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A FUNDAMENTAL THEOREM OF
CALCULUS FOR THE

KURZWEIL-HENSTOCK INTEGRAL IN Rm

Abstract

In this paper, we give a characterization of the Kurzweil-Henstock
integral in n-dimensional space.

1 Introduction

The Kurzweil-Henstock integral is now well-known. See, for example, [1] or [5].
It includes the Rieman integral, Riemann-Stieltjes integral, Lebesgue integral,
Denjoy-Perron integral among others. The Kurzweil-Henstock theory on the
real line has been fully developed. However, its extension to functions defined
on an interval in the m-dimensional space is not straightforward. One difficulty
is that the primitive function is no longer differentiable almost everywhere as
it is in the one-dimensional case. An example can be found in [2], p.95. Some
years ago, Henstock [3], p.143, showed that the primitive function is in fact
differentiable everywhere except for a set of inner variation zero. We shall
make precise the definition of inner variation later in the paper. Lu Jitan
[6] proved the same result independently and in essence gave the converse.
Lu described his result in terms of Γ-measure zero, and regarded Γ-measure
zero as an extension of Lebesgue measure zero. In other words, Lu provided
a version of the fundamental theorem of calculus for the Kurzweil-Henstock
integral in Rm. In this paper, we formulate an alternative version, again in
Rm, in the language of Henstock. The difference between Lu’s version and
ours lies in the following: Lu considered singular points to be those at which
the primitive function is not differentiable and showed that the set of singular
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points is of Γ-measure zero. In our case, we consider the singular points x to
be those satisfying |F (I)− f (x) |I|| ≥ ε |I| for some intervals I, and hence
depending on ε, where F is the primitive function of f . In short, we consider
a larger set of singular points than that of Lu.

2 Preliminaries

A closed and bounded interval E in Rm refers to a rectangle in Rm, that is

E = {(x1, x2, ...xm) : ai ≤ xi ≤ bi for i = 1, 2, ...m} .

The measure of a set X, denoted by |X|, is the Lebesgue measure and in

particular, the measure of E is its volume |E| =
m∏

i=1

(bi − ai). A division ∆ =

{(x, I)} of E is any finite set of point-interval pairs with x = (x1, x2, ...xm) a
vertex of the rectangle I, and the intervals nonoverlapping such that

⋃
∆

I = E.

In contrast, a partial division D of E is a finite set of point-interval pairs
described similarly except that

⋃
D

I ⊆ E. A partial division D = {(x, I)} is

said to be tagged in X or X-tagged if x ∈ X.
As in the case of R, the gauge δ is defined similarly except that the one-

dimensional open intervals are changed to open balls. That is, {(x, I)} is δ-fine
if for each (x, I), I is contained in the open ball whose center is x and whose
radius is δ (x).

A function f is said to be Kurzweil-Henstock integrable on E if there
exists A ∈ R and for every ε > 0 there exists a gauge δ : E −→ (0, 1) such that
|(∆)

∑
f (x) |I| −A| < ε whenever ∆ is a δ-fine division of E. The number A

is called the integral of f over E and it is written as A =
∫

E
f. Moreover, f is

Kurzweil-Henstock integrable on any subinterval I of E. This gives rise to an
additive function of interval F such that for any subinterval I ⊂ E, F (I) =∫

I
f and for any collection of nonoverlapping subintervals {Ii : 1 ≤ i ≤ n} ,

F (
⋃n

i=1 Ii) =
∑n

i=1 F (Ii) . The function F is called the primitive of f and is
uniquely determined.Henstock’s lemma is also true, that is, for every ε > 0
there exists a gauge δ : E → (0, 1) such that (∆)

∑
|f (x) |I| − F (I)| < ε

whenever ∆ is any δ-fine division of E. This means that the above inequality
is true even for any δ-fine partial division D.

The function F is said to be differentiable at x ∈ E with derivative value
f (x) if lim|I|→0

F (I)
|I| = f (x) where I is a nondegenerate closed interval in E

and x is a vertex of I.
The functions fn are equiintegrable with corresponding integrals An ∈ R

if for every ε > 0 there exists a gauge δ : E → (0, 1) independent of n such
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that for all n |(∆)
∑
fn (x) |I| −An| < ε whenever ∆ is a δ-fine division of E.

