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DIFFERENTIABILITY OF MONOTONE
SOBOLEV FUNCTIONS

Abstract

We establish a sharp integrability condition on the partial derivatives
of a weakly monotone Sobolev function to guarantee differentiability
almost everywhere.

1 Introduction

It is well known that if a function u belongs to the Sobolev class W 1,p(Ω),
Ω ⊂ Rn, for some p > n, then u is differentiable almost everywhere in Ω.
This was proved by Cesari [2] for n = 2 and by Calderón [1] for general n.
Here W 1,p(Ω) consists of the functions in Ω which, together with their first
order weak partial derivatives, are p-integrable. In 1981, Stein showed that
this condition can be sharpened to a very precise integrability condition. He
proved that if u ∈W 1,1(Ω) is a function whose weak partial derivatives belong
to the Lorentz space Ln,1(Ω), then u is differentiable almost everywhere. The
notion of the Lorentz space Lp,q(Ω) was first introduced in [13].

In this paper we address the following question. What are the minimal
integrability conditions on the partial derivatives of a homeomorphic Sobolev
mapping f ∈ W 1,1(Ω,Rn) needed to guarantee differentiability almost ev-
erywhere? Here W 1,1(Ω,Rn) consists of the mappings of Ω into Rn whose
coordinate functions belong to W 1,1(Ω). By the above result of Stein’s, it
naturally suffices to assume that |∇f | ∈ Ln,1(Ω). However, less is needed.
It suffices to assume that |∇f | is p-integrable, for some p > n − 1, whereas
|∇f | ∈ Ln−1(Ω) is not sufficient when n > 2. This was proved by Väisälä [19].
Väisälä’s approach is itself an n-dimensional version of a technique used by
Gehring and Lehto [5] to show that a planar homeomorphism with integrable
partial derivatives is differentiable a.e. Recall that each function u ∈W 1,1(Ω)
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is differentiable a.e. when Ω ⊂ R. Because L1,1(Ω) = L1(Ω), the results of
Stein, Gehring and Lehto, and Väisälä suggest that the natural assumption
should be that |∇f | ∈ Ln−1,1(Ω). We will show in this paper that this con-
dition guarantees differentiability almost everywhere even for a larger class
of mappings than the class of homeomorphisms. This is the class of weakly
monotone mappings.

Monotonicity for a continuous function u in a domain Ω ⊂ Rn simply
means that

sup
x∈B

u(x) ≤ sup
x∈∂B

u(x) and inf
x∈B

u(x) ≥ inf
x∈∂B

u(x) (1)

for every ball B ⊂ Ω. Roughly speaking, monotone functions satisfy the
maximum and minimum principles in Ω. This definition of monotone function
is due to Lebesgue [12].

Definition 1.1. A real valued function u ∈ W 1,1(Ω) is said to be weakly
monotone if for every ball B ⊂ Ω and all constants m ≤M such that

v := (u−m)− + (u−M)+ ∈W 1,1
0 (B),

we have m ≤ u(x) ≤M for almost every x ∈ B.
Moreover, we say that f ∈ W 1,1(Ω,Rm) is weakly monotone if its coordi-

nate functions are weakly monotone.

Weakly monotone functions were introduced by Manfredi, [15]. They form
a generalization of monotone functions in the sense of Lebesgue: a continuous
function u ∈ W 1,1(Ω) is weakly monotone if and only if u satisfies the condi-
tions in (1). Especially, if f : Ω→ Ω′ is a homeomorphic mapping of the class
W 1,1(Ω,Rn), then f is a weakly monotone mapping. However is it not always
true that weakly monotone functions are continuous (see [15, Example 2.1]).
Many solutions to partial differential equations are weakly monotone. For ex-
ample, if 0 < α(x) ≤ β <∞ a.e. in R2, where α is a measurable function and
β is a constant, then each W 1,2-solution to divA(x)∇u(x) = 0 for

A(x) =
(

1 0
0 α(x)

)
are weakly monotone (see [11]).

Now we can formulate our main theorem.

Theorem 1.2. (i) Suppose that u ∈ W 1,1(Ω) is a weakly monotone function
whose weak partial derivatives are in Ln−1,1(Ω). Then u is differentiable a.e.
(ii) Suppose q > 1. Then there is a weakly monotone function v ∈W 1,1(B(0, 1))
such that |∇v| ∈ Ln−1,q(B(0, 1)) and v is not differentiable anywhere.
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Here Ln,q(Ω) is the Lorenz space (see Section 2) and

Lp(Ω) ⊂ Ln−1,1(Ω) ⊂ Ln−1,q(Ω) ⊂ Ln−1(Ω)

locally, if p > n− 1 and 1 < q < n− 1 (see [20, Lemma 1.8.13]). Furthermore
the above inclusions are strict.

