I), ‖ ◦ ‖)→ (K∗, H∗) given by f 7→ Ω(f). In this paper we continue
that work by focusing on the semicontinuity of Ω : (C(I, I), ‖◦‖)→ (K∗, H∗).

In part of the sequel we will restrict our attention to a closed subset E of
C(I, I) composed of those functions f having zero topological entropy, denoted
by h(f) = 0. The reader is referred to Theorem A of [FSS] for an extensive
list of equivalent formulations of topological entropy zero. For our purposes,
it suffices to note that every periodic orbit of a continuous function with zero
topological entropy has cardinality of a power of two. The following theorem,
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due to Smital [S], sheds considerable light on the structure of infinite ω-limit
sets for functions with zero topological entropy.

Theorem 2.3. If ω is an infinite ω-limit set of f ∈ C(I, I) possessing zero
topological entropy, then there exists a sequence of closed intervals {Jk}∞k=1 in
[0, 1] such that

1. for each k, {f i(Jk)}2ki=1 are pairwise disjoint, and Jk = f2k(Jk);

2. for each k, Jk+1 ∪ f2k(Jk+1) ⊂ Jk;

3. for each k, ω ⊂ ∪2k

i=1f
i(Jk), and

4. for each k and i, ω ∩ f i(Jk) 6= ∅.

We make the following definitions with Smital’s Theorem in mind. Let
ω be an infinite compact subset of I, and let f map ω into itself. We call
f a simple map on ω if ω has a decomposition S ∪ T into compact portions
that f exchanges, and f2 is simple on each of these portions. From Smital’s
Theorem one sees that every map f with zero topological entropy is simple on
each of its infinite ω-limit sets. Let {Jk}∞k=1 be a nested sequence of compact
periodic intervals with respect to ω and f as described in Smital’s Theorem.
Every set of the form ω ∩ f i(Jk) is periodic of period 2k, and we call each
such set a periodic portion of rank k. This system of periodic portions of ω,
or of the corresponding periodic intervals, is called the simple system of ω
with respect to f . We now recall a device from [D] that allows us to code
the sets f i(Jk) with finite tuples of zeros and ones. Let N denote the natural
numbers, and take N to be the set of sequences composed of zeros and ones.
If n ∈ N and n = {ni}∞i=1, we let n | k = (n1, n2, ..., nk). Set 0 = (0, 0, ....)
and 1 = (1, 1, ....). Now, define a function A :N→ N given by A(n) = n + 10,
where addition is modulus two from left to right. For each k ∈ N and i ∈ N
put F1|k = Jk and FAi(1|k) = f i(Jk). Thus, for each m and n in N and k ∈ N
there is a j ∈ N such that Aj(m | k) = n | k; the above relations define Fn|k for
all n ∈ N and k ∈ N. Now, set Fn = ∩∞k=1Fn|k, and let K = ∪n∈N ∩∞k=1 Fn|k.
Then K and each Fn are compact, and the components of K consist of the
Fn sets.

We also need the following characterization of ω-limit sets for continuous
functions found in [ABCP].

Theorem 2.4. Let F ⊆ I be a nonempty closed set. Then F is an ω-limit
set for some f ∈ C(I, I) if and only if F is either nowhere dense, or F is the
union of finitely many nondegenerate closed intervals.
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3 Lower Semicontinuity

We begin with a definition. Suppose fn → f in C(I, I). Since (K∗, H∗) is
compact, there exists a subsequence {fnk} ⊆ {fn} with the property that
limk→∞ Ω(fnk) exists in (K∗, H∗); say limk→∞Ω(fnk) = L. We say that our
map Ω : (C(I, I), ‖ ◦ ‖) → (K∗, H∗) is lower semicontinuous at f if fn → f
in C(I, I) and Ω(fn) → L in (K∗, H∗) implies L ⊇ Ω(f). It follows, then,
that the lower semicontinuity of Λ : (C(I, I), ‖ ◦ ‖) −→ (K,H) is a necessary
condition for the lower semicontinuity of Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗).
In [TH2] we characterize the functions at which Λ is lower semicontinuous as
those functions f for which S(f) = Λ(f). As an immediate corollary, then, we
have the following.

