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Abstract

A subset E of Rp is s-straight if E has finite Hausdorff s-dimensional
outer measure which equals its Method I s-outer measure. The graph of
a continuously differentiable function is shown to be the countable union
of closed 1-straight sets together with a set of Hausdorff 1-measure zero.
This result is extended to the graphs of absolutely continuous functions
and to regular sets.

1 Introduction

In [6], Foran introduced the notion of s-straight and proposed a subset E of
the unit circle such that E is 1-straight and has positive measure. A detailed
analysis of this proposed set is given in [2] together with other examples and
results for 1-straight sets.

Given a nonempty bounded subset B of Rp, define diam(B) = sup{d(x, y) :
x, y ∈ B} where d(x, y) denotes the usual distance function in Rp. Define
diam(∅) = 0. We write diams(E) in place of [diam(E)]s.

Definition 1.1. Let E be a subset of Rp and s > 0. Given ∞ ≥ δ > 0, define

ms
δ (E) = inf

{ ∞∑
i=1

diams(Ei) : E =
∞⋃
i=1

Ei, diam(Ei) < δ for i = 1, 2, . . .

}
.

Set ms(E) = supδ>0m
s
δ (E) and set ms

I (E) = ms
∞(E).
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The outer measure ms
I is known as a Method I outer measure. The

outer measure ms is a metric outer measure on Rp. Hence, every closed
subset of Rp is ms-measurable. See [3, pp. 132–144] for details. If E is an
ms-measurable subset of Rp, then we write Hs(E) in place of ms(E). If
(An)∞n=1 is a decreasing sequence of compact subsets of Rp and if δ > 0, then
ms
δ (
⋂∞
n=1An) = limn→∞ms

δ (An). In [6], Foran defines s-straight and proves
Theorem 1.3, providing a useful equivalent formulation of s-straight.

Definition 1.2. Given a subset E of Rp and s > 0, we say E is s-straight if
ms(E) <∞ and ms(E) = ms

I (E).

Theorem 1.3. Let E be a subset of Rp with ms(E) <∞. Then E is s-straight
if and only if ms(E ∩K) ≤ diams(E ∩K) for each compact subset K of Rp.

2 Graphs of Functions and S-Straight Sets

Definition 2.1. Let A1, . . . , An be subsets of Rp. We say that A1, . . . , An are
s-aligned if diams(B) ≥

∑n
i=1 diams(B ∩ Ai) for each bounded subset B of

A1 ∪ · · · ∪An.

Example. If diam(A∪B) ≥ diam(A)+diam(B), then A and B may not be
1-aligned. Let A = {(x, sinx) : 0 ≤ x ≤ π} and B = {(x, sinx) : −π ≤ x ≤ 0}.
Then diam(A ∪B) = diam(A) + diam(B). If A1 = {(x, sinx) : 0 ≤ x ≤ π/2},
then diam(A1∪B) < diam(A1)+diam(B). Hence, A and B are not 1-aligned.

The motivation for the definition of s-aligned arises from the following
result.

Proposition 2.2. Let A1, . . . , An be s-aligned subsets of Rp. If A1, . . . , An
are s-straight, then A1 ∪ · · · ∪An is s-straight.

Proof. Let K be a compact set in Rp. Then ms[K ∩ (A1 ∪ · · · ∪ An)] ≤∑n
i=1m

s(K ∩Ai) ≤
∑n
i=1 diams(K ∩Ai) ≤ diams[K ∩ (A1 ∪ · · · ∪An)].

Suppose A and B are s-aligned subsets of Rp. Let A and B denote the
closure of A and B, respectively. Then A ∩ B contains at most one point.
Hence, ms(A1 ∪B1) = ms(A1) +ms(B1) for each A1 ⊆ A and B1 ⊆ B.