Furthermore, if the functions Fn are the primitives of fn then for every ε > 0
there exists a gauge δ : E → (0, 1) independent of n such that for all n

(D)
∑
|fn (x) |I| − Fn (I)| < ε

whenever D is a δ-fine partial division of E.

3 A Fundamental Theorem

For a given pair of functions f and F on E, let

Γε = {(x, I) : |F (I)− f (x) |I|| ≥ ε |I|} .

From the collection of all δ-fine point-interval pairs (x, I) ∈ Γε, a subset X of
E may be obtained, that is

X (ε, δ) = {x ∈ E : there is a δ-fine (x, I) ∈ Γε} .

Here, the collection of all δ-fine point-interval pairs (x, I) ∈ Γε is a covering for
X (ε, δ). The set X (ε, δ) can be considered as a set of singularities in some
sense. The following theorem says that if f is Kurzweil-Henstock integrable
on E with primitive F then for each ε > 0 there exists a gauge δ on E such
that the interval E is divided into E\X and the set of singularities X . This
formulation differs from that in [6] where the set of singularities is fixed for all
ε > 0.

Theorem 1. Let f and F be functions defined on an interval E in Rm.
Then f is Kurzweil-Henstock integrable with primitive F if and only if for
every ε > 0 there exists a gauge δ : E → (0, 1) such that (D)

∑
|F (I)| <

ε and (D)
∑
|f (x) |I|| < ε whenever D = {(x, I)} is a δ-fine partial division

in Γε .

Proof. The following shows that with the given inequalities above, it is true
that f is Kurzweil-Henstock integrable with primitive F .

If ∆ = {(x, I)} is a δ-fine division of E, then

(D)
∑
|F (I)− f (x) |I|| ≤ (D\Γε)

∑
|F (I)− f (x) |I||

+ (D ∩ Γε)
∑
|F (I)|+ (D ∩ Γε)

∑
|f (x) |I|| < ε (|E|+ 2) .

The next part shows that if f is Kurzweil-Henstock integrable with primi-
tive F then the inequalities given in the above theorem are satisfied.
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Let Ek = {x ∈ E : k − 1 ≤ |f (x)| < k} . Since f is Kurzweil-Henstock in-
tegrable with primitive F , it is true that for every ε > 0 there exists a gauge
δk : E → (0, 1) such that (∆k)

∑
|F (I)− f (x) |I|| < ε2

k2k+1 . whenever ∆k is
δk-fine division of E. A gauge δ may be chosen such that δ (x) ≤ δk (x) if x ∈
Ek. Therefore for any δ-fine partial division D ⊂ Γε,

(D)
∑
|f (x) |I|| <

∞∑
n=1

k

ε
(D)

∑
x∈Ek

|F (I)− f (x) |I|| < ε

2
.

Furthermore, δ may be appropriately chosen so that

(D)
∑
|F (I)| ≤ (D)

∑
|F (I)− f (x) |I||+ (D)

∑
|f (x) |I|| < ε

2
+
ε

2
= ε.

The proof is complete.

Remark. In the statement of Theorem 1, the inequality involving the function
f may be restated as one which does not involve f . This restatement gives rise
to Theorem 3 which is actually equivalent to Theorem 1. The equivalence is
proved by showing that the inequality (D)

∑
|I| < ε leads to (D)

∑
|f (x) |I|| <

ε which is precisely the inequality appearing in Theorem 1.

Theorem 2. Let f and F be functions defined on an interval E in Rm.
Then f is Kurzweil-Henstock integrable with primitive F if and only if for
every ε > 0 there exists a gauge δ : E → (0, 1) such that (D)

∑
|F (I)| <

ε and (D)
∑
|I| < ε. whenever D = {(x, I)} is a δ-fine partial division in

Γε.

Proof. If f is Kurzweil-Henstock integrable with primitive F then the two
inequalities stated above are satisfied. The proof of this statement can be
seen in the proof of the previous theorem.

Now, let Ek be as defined previously. This part of the proof shows that
the two inequalities on f and F in Theorem 1 are satisfied and f is Kurzweil-
Henstock integrable with primitive F .