One can prove that the following inclusion is true.

{u ∈W 1,1(Ω) :
∫

Ω

|∇u|n−1 logn−2+ε(e+ |∇u|) <∞, ε > 0} ⊂ Ln−1,1(Ω).

To illustrate the significance of Theorem 1.2 in the case of homeomorphisms
for a reader not familiar with Lorentz spaces we give the following example
that follows from part (i) and the proof of part (ii).

Example 1.3. Let u : Ω → Ω′ be a homeomorphism in class W 1,1(Ω,Rn)
where Ω ⊂ Rn. Then the condition

∫
Ω
|∇ui|n−1 logα(e + |∇ui|) < ∞ for all

i = 1, . . . ,m guarantees differentiability a.e. if α > n− 2 but not if α ≤ n− 2.

2 Preliminaries

The notation used in this paper is standard. The symbol Ω denotes an open
subset of Rn, n ≥ 2. Bn(x, r) and B(x, r) will denote an n-dimensional ball
centered at x with the radius r. Spheres will be denoted by Sn−1(x, r). The
Lebesgue measure of a set E will be denoted by |E|. The characteristic func-
tion of a set E is χE . If u : E → R is an integrable function on a set E

with 0 < |E| < ∞, we write uE = −
∫
E

u(x) dx =
1
|E|

∫
E

u(x) dx. C(a, b) will

denote a positive constant that depends only on a, b. The value of C(a, b) is
not necessary the same at each occurrence; it may vary even within a line.
The gradient ∇u is understood in the distributional sense. We use W 1,1(Ω)
to denote the usual Sobolev space on Ω consisting of functions u such that
both u ∈ L1(Ω) and |∇u| ∈ L1(Ω). The space is equipped with the norm
‖u‖W 1,1(Ω) = ‖u‖L1(Ω) + ‖ |∇u| ‖L1(Ω). The space W 1,1

0 (Ω) denotes the com-
pletion of C∞0 (Ω) in W 1,1(Ω). W 1,1(Ω,Rm) denotes the class of mappings
u : Ω→ Rm such that the coordinate functions belong to the space W 1,1(Ω).

Let u be a µ-measurable function defined on X, where (X,µ) is a measure
space. We denote by ω the distribution function of u, namely, for t ≥ 0 we set

ω(t) = µ({x ∈ X : u(x) > t}).

Then we define the the non-increasing rearrangement u∗ of u by setting

u∗(s) = inf{t ≥ 0 : ω(t) ≤ s}.
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It is well known that if u and v are two µ-measurable functions on X, then∫
X

|u(x)v(x)| dµ(x) ≤
∫ µ(X)

0

u∗(s)v∗(s) ds. (2)

The inequality (2) is due to Hardy and Littlewood [7]. It follows immediately
from the definition of u∗(s) that

u∗(ω(t)) ≤ t. (3)

The Lorentz space Lp,q(X), 1 ≤ p < ∞, 1 ≤ q ≤ ∞, is defined as the class of
all measurable functions on Ω for which the norm

||u||Lp,q(X) :=


(∫ µ(X)

0
[t

1
pu∗(t)]q dtt

) 1
q

=
(
p
∫∞

0
sq−1[ω(s)]

q
p ds

) 1
q

1 ≤ q <∞
sup
s>0

s[ω(s)]
1
p q =∞

is finite. For further details about the Lorentz space, see e.g. [17] or [20].

3 The Oscillation Lemma

The aim of this section is to establish an oscillation estimate for weakly mono-
tone functions in the Lorentz space Ln−1,1. The elements in the Sobolev space
W 1,1(Ω) are equivalence classes of functions which agree almost everywhere
in Ω. In order to study the fine properties of a function u ∈ W 1,1(Ω), it is
convenient to use the representative ũ, defined by the formula

ũ(x) = lim
r→0

sup−
∫
B(x,r)

u(z)dz.