Theorem 2.3. Let (qn)∞n=1 be a sequence of positive integers. Set Qn =
{(i1, . . . , in) : 1 ≤ i1 ≤ q1, . . . , 1 ≤ in ≤ qn} for n = 1, 2, . . . . Let {Aβ : β ∈
Qn for some n ≥ 1} be a family of compact subsets of Rp such that A1, . . . , Aq1
are s-aligned and such that

(a) A(β,1), . . . , A(β,qn) are s-aligned if β ∈ Qn−1,
(b) Aβ ⊇ A(β,1) ∪ · · · ∪A(β,qn) if β ∈ Qn−1 and
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(c) limn→∞max{diams(Aβ) : β ∈ Qn} = 0.
Let Pn =

⋃
{Aβ : β ∈ Qn}. Then

⋂∞
n=1 Pn is s-straight.

Proof. If E ⊆ Pn, then diams(E) ≥
∑
β∈Qn diams(E ∩ Aβ). Let P =⋂∞

n=1 Pn. The set P is closed and Pn ⊇ Pn+1 for n ≥ 1. Let K be a compact
subset of Rp. It suffices to show that diams(P ∩ K) ≥ ms

δ (P ∩ K) for each
δ > 0. Let δ > 0. Choose ` such that diams(Aβ) < δ for each β ∈ Q`. Then
for each n ≥ `

diams(Pn ∩K) ≥
∑
β∈Qn

diams(Aβ ∩K) ≥ ms
δ (Pn ∩K).

Hence, limn→∞ diams(Pn ∩K) ≥ limn→∞ms
δ (Pn ∩K) ≥ ms

δ (P ∩K). Since
P is closed, diams(P ∩K) = limn→∞ diams(Pn ∩K). Thus, diams(P ∩K) ≥
ms
δ (P ∩K). It follows that P is s-straight.

Lemma 2.4. Let f : [a, b] → R be continuously differentiable with 0 ≤ m ≤
f ′(t) ≤ M . If I is a subinterval of [a, b], let F (I) = {(x, f(x)) : x ∈ I}. Sup-
pose 0 < w < 1 satisfies (1 + w)

√
1 +m2 ≥ 2w

√
1 +M2. Then for each posi-

tive integer n, there exist disjoint subintervals I1, . . . , In of [a, b] each of length
w(b− a)/n such that H1[

⋃n
k=1 F (Ik)] ≥ w2H1[F ([a, b])] and F (I1), . . . , F (In)

are 1-aligned.

Proof. It suffices to consider the case where [a, b] = [0, 1]. Let F (s, t) =
{(x, f(x)) : s ≤ x ≤ t} if 0 ≤ s ≤ t ≤ 1. Assume (1 + w)

√
1 +m2 ≥

2w
√

1 +M2 where 0 < w < 1. Set α = arctanm and β = arctanM . Then
tanα ≤ f ′ ≤ tanβ and (1 + w) secα ≥ 2w secβ. If 0 ≤ s ≤ t ≤ 1, then
(t − s) secα ≤ H1[F (s, t)] ≤ (t − s) secβ. Let n be a positive integer. Set
δ = (1−w)/(2n). Define ak = (k−1)/n+ δ, bk = k/n− δ and Ik = [ak, bk] for
k = 1, . . . , n. Then H1[

⋃n
k=1 F (Ik)] =

∑n
k=1H1[F (Ik)] ≥

∑n
k=1 |Ik| secα =

w secα where |Ik| denotes the length of Ik. Hence

H1[
n⋃
k=1

F (Ik)] ≥ w secα
secβ

H1[F (0, 1)] ≥ 2w2

1 + w
H1[F (0, 1)] ≥ w2H1[F (0, 1)].