Proposition 3.1. A necessary condition for the function f to be a point
of lower semicontinuity of the map Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is that
S(f) = Λ(f) .

Our following example shows, however, that the condition of our proposi-
tion is not sufficient to insure the lower semicontinuity of Ω : (C(I, I), ‖◦‖) −→
(K∗, H∗) at f .

Example 3.2. Let h ∈ C(I, I) be the hat map given by h(x) = 2x for 0 ≤ x ≤
1
2 , and h(x) = 2(1−x) for 1

2 ≤ x ≤ 1. The map Ω : (C(I, I), ‖◦‖) −→ (K∗, H∗)
is not lower semicontinuous at h even though S(h) = Λ(h).

Proof. That S(h) = Λ(h) follows from our definition of h; the details are
worked out in [TH2]. We now note that h(0) = 0, so that ω(0, h) = {0}.
Define fn ∈ C(I, I) so that fn(0) = 1

n , fn( 1
2 ) = 1, fn(1) = 0, and fn is linear

on both (0, 1
2 ) and ( 1

2 , 1). Then ‖h − fn‖ = 1
n for all n ∈ N. Let n ≥ 2. If

x ∈ ω ∈ Ω(fn) and 0 ≤ x ≤ 1
2 , then there exists y in ω so that y ≥ 1

2 . It follows
that fn → h in C(I, I), but H({0}, ω) ≥ 1

2 for any ω in ∪∞n=2Ω(fn).

In a similar manner one also may show that H({0}, ω) ≥ 1
2 for any ω ∈

Ω(h) distinct from the unstable fixed point {0}; that is, {0} is an unstable
periodic orbit of h that is isolated in Ω(h). In Proposition 3.3 we develop
an analogue to the condition found in Proposition 3.1 that precludes this
difficulty; we consider those continuous functions f that have a dense set of
stable periodic orbits in Ω(f). Since Ω(f) is closed in the compact space
(K∗, H∗), stable periodic orbits being dense in Ω(f) is equivalent to requiring
that for any ε > 0 there exists an ε-net of Ω (f) comprised entirely of stable
periodic orbits.

Proposition 3.3. Let f ∈ C(I, I). If the stable periodic orbits of f are dense
in Ω (f), then Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is lower semicontinuous at f .
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Proof. It suffices to show that for every ε > 0 there exists a corresponding
δ > 0 so that Ω(f) ⊆ Bε(Ω(g)) whenever ‖f − g‖ < δ. To this end, let
ε > 0, with {ω1, ω2, ..., ωn} ⊆ Ω(f) an ε

2 -net of Ω(f), where ωi ⊆ S(f) for
1 ≤ i ≤ n. From the definition of a stable periodic orbit, there exists δi > 0 so
that H(ωi, αi) < ε

2 for some αi ∈ Ω(g) whenever ‖f − g‖ < δi, for 1 ≤ i ≤ n.
Let δ > 0 so that δ < min{δ1, δ2, ..., δn}, with ω ∈ Ω(f) and g ∈ C(I, I) for
which ‖f − g‖ < δ. Since {ω1, ω2, ..., ωn} is an ε

2 -net of Ω(f), H(ω, ωi) < ε
2

for some 1 ≤ i ≤ n; since ‖f − g‖ < δ < δi, H(ωi, α) < ε
2 for some α ∈ Ω(g).

It follows that H(ω, α) < ε, and in general, that Ω(f) ⊆ Bε(Ω(g)).

With Proposition 3.3, we are able to develop part of Theorem 1.2 as an
elementary corollary.

Corollary 3.4. Suppose f ∈ C(I, I) for which h(f) = 0. If S(f) = P (f) and
intK = ∅ for any simple system of f , then Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is
lower semicontinuous at f .

Proof. Let ω be an infinite ω-limit set of f . Since intK = ∅ for any simple
system of f , from Smital’s Theorem one sees that there exists {αn}∞n=1 ⊆ Ω(f)
so that αn ⊆ S(f) for each n, and limn→∞ αn = ω.