It is well known that if v : Rn → R is locally integrable, then

lim
r→0
−
∫
B(x,r)

|v(x)− v(z)|dz = 0

for almost all x ∈ Rn. Hence ũ is a Borel measurable representative of u. The
function ũ is a natural representative of u, for example if we know that v = u
a.e. and v is a continuous function, then v ≡ ũ.

Now we can formulate our oscillation lemma.

Lemma 3.1. Let u ∈W 1,1(B(a, 2r)) be a weakly monotone function such that
|∇u| ∈ Ln−1,1(B(a, 2r)). Then for all x, y ∈ B(a, r)

|ũ(x)− ũ(y)| ≤ C(n)r−
1

n−1 ||∇u||Ln−1,1(B(a,2r)).
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If |∇u| ∈ Ln,1(B(a, 2r)), then we have the following oscillation lemma.
This Lemma holds without the assumption that u is weakly monotone. It
is essentially due to Stein [16]. For the convenience of the reader we give a
complete proof below; see [4, Inequalities (9.6) and (5.7)] and [10] for alternate
proofs.

Lemma 3.2. Let u ∈W 1,1(B(x,R)) be a function so that |∇u| ∈ Ln,1(B(x,R)).
Then there exists a constant C(n) such that for all y ∈ B(x,R)

|ũ(x)− ũ(y)| ≤ C(n) ||∇u||Ln,1(B(x,|x−y|)). (4)

Proof. Fix y ∈ B(x,R) and denote ri =
(
|x− y|

4

)
2−|i| for all i ∈ Z.

Let x0 = x+y
2 and define recursively

xi = xi−1 + ri−1
x− y
|x− y|

for i > 0

and
xi = xi+1 − ri+1

x− y
|x− y|

for i < 0.

Then the balls Bi = B(xi, ri) ⊂ B(x, |x− y|) and the points xi satisfy

(i) B(xi, ri) ⊂ B(xi+1, 4ri+1) when i ≥ 0,
B(xi, ri) ⊂ B(xi−1, 4ri−1) when i ≤ 0,

(ii)
∑
i

χ
Bi
≤ 2,

(iii) xi → x as i→∞,
xi → y as i→ −∞,

(iv |xi − x| ≤ 2ri when i ≥ 0 and
|xi − y| ≤ 2ri when i ≤ 0.

From properties (iii) and (iv) it follows that uBi
→ ũ(x) as i → ∞ and

uBi
→ ũ(y) as i→ −∞. Because

ũ(x) = uB0 −
∞∑
i=0

(uBi
− uBi+1) and ũ(y) = uB0 −

−∞∑
i=0

(uBi
− uBi−1)

we have

|ũ(x)− ũ(y)| ≤
∞∑
i=0

|uBi
− uBi+1 |+

−∞∑
i=0

|uBi
− uBi−1 |.
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Applying the Poincaré inequality we obtain

|ũ(x)− ũ(y)| ≤C(n)
∞∑

i=−∞
r1−n
i

∫
Bi

|∇u| dz

=C(n)
∞∑

i=−∞
r1−n
i

∫
{(z,t)∈Bi×(0,∇u(z))}

d(z, t)

(5)

Let ω be the distribution function of |∇u|; i.e., ω(t) = |{y ∈ B(x, |x − y|) :
|∇u(y)| > t}| for all t > 0. Next we split the set {(z, t) ∈ Bi×(0,∇u(z))} =: Ei
into {(z, t) ∈ Ei : ω(t) ≥ rni } and {(z, t) ∈ Ei : ω(t) < rni }. For i ≥ 0 from
properties (ii) and (iv) it follows that

∞∑
i=0

∫
Ei∩{ω(t)≥rn

i }
r1−n
i d(z, t) ≤3n−1

∞∑
i=0

∫
Ei∩{ω(t)≥3n|z−x|n}

|z − x|1−n d(z, t)

≤2 · 3n−1

∫
∪∞i=0Ei∩{3[ω(t)]

1
n≥|z−x|}
|z − x|1−n d(z, t)

≤2 · 3n−1

∫ ∞
0

∫
B(x,3[ω(t)]

1
n )

|z − x|n−1 dz dt

≤C(n)
∫ ∞

0

[ω(t)]
1
n dt.