Let ε > 0. Then for every εk > 0 there exists δk (x) > 0 such that
(Dk)

∑
|F (I)| < εk and (Dk)

∑
|I| < εk whenever Dk is a δk-fine partial

division in Γεk
where εk = ε

k2k+1 and

Γεk
= {(x, I) : |F (I)− f (x) |I|| ≥ εk |I|} .

Let δ be so that δ (x) ≤ δk (x) , x ∈ Ek. Then, for any δ-fine partial division

D ⊂ Γε ⊂
∞⋂

k=1

Γεk
,

(∆)
∑
|f (x) |I|| <

∞∑
k=1

k (D)
∑

x∈Ek

|I| =
∞∑

k=1

k
ε

k2k+1
< ε.
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The proof is complete.

4 Convergence Theorems

Let {fn} and {Fn} be sequences of functions defined on an interval E in Rm.
Also let

Γε,n = {(x, I) : |Fn (I)− fn (x) |I|| ≥ ε |I|} .

The functions fn are said to satisfy the condition for uniform integrability 1
(UI1) with primitives Fn if for any ε > 0 there exists a gauge δ independent
of n such that

(D)
∑
|Fn (I)| < ε and (D)

∑
|fn (x) |I|| < ε.

whenever D is a δ-fine partial division in Γε,n. It is true that if the functions
fn satisfy the UI1 condition then they are equiintegrable on E. The proof can
be seen in that of Theorem 1.

The functions fn are said to satisfy the condition for uniform integrability
2 (UI2) with primitives Fn if for any ε > 0 there exists a gauge δ independent
of n such that

(D)
∑
|Fn (I)| < ε and (D)

∑
|I| < ε.

whenever D is a δ-fine partial division in Γε,n. If the functions fn satisfy
the UI1 condition then it is also true that they satisfy the UI2 condition.
This can be easily shown by noting that UI1 on the functions fn implies
equiiintegrability of fn which in turn implies UI2 on the functions fn.

In the following theorem, fn → f almost everywhere means fn (x)→ f (x)
for each x ∈ E\X where X is of Lebesgue measure zero or simply measure
zero.

Lemma 3. Suppose the functions fn are equiintegrable on the interval E ⊂
Rm with fn → f almost everywhere. Let the primitives Fn of fn satisfy the
uniform Strong Lusin condition USL (E): For every set X ⊂ E of mea-
sure zero, for every ε > 0 there exists a gauge δ independent of n such that
(D)

∑
|Fn (I)| < ε for all n whenever D is a δ-fine, X-tagged partial division

of E. Then f is Kurzweil-Henstock integrable on E and
∫

E
f = limn→∞

∫
E
fn.

Proof. Since the functions fn are equiintegrable, it is true that for every
ε > 0 there exists a gauge δ independent of n such that for all n

(∆)
∑
|fn (x) |I| − Fn (I)| < ε

2
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whenever ∆ is a δ-fine division of E. By the USL (E) condition on the prim-
itives Fn , for any set X ⊂ E of measure zero, and for any ε > 0 there is a
gauge α independent of n such that (D)

∑
|Fn (I)| < ε

2 for all n whenever D
is an α-fine, X-tagged partial division of E. The gauge δ may be chosen such
that δ (x) ≤ α (x) for each x ∈ E.

Let

X = {x ∈ E : fn (x) 9 f (x)} ,
f∗n = fnχE\X and f∗ = fχE\X .

where χE\X is the characteristic function of E\X. The functions f∗n are also
equiintegrable on E since

(∆)
∑
|f∗n (x) |I| − Fn (I)| = (∆)

∑
x∈E\X

|fn (x) |I| − Fn (I)|

+ (∆)
∑
x∈X

|Fn (I)| < ε.

The rest of the proof is now patterned after that of Theorem 3.7.5 in [5].

Theorem 4. Suppose the functions fn satisfy the UI1 condition while their
primitives Fn satisfy the USL (E) condition. If fn → f almost everywhere
then f is Kurzweil-Henstock integrable on E and

∫
E
f = limn→∞

∫
E
fn.

Proof. If the functions fn satisfy the UI1 condition then they are equiin-
tegrable on E. The desired result follows immediately from the preceding
lemma. The proof is complete.