From examples found in [B], [TH] as well as our earlier example, even a
well behaved function f ∈ C(I, I) need not be a point of lower semicontinuity
of Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗). We are able to show, however, that we
can appropriately perturb any function f ∈ C(I, I) to obtain a function g
inC(I, I) with the property that a subset of g’s stable periodic orbits do form
an ε-net of Ω(f). Specifically, we prove the following.

Theorem 3.5. Let f ∈ C(I, I). For any ε > 0 there exists g ∈ C(I, I)
with {ω1, ω2, ..., ωn} contained in Ω(g) so that ωi ⊆ S(g) for any 1 ≤ i ≤ n,
‖f − g‖ < ε and {ω1, ω2, ..., ωn} forms an ε-net of Ω(f).

It is worth noting that we may just as well take the sets ωi contained in
Ω(g) so that each ωi is not only a stable periodic orbit of g, but that it also
attracts trajectories generated by points found in a set of positive measure.
This provides an interesting complement to the main results found in [JS],
where the authors discuss the effects of random perturbations on the trajecto-
ries generated by a continuous function. Specifically, Jankova and Smital show
that the ω-limit sets generated by continuous maps of the interval subjected to
random pointwise perturbations of their trajectories exhibit the following two
paradoxical properties: (1) any trajectory, with probability 1, is transitive in a
system of compact intervals forming a periodic orbit, but (2) except for those
functions f found in an exceptional nowhere dense set of C(I, I), the length of
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these intervals is smaller than ε whenever the perturbations are smaller than
some δ(f).

We begin our development of Theorem 3.5 with the following lemma.

Lemma 3.6. Let f ∈ C(I, I) with ω(x, f) ∈ Ω(f). Then for any ε > 0 there
exists N a nutural number so that fn(x) ∈ Bε(ω(x, f)) whenever n > N .

Proof. Suppose, to the contrary, that no such N exists. Then there
exists a subsequence {n(k)}∞k=1 in N so that fn(k)(x) ∈ [0, 1]\Bε(ω(x, f)) for
all k. Since [0, 1]\Bε(ω(x, f)) is compact, { fn(k)(x)}∞k=1 must contain at
least one limit point in [0, 1]\Bε(ω(x, f)). But this implies that ω(x, f) ∩
[0, 1]\Bε(ω(x, f)) 6= ∅, a contradiction.

As an immediate corollary we have the following.

Corollary 3.7. Let f ∈ C(I, I) with ω ∈ Ω(f). For any ε > 0 there exists
x ∈ I so that ω(x, f) = ω and fn(x) ∈ Bε(ω) for all n = 0, 1, 2, 3, ....

The proof of Theorem 3.5 rests, in large part, on our following lemma,
where we make good use of Corollary 3.7.

Lemma 3.8. Let f ∈ C(I, I) with ω ∈ Ω(f). For any ε > 0 there exists
g ∈ C(I, I) and α ∈ Ω(g) so that α ⊆ P (g), ‖f − g‖ < ε and H(ω, α) < ε.

Proof. If ω is itself periodic there is nothing to prove, so let us assume ω is
infinite. Using Corollary 3.7, let x ∈ I so that ω(x, f) = ω , and {fn(x)}∞n=0 ⊆
B ε

2
(ω). Now, take {x, y0, y1, ..., yn} ⊆ ω to be an ε

2 -net of ω(x, f) , a compact
subset of [0, 1]. Since ω(x, f) = ω, there exists N ∈ N so that, for any
i ∈ {0, 1, ..., n}, | yi − fk(x) |< ε

2 for some 1 ≤ k ≤ N , and | x − fN (x) |< ε.
Choose a neighborhood U of fN−1(x) so that U ∩ {fn(x)}Nn=0 = fN−1(x) .
Now, take g ∈ C(I, I) so that

1. f(x) = g(x) for x ∈ I\U

2. g(fN−1(x)) = x, and since | x− fN (x) |< ε

3. ‖f − g‖ < ε.