Since f is increasing, to show that F (I1), . . . , F (In) are 1-aligned, it suffices
to show that diam[F (s, t)] ≥

∑n
k=1 diam[F ([s, t] ∩ Ik)] if 0 ≤ s < t ≤ 1. If

s, t belong to a single Ik, this inequality is clear. Let aj ≤ s < bj and let
ak < t ≤ bk where j < k. Set

Φ(s, t) = diam[F (s, t)]−diam[F (s, bj)]−diam[F (ak, t)]−
k−1∑
i=j+1

diam[F (ai, bi)].
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To show that F (I1), . . . , F (In) are 1-aligned, it suffices to show that Φ(s, t) ≥
0. Set m = k + 1− j ≥ 2. We have

Φ(s, t) ≥ (t− s) secα−
[
(bj − s) + (t− ak) +

∑k−1
i=j+1(bi − ai)

]
secβ

≥ (bk − aj) secα−
[
(bj − aj) + (bk − ak) +

∑k−1
i=j+1(bi − ai)

]
secβ

=
m− (1− w)

n
secα− mw

n
secβ

=
m

n

[
m− 1 + w

m
secα− w secβ

]
≥ m

n

[
1 + w

2
secα− w secβ

]
.

Hence, Φ(s, t) ≥ 0 and so F (I1), . . . , F (In) are 1-aligned.

Theorem 2.5. Let f : [a, b]→ R be continuously differentiable with 0 ≤ f ′ ≤
M . Let Γ = {(x, f(x)) : a ≤ x ≤ b}. Then there exists closed 1-straight subset
P of Γ such that H1(P ) ≥ H1(Γ)/[4(1 +M2)].

Proof. If I is a subinterval of [a, b], set F (I) = {(x, f(x)) : x ∈ I}, m(f ′, I) =
min{f ′(x) : x ∈ I} and M(f ′, I) = max{f ′(x) : x ∈ I}. Set β = arctan(M)
and let w1 be the positive number such that 1 + w1 = 2w1 secβ, that is,
w1 = 1/(2 secβ−1). Then w2

1 > 1/[4(1+M2)]. Choose w2, w3, . . . in (0, 1) such
that

∏∞
k=1 w

2
k = 1/[4(1 + M2)]. By Lemma 2.4 and by uniform continuity of

f ′ on [a, b], we may choose an integer q1 ≥ 2 and closed subintervals I1, . . . , Iq1
of [a, b] each of length w1(b− a)/q1 such that

(step 1)


F (I1), . . . , F (Iq1) are 1-aligned,
H1[
⋃q1
j=1 F (Ij)] ≥ w2

1H1(Γ) and

1 + w2

2w2

√
1 +m2(f ′, Ij)
1 +M2(f ′, Ij)

≥ 1 for j = 1, . . . , q1

Let P1 = F (I1) ∪ · · · ∪ F (Iq1). Then H1(P1) ≥ w2
1H1(Γ). By Lemma 2.4 and

by uniform continuity of f ′ on [a, b], we may choose an integer q2 ≥ 2 and
closed subintervals Ii,1, . . . , Ii,q2 of Ii each of length w1w2(b − a)/(q1q2) for
i = 1, . . . , q1 such that

(step 2)


F (Ii,1), . . . , F (Ii,q2) are 1-aligned for i = 1, . . . , q1

H1[
⋃q2
j=1 F (Ii,j)] ≥ w2

2H1[F (Ii)] for i = 1, . . . , q1 and

1 + w3

2w3

√
1 +m2(f ′, Ii,j)
1 +M2(f ′, Ii,j)

≥ 1 for i = 1, . . . , q1 and j = 1, . . . , q2
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Let P2 =
⋃
{F (Ii,j) : 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2}. Then H1(P2) ≥

w2
1w

2
2H1(Γ). Continuing this process, we obtain, in accordance with Theo-

rem 2.3, a decreasing sequence (Pn)∞n=1 of compact subsets of Γ such that
H1(Pn) ≥ (

∏n
k=1 w

2
k)H1(Γ) for each n ≥ 1 and

⋂∞
n=1 Pn is 1-straight. Let

P =
⋂∞
n=1 Pn. Then P is a closed 1-straight subset of Γ with H1(P ) ≥

H1(Γ)/[4(1 +M2)].