A set X ⊂ E is of variation zero if for every ε > 0 there exists a gauge
δ such that (D)

∑
|I| < ε whenever D = {(x, I)} is a δ-fine partial division

tagged in X. This definition can be found, for example, in [3], [4] or [5]. In
R, measure zero and variation zero are equivalent. The proof uses the Vitali
covering theorem. In Rm,m > 1, the equivalence still holds but to prove that
variation zero implies measure zero, the Vitali cover chosen must consist of
cubes.

Remark. Let X be the set of points at which the primitive function F is not
differentiable. We can not prove that X is of variation zero. What Henstock
and Lu have proved is that X is of inner variation zero in the sense that we
consider only partial divisions D inside Γε, and not all δ-fine partial divisions
tagged in X as in the definition of variation zero.
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Lemma 5. Let g : E → R. Then for any subset X ⊂ E of variation zero, for
every ε > 0 there is a gauge δ such that (D)

∑
|g (x) |I|| < ε whenever D is a

δ-fine partial division tagged in X.

Proof. Since X is of variation zero then for every ε > 0, for every k ∈ N,
there exists a gauge δk such that (D)

∑
|I| < ε

k2k whenever D is a δk-fine
partial division tagged in X. Let Ek be as in the proof of Theorem 1. Also
let δ be obtained by diagonalizing on the functions δk as in the proof of
Theorem 1 or Theorem 3. Then

(D)
∑
|g (x) |I|| <

∞∑
k=1

k (D)
∑

x∈Ek

|I| < ε

whenever D is a δ-fine partial division tagged in X. The proof is complete.

In this paper, f = g variationally almost everywhere(v.a.e.) on an interval
E ⊂ Rm if f (x) = g (x) on E\X where X is of variation zero.

Theorem 6. Let f be Henstock-Kurzweil integrable on an interval E ⊂ Rm

with primitive F . If f = g v.a.e then g is Henstock-Kurzweil integrable on E
with primitive F.

Proof. Suppose f is Kurzweil-Henstock integrable with primitive F. Then
for every ε > 0 there exists a gauge δ such that

(∆)
∑
|F (I)− f (x) |I|| < ε

whenever ∆ is a δ-fine division of E. Let X be a subset of E such that
g (x) = f (x) on E\X and X is of variation zero. By the preceding lemma, the
gauge δ above can be chosen appropriately such that for every δ-fine, X-tagged
partial division D,

(D)
∑
|g (x) |I|| < ε and (D)

∑
|f (x) |I|| < ε.

It then follows that

(∆)
∑
|F (I)− g (x) |I|| ≤ (∆)

∑
x∈E\X

|F (I)− f (x) |I||

+ (∆)
∑
x∈X

|F (I)− f (x) |I||+ (∆)
∑
x∈X

|f (x) |I||

+ (∆)
∑
x∈X

|g (x) |I|| < 3ε.

The proof is complete.



874 Emmanuel Cabral and Peng-Yee Lee

A function F satisfies the variational Strong Lusin condition (SLV (E)) if
for every subset X of E of variation zero, for every ε > 0 there exists a gauge δ
such that (D)

∑
|F (I)| < ε whenever D is a δ-fine, X-tagged partial division

of E. The functions Fn satisfy the uniform variational Strong Lusin condition
(USLV (E)) if each of the functions Fn satisfies the SLV (E) condition with
the gauge δ independent of n.

Theorem 7. Suppose the functions fn satisfy the UI1 condition while their
primitives Fn satisfy the USLV (E) condition. If fn → f v.a.e. then f is
Kurzweil-Henstock integrable on E and

∫
E
f = limn→∞

∫
E
fn.

Proof. If fn → f v.a.e. then the set X = {x ∈ E : fn (x) 9 f (x)} must
be of variation zero. As in the proof of Lemma 4, the functions f∗n and f∗ can
be similarly defined. The proof is now similar to that of Theorem 5.

Theorem 8. The following two statements are equivalent:

(1) The functions fn satisfy the UI1 condition and the corresponding primi-
tives satisfy the USL (E) condition with fn → f a.e.
(2) The functions fn are equiintegrable on E and the corresponding primitives
satisfy the USL (E) condition with fn → f a.e.