It follows, then, that {x, f(x), f2(x), ..., fN−1(x)} = ω(x, g) is a periodic
orbit of periodN for g. Since ω ⊆ B ε

2
({x, y0, y1, ..., yn}) and {x, y0, y1, ..., yn} ⊆

B ε
2
(ω(x, g)), it follows that ω ⊆ Bε(ω(x, g)). By our choice of x, we also have

that {fn(x)}N−1
n=0 ⊆ {fn(x)}∞n=0 ⊆ B ε

2
(ω), so that ω(x, g) ⊆ B ε

2
(ω). This

implies that H(ω, ω(x, g)) < ε.�
If necessary, we may make arbitrarily slight perturbations in the function

g of Lemma 3.8 so as to take α to be a stable periodic orbit. This gives us the
following stronger result as a corollary.
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Corollary 3.9. Let f ∈ C(I, I) with ω ∈ Ω(f). For any ε > 0 there exists
g ∈ C(I, I) and α ∈ Ω(g) so that α ⊆ S(g), ‖f − g‖ < ε and H(ω, α) < ε.

This puts us in a position to prove Theorem 3.5.
Proof of Theorem 3.5. Let {α1, α2, ..., αn} ⊆ Ω(f) be an ε

2 -net of Ω(f).
Using Corollary 3.9, to each αi we can associate gi ∈ C(I, I) and ωi ∈ Ω(gi)
so that ωi ⊆ S(gi), ‖f − gi‖ < ε

2 and H(ωi, αi) < ε
2 . Moreover, we may

presume that ωi ∩ ωj = ∅ whenever i 6= j by taking a slight perturbation
of our functions gi as necessary. Let δ > 0 so that δ < min{ ε2 , σ}, where
σ = min{| x− y |: x 6= y and x, y ∈ ∪ni=1ωi}. Now, take g ∈ C(I, I) so that

1. g(x) = gi(x) for all x ∈ ∪ni=1ωi,

2. g(x) = max{gi(x) : 1 ≤ i ≤ n} for all x ∈ I\B δ
2
(∪ni=1ωi),

3. ‖f − g‖ < ε, and

4. ωi ⊆ S(g) for 1 ≤ i ≤ n.

If α ∈ Ω(f), then H(αi, α) < ε
2 for some 1 ≤ i ≤ n. Since H(αi, ωi) < ε

2 ,
it follows that H(ωi, α) < ε and that {ω1, ω2, ..., ωn} ⊆ Ω(g) is an ε-net of
Ω(f).

4 Upper Semicontinuity

We say that our map Ω : (C(I, I), ‖◦‖) −→ (K∗, H∗) is upper semicontinuous
at f if fn → f in C(I, I) and Ω(fn)→ L in (K∗, H∗) implies L ⊆ Ω(f). It fol-
lows that the upper semicontinuity of Λ : (C(I, I), ‖◦‖) −→ (K,H) is a neces-
sary condition for the upper semicontinuity of Ω : (C(I, I), ‖◦‖) −→ (K∗, H∗).
In [TH2] we characterize the points at which Λ is upper semicontinuous as
those functions f for which Λ(f) = CR(f). As an immediate corollary, then,
we have the following.

Proposition 4.1. A necessary condition for the function f to be a point of
upper semicontinuity of the map Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is that
Λ(f) = CR(f) .

That the condition of Proposition 4.1 is not sufficient to insure that f ∈
C(I, I) is a point of upper semicontinuity of Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗)
follows from examples found in [TH]. We now recall a pair of previously known
results. The first is from [BCl], and the second can be found in [TH].

Proposition 4.2. Suppose f ∈ C(I, I) with ω ∈ Ω(f). If F is any nonempty
proper closed subset of ω, then F ∩ f(ω \ F ) 6= ∅.
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Proposition 4.3. Suppose fn → f, ωn → L and ωn ∈ Ω(fn) for each n. Then

1. f(L) = L

2. If F is any nonempty proper closed subset of L, then F ∩ f(L \ F ) 6= ∅.

Proposition 4.3 holds the key to our characterization of functions f ∈
C(I, I) at which Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is upper semicontinuous.
We know that any ω-limit set of a continuous function f satisfies both parts
of the conclusion of Proposition 4.3 [BCl]; however, our function f will be a
point of upper semicontinuity of Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) only when
these conditions characterize its ω-limit sets. This is the content of Theorem
4.4.