Let f : [a, b]→ R be continuous and let Γ be the graph of f . Assume that
H1(Γ) is finite. If each closed subset of Γ with positive H1 measure contains a
closed 1-straight subset of positive H1 measure, then Γ is the countable union
of closed 1-straight subsets together with a set of H1 measure zero since the
measure H1 is regular. See [2] for a similar result.

Corollary 2.6. Let f : [a, b] → R be continuously differentiable. Then the
graph of f is the countable union of closed 1-straight sets together with a set
of H1 measure zero.

Proof. If I is a subinterval of [a, b], let F (I) = {(x, f(x)) : x ∈ I}. Choose
closed subintervals I1, . . . , In of [a, b] that cover [a, b] such that f ′ ≥ 0, f ′ ≤ 0
or |f ′| ≤

√
3/3 on Ik for each k = 1, . . . , n. If |f ′| ≤

√
3/3 on Ij , then

F (Ij) rotated by 30◦ coincides with the graph of a continuously differentiable
function g with g′ ≥ 0. It follows from Theorem 2.5 that each F (Ik) is the
countable union of closed 1-straight subsets together with a subset of H1

measure zero and so likewise for the graph of f .

Theorem 2.7. Let f : [a, b] → R be absolutely continuous. Then the graph
of f is the countable union of closed 1-straight sets together with a set of H1

measure zero.

Proof. Let Γf = {(x, f(x)) : a ≤ x ≤ b}. Let µ denote Lebesgue measure
on [a, b]. Let E be a closed subset of Γf with positive H1 measure. Set
B = {x ∈ [a, b] : (x, f(x)) ∈ E}. Since f is absolutely continuous, B is
a compact subset of [a, b] with µ(B) > 0. But f is differentiable almost
everywhere and f ′ is µ-measurable. By a theorem due to Federer, see [5,
Theorem 3.1.15] and [1, p. 1160], there exists a compact subset K of B and
a continuously differentiable function g on [a, b] such that g = f on K and
µ(K) > 0. Let Γg(K) = {(x, g(x)) : x ∈ K}. Then Γg(K) is a compact subset
of the graph of g with positive H1 measure. By Corollary 2.6, there exists a
closed 1-straight subset P of the graph of g with H1(P ∩Γg(K)) > 0. Since P
is 1-straight, P ∩ Γg(K) is a closed 1-straight subset of E. Hence, the graph
of f is the countable union of closed 1-straight subsets together with a set of
H1 measure zero.
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Corollary 2.8. Let f : [a, b] → R be continuous and increasing. Then the
graph of f is the countable union of closed 1-straight sets together with a set
of H1 measure zero.

Proof. The graph of f rotated clockwise by 45◦ coincides with the graph of
a continuous Lipschitz function, which is absolutely continuous.

3 Regular Sets and S-Straight Sets

If E ⊂ Rp, we say E is an s-set if E is ms-measurable and 0 < Hs(E) < ∞.
If x ∈ Rp, let Br(x) denote the closed ball of radius r > 0 centered at x. We
next recall some definitions concerning density, regular sets and contingents.

Definition 3.1. [4, pp. 20-21]. We say x is a regular point of E if the
Hs-density of x with respect to E, defined as limr→0+ [Hs(E ∩ Br(x))/(2r)s],
exists and equals 1. A set E is called a regular set if almost every point of E
is regular. Here we consider only the case s = 1 and sets E ⊆ R2.

Definition 3.2. [4, pp. 26-29]. A curve (or, Jordan curve) Γ is the image of
a continuous one-to-one function ψ : [a, b] → Rp, where [a, b] ⊆ R is a closed
interval. In particular, a curve is not self-intersecting. If the length L(Γ) of
a curve Γ is defined is the usual way and if L(Γ) < ∞, we say that Γ is a
rectifiable curve. A 1-set contained in a countable union of rectifiable curves
is called a Y -set [4, p. 33]. Let S(x, θ, ϕ) be the closed one-way infinite cone
with vertex x and axis in direction of angle θ consisting of those points y such
that the line segment between x and y makes an angle of at most ϕ with that
axis.