Each of the above statements imply the following:
(3) The functions fn satisfy the UI2 condition and the corresponding primi-
tives satisfy the USL (E) condition with fn → f a.e.

Proof. It is easy to see that (1) ⇒ (2) ⇒ (3). Now by the equiintegrability
of the functions fn on E, it follows that for every ε ∈ (0, 1) for every k ∈ N
there exists a gauge δk independent of n such that for all n

(∆)
∑
|Fn (I)− fn (x) |I|| < ε2

3 (k2k+1)

whenever ∆ is a δk-fine division of E. Let X be as in the proof of Lemma 4
and

Ck = {x ∈ E\X : k − 1 ≤ |fn (x)| < k, n = 1, 2...} .
By the USL (E) condition on the primitives Fn, for a given ε > 0 there is
a gauge α independent of n such that for all n (D)

∑
|Fn (I)| < ε

6 whenever
D is an α-fine partial division tagged in X. A gauge δ can be chosen by
diagonalization on the functions δk such that δ (x) ≤ α (x). Now, for a δ-fine
partial division D in Γε,n ,

(D)
∑
|fn (x) |I|| ≤

∞∑
k=1

k

ε
(D)

∑
x∈Ck

|Fn (I)− fn (x) |I||
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+ (D)
∑
x∈X

|Fn (I)− fn (x) |I||+ (D)
∑
x∈X

|Fn (I)|

<
ε

6
+
ε

6
+
ε

6
=
ε

2
and

(D)
∑
|Fn (I)| ≤ (D)

∑
|Fn (I)− fn (x) |I||+ (D)

∑
|fn (x) |I||

<
ε

6
+
ε

2
< ε.

Therefore the functions fn satisfy the UI1 condition. The proof is complete.

Theorem 9. Suppose the functions fn satisfy the UI2 condition and the cor-
responding primitives satisfy the USL (E) condition with fn → f a.e. Then f
is Kurzweil-Henstock integrable on E and

∫
E
f = limn→∞

∫
E
fn.

Proof. Let X, f∗n, and f∗ be as defined in the proof of Lemma 4 while Ck as
defined in the previous proof. As in the proof of Theorem 3, for every ε > 0
there exists a gauge δ obtained diagonally such that

(D)
∑
|f∗n (x) |I|| < ε

whenever D is a δ-fine, E\X-tagged partial division in Γ∗ε,n where

Γ∗ε,n = {(x, I) : |Fn (I)− f∗n (x) |I|| ≥ ε |I|} , Γ∗ε,n 6= Γε,n.

The UI2 condition also implies that for every ε > 0 there exists a gauge α
independent of n such that

(D)
∑
|Fn (I)| < ε

2
and (D)

∑
|I| < ε

2

whenever D is an α-fine partial division in Γ∗ε
2 ,n. And the USL (E) condition

says that, with the same ε as above there is a gauge β independent of n such
that for all n

(D)
∑
|Fn (I)| < ε

2
whenever D is β-fine partial division tagged in X. Certainly the gauge δ can
be chosen such that

δ (x) ≤ min (α (x) , β (x)) .

Finally, for any δ-fine partial division D in Γ∗ε,n ⊂ Γ∗ε
2 ,n

(D)
∑
|Fn (I)| = (D)

∑
x∈E\X

|Fn (I)|+ (D)
∑
x∈X

|Fn (I)|
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<
ε

2
+
ε

2
= ε

and
(D)

∑
|f∗n (x) |I|| < ε.

So the functions f∗n satisfy the UI1 condition. The proof is complete.

The three main ideas in the Kurzweil-Henstock theory are the δ-fine di-
visions, variation and the decomposability of δ. Henstock has shown that a
theory of integration can be developed based on these ideas and the resulting
theory is not covered by measure theory. It is a general belief that measure
theory is possible due to the countable additivity of measure. The Kurzweil-
Henstock theory demonstrated that the same results can be proved using only
finite δ-fine divisions. An axiomatic approach to the Kurzweil -Henstock in-
tegral is possible. It is called the division space [4]. Like measure space, a
division space is a family of point-interval pairs satisfying a set of postulates.
A Henstock-like integral can be defined on the division space. We could have
formulated our definitions and theorems in terms of variation only without
reference to measure. If so, then our results can be extended easily to the
division space.
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