Theorem 4.4. The map Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is upper semicon-
tinuous at the function f if and only if L ∈ Ω(f) whenever L ∈ K for which
f(L) = L and F ∩ f(L \ F ) 6= ∅ for any nonempty proper closed subset F of
L.

We make significant progress in proving Theorem 4.4 with the development
of the following proposition.

Proposition 4.5. Let f ∈ C(I, I) with L ∈ K for which f(L) = L and
F ∩f(L \ F ) 6= ∅ for any nonempty proper closed subset F of L. For any ε > 0
there exists g ∈ C(I, I) and ω ∈ Ω(g) so that ‖f − g‖ < ε and H(ω,L) < ε.

Proof. Let ε > 0. Since f ∈ C(I, I), f is uniformly continuous on I, so that
there exists δ1 > 0 with the property that | f(x)−f(y) |< ε whenever | x−y |<
δ1. Choose δ so that 0 < δ < min{δ1, ε}, and take {x1, x2, ..., xn} ⊆ L to be a
δ-net for L. It suffices to perturb f to get a function g ∈ C(I, I) possessing a
periodic attractor ω so that ‖f−g‖ < ε and {x1, x2, ..., xn} ⊆ ω ⊆ ∪ni=1Bδ(xi),
as this implies H(ω,L) < ε. That this is possible follows from our hypothesis
that F ∩ f(L \ F ) 6= ∅ for any nonempty proper closed subset F contained in
L. In particular,

1. let F = L\Bδ(xi) to see that there exists x ∈ Bδ(xi) such that f(x) ∈
Bδ(xj) for some j 6= i, for any i = 1, 2, ..., n;

2. let F = L\ ∪j 6=i Bδ(xj) to see that there exists x ∈ Bδ(xj) for some j 6= i
so that f(x) ∈ Bδ(xi), for any i = 1, 2, ..., n, and

3. let S ⊆ {1, 2, ..., n} with F = L\ ∪i∈S Bδ(xi) to see that there exists
x ∈ ∪i∈SBδ(xi) so that f(x) ∈ Bδ(xj) for some j ∈ {1, 2, ..., n}\S.
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With Proposition 4.5, a proof of Theorem 4.4 follows easily.
Proof of Theorem 4.4. Suppose Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is upper
semicontinuous at f , and L ∈ K for which f(L) = L and F ∩ f(L \ F ) 6= ∅
for any nonempty proper closed subset F of L. By Proposition 4.5, there
exists {fn} ⊆ C(I, I) with ωn ∈ Ω(fn) for any n so that limn→∞ fn = f
and limn→∞ ωn = L. Since Ω is upper semicontinuous at f , it follows that
L ∈ Ω(f).

Now, suppose that L ∈ Ω(f) whenever L ∈ K for which f(L) = L
and F ∩ f(L \ F ) 6= ∅ for any nonempty proper closed subset F of L. Let
{fn} ⊆ C(I, I) with ωn ∈ Ω(fn) for any n so that limn→∞ fn = f and
limn→∞ ωn = L∗. Since f(L∗) = L∗ and F ∩ f(L∗ \ F ) 6= ∅ for any nonempty
proper closed subset F of L∗ by Proposition 4.3, it follows that L∗ ∈ Ω(f), so
that Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is upper semicontinuous at f .

We turn our attention to the development of a few corollaries of Theo-
rem 4.4. These shed considerable light on the structure of those continuous
functions that are points of upper semicontinuity of Ω : (C(I, I), ‖ ◦ ‖) −→
(K∗, H∗). In particular, our first two corollaries show that, in many instances,
wandering intervals preclude upper semicontinuity.

Corollary 4.6. Let f ∈ C(I, I) for which h(f) = 0. If intK 6= ∅ for some
simple system of f , then Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is not upper semi-
continuous at f .