Definition 3.3. [7, p. 262]. Let E ⊆ R2. For any point x ∈ E, the direc-
tion θ of a half-line originating at x is the angle made by that half-line with
a fixed direction, usually that of the horizontal axis. Such a half-line is de-
noted by l(x, θ). A half-line containing a point y 6= x is denoted by −→xy. A
sequence {ln(x, θn)}∞n=1 of half-lines is said to converge to the half-line l(x, θ)
if limn→∞ θn = θ. A half-line l(x, θ) is called an intermediate half-tangent
of E at x if there exists a sequence of points {xn}∞n=1 ⊆ E, with xn 6= x for
all n such that both limn→∞ xn = x, and the sequence of half-lines {−−→xxn}∞n=1

converges to l(x, θ). Finally, the contingent of E at x, denoted by contgE(x),
is the set of all intermediate half-tangents of E at x. (If x0 is an isolated
point, then x0 has no intermediate half-tangents, and contgE(x0) = ∅.)

The following Lemma is part of the so-called Fundamental Theorem on
Contingents of Plane Sets, found in Saks.
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Lemma 3.4. [7, p. 264]. Let θ be a fixed direction, and E ⊆ R2 be such that
for each x ∈ E, the set contgE(x) contains no half-line of direction θ. If θ is
the direction of the positive vertical axis, then E = ∪∞i=1Ei such that for each
i the set Ei is the graph of a Lipschitz function fi : Bi → R where Bi is a
bounded subset of R and H1(Ei) = L(Ei) <∞.

Theorem 3.5. Let E ⊆ R2 be a regular 1-set. Then E is a countable union
of 1-straight sets together with a set of H1 measure zero.

Proof. Besicovitch proved (see [4, p. 45]) that a regular 1-set E ⊆ R2 consists
of a Y -set together with a set of H1-measure zero. In his proof (see [4, p. 32])
that a rectifiable curve Γ in R2 has a tangent at almost all of its points, he
proved in particular that for almost all x ∈ Γ there exists a direction θ such
that for suitable ϕ, ρ > 0 it follows that Γ ∩ [Bρ(x) \ (S(x, θ, ϕ) ∪ S(x, θ +
π, ϕ))] = ∅. So at almost all points x of a rectifiable curve Γ, contgΓ(x) 6= R2.
As in the proof of the Fundamental Theorem on Contingents of Plane Sets
[7, p. 267], let {θn} be a countable everywhere dense set of directions in
R2. Let Γn be the set of points of Γ at which contgΓ(x) does not contain
the half-line of direction θn. Then since {θn} is dense, it is clear that Γ =
∪∞n=1Γn, otherwise there exist points x ∈ Γ such that contgΓ(x) = R2. By
Lemma 3.4, with respect to a line of direction θn+ π

2 , each Γn is the countable
union of finite length graphs of Lipschitz functions on bounded domain sets.
Thus Γ itself equals such a union. It is well-known, as in [7, p. 264], that
any such Lipschitz function can be extended to be Lipschitz on the smallest
closed interval containing its bounded domain. Since a Lipschitz function
is absolutely continuous, by Theorem 2.7 it follows that the graph of each
such extended Lipschitz function is a countable union of 1-straight sets. Since
subsets of 1-straight sets are 1-straight and since translations and rotations of
1-straight sets are 1-straight (see [2]), the subset Γ of the countable union of
the graphs of these Lipschitz functions is also a countable union of 1-straight
sets. Since this is true for each rectifiable curve Γ in R2, it follows that E is
therefore a countable union of 1-straight sets together with a set ofH1-measure
zero.
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