Proof. Since f(K) = K and F ∩ f(K \ F ) 6= ∅ for any nonempty proper
closed subset F of K, it suffices to show that K /∈ Ω(f). But this follows from
the fact that every ω-limit set of a function with zero topological entropy must
be nowhere dense.

Corollary 4.7. Let f ∈ C(I, I) with positive topological entropy, and take
X ⊂ I so that fn(X) = X, and fn | X is semiconjugate to the shift operator
σ on two symbols, for some natural number n. If X possesses a component
with nonempty interior, then Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is not upper
semicontinuous at f .

Proof. We begin by noting that it suffices to show that Ω : (C(I, I), ‖◦‖) −→
(K∗, H∗) is not upper semicontinuous at fn. Since fn(X) = X and F ∩
fn(X \ F ) 6= ∅ for any nonempty proper closed subset F of X, we want to show
that X /∈ Ω(fn) for our conclusion to follow. Since X possesses a component
with nonempty interior, X must possess infinitely many components with
nonempty interior. That X cannot be an ω-limit set now follows from the
characterization of ω-limit sets for continuous functions found in Theorem
2.4.
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Our next corollary reflects a certain stability in the algebraic structure of
Ω(f) whenever Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is upper semicontinuous at f .

Corollary 4.8. Let f ∈ C(I, I). If Ω : (C(I, I), ‖ ◦ ‖) −→ (K∗, H∗) is upper
semicontinuous at f , then ω1 ∪ ω2 ∈ Ω(f) whenever ω1 and ω2 are elements
of Ω(f), and ω1 ∩ ω2 6= ∅.

Proof. Since f(ωi) = ωi and F ∩ f(ωi \ F ) 6= ∅ for any nonempty proper
closed subset F of ωi, for both i = 1, 2, the same is true their union. Our
conclusion now follows from Theorem 4.4.

We conclude this section with an application of Corollary 4.8 that solves
an open problem from [TH2].

Example 4.9. Define the double hat map h : [−1, 1] −→ [−1, 1] so that
h(−1) = h(0) = h(1) = 0, h( 1

2 ) = −h(− 1
2 ) = 1, and h is extended linearly to

all of [−1, 1]. Then Ω : (C([−1, 1], [−1, 1]), ‖ ◦ ‖) −→ (K∗, H∗) is not upper
semicontinuous at h even though Λ : (C([−1, 1], [−1, 1]), ‖ ◦ ‖) −→ (K,H) is
continuous there, and P (h) = S(h).

Proof. We begin by noting that both ω1 = {0} ∪ ∪∞n=0{ 1
2n } and ω2 =

{0} ∪ ∪∞n=0{− 1
2n } are homoclinic ω-limit sets of h : [−1, 1] −→ [−1, 1]. Since

h([0, 1]) = [0, 1] and h([−1, 0]) = [−1, 0], it follows that ω1 ∪ ω2 is not an
ω-limit set of h, so that Ω : (C([−1, 1], [−1, 1]), ‖ ◦ ‖) −→ (K∗, H∗) cannot be
upper semicontinuous there.

5 Conclusions

While we have made some progress in understanding the overall behavior
of Ω : (C(I, I), ‖ ◦ ‖) → (K∗, H∗) with our consideration of semicontinuity,
obvious questions remain. In particular, how can we improve Proposition 3.3
so as to develop a characterization of those functions f ∈ C(I, I) at which
Ω : (C(I, I), ‖ ◦ ‖) → (K∗, H∗) is lower semicontinuous? A major step in
developing such a characterization would be an answer to the following query:
Let ε > 0. What conditions on f ∈ C(I, I) and ω ∈ Ω(f) insure the existence
of a periodic ω-limit set α in Ω(f) so that H(ω, α) < ε? An answer to this
query would not only help us characterize those continuous functions at which
Ω : (C(I, I), ‖ ◦ ‖)→ (K∗, H∗) is lower semicontinuous, but may also provide
significant insight into Ω’s continuity structure vis-a-vis the chaotic nature of
f in C(I, I).
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