(6)

Similarly for i ≤ 0 we have

0∑
i=−∞

∫
Ei∩{ω(t)≥rn

i }
r1−n
i d(z, t) ≤ C(n)

∫ ∞
0

[ω(t)]
1
n dt. (7)

For the {(z, t) ∈ Ei : ω(t) < rni }-part we have that

∞∑
i=−∞

∫
Ei∩{ω(t)<rn

i }
r1−n
i d(z, t) ≤

∫
∪∞i=−∞Ei

[ω(t)]
1−n

n d(z, t)

≤
∫
B(x,|x−y|)

|∇(z)|[ω(|∇(z)|)]
1−n

n dz

≤
∫ |B(x,|x−y|)|

0

|∇(t)|∗t
1−n

n dt.

(8)

The last inequality follows from (2) and (3). We obtain the desired inequality
(4) from (5), (6), (7) and (8).
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We will deduce Lemma 3.1 from Lemma 3.2. For this we will employ an
approximation argument. It is well known that we can approximate Sobolev
functions by smooth functions. If a Sobolev function is weakly monotone, then
it is surprising that the approximations can be in fact chosen to be “almost”
monotone. Let us give a precise statement of the result that is due to Iwaniec,
Koskela and Onninen [8].

Lemma 3.3. Let u ∈ W 1,1(B(a,R)) be a weakly monotone function and
r < R. Suppose that δ > 0. Then there exists a number j0 ∈ N and a sequence
{uj}∞j=1 ⊂ C∞(Ω) such that uj → u in W 1,1

loc (B(a,R)) and uj(x0) → u(x0)
for all Lebesgue points x0 ∈ B(a,R). Furthermore for all Lebesgue points
x0, y0 ∈ B(a, r) for all j ≥ j0 and every r ≤ t ≤ R

|uj(x0)− uj(y0)| ≤ osc(uj , Sn−1(a, t)) + 2δ. (9)

Now we are ready to prove lemma 3.1.

Proof of Lemma 3.1 Fix t ∈ (r, 2r). Applying Lemma 3.2 on spheres for
the function uj ∈ C∞(B(a, 2r)) at (9) we have

|uj(x0)− uj(y0)| ≤ C(n)||∇uj ||Ln−1,1(Sn−1(a,t)) + 2δ

for all t ∈ (r, 2r) and all Lebesgue points x0, y0 ∈ B(a, r). To see that Lemma
3.2 applies to our situation notice that uj is smooth and any pair of points on
Sn−1(a, t) can be joined using a chain of no more than n2 spherical caps, each
of which is bi-Lipschitz (with a uniform constant) equivalent to Bn−1(0, t2 ).
Integrating over the interval r < t < 2r and dividing both sides by r, we obtain

|uj(x0)− uj(y0)| ≤C(n)
r

∫ 2r

r

∫ ∞
0

[Hn−1({x ∈ Sn−1(a, t) : |∇uj | > s})]
1

n−1 ds dt

+ 2δ

=
C(n)
r

∫ ∞
0

∫ 2r

r

(∫
Sn−1(a,t)

χ{|∇uj |>s}(y) dHn−1(y)

) 1
n−1

ds dt

+ 2δ
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Then, applying Hölder’s inequality, we obtain

|uj(x0)− uj(y0)| ≤C(n)
r

∫ ∞
0

r
n−2
n−1

(∫ 2r

r

∫
Sn−1(a,t)

χ{|∇uj |>s}(y)dHn−1(y)dt

) 1
n−1

ds

+ 2δ

≤C(n) r−
1

n−1

∫ ∞
0

(∫
B(a,2r)

χ{|∇uj |>s}(y) dy

) 1
n−1

ds+ 2δ

=C(n) r−
1

n−1 ||∇uj ||Ln−1,1(B(a,2r)) + 2δ

By letting j →∞ and δ → 0 we conclude that

|u(x0)− u(y0)| ≤ C(n)r−
1

n−1 ||∇u||Ln−1,1(B(a,2r)).

Let x ∈ B(a, r) and s < r − |x− a|. Then∣∣∣−∫
B(x,s)

u(z) dz − u(x0)
∣∣∣ ≤ −∫

B(x,s)

|u(z)− u(x0)| dz

≤ C(n)r−
1

n−1 ||∇u||Ln−1,1(B(a,2r))

which gives

|ũ(x)− u(x0)| ≤ C(n)r−
1

n−1 ||∇u||Ln−1,1(B(a,2r))

and so
|ũ(x)− ũ(y)| ≤ C(n)r−

1
n−1 ||∇u||Ln−1,1(B(a,2r))

for all x, y ∈ B(a, r).

4 Proof of Theorem 1.2

In the proof we will use the following lemma that goes back to Stepanov [18]
(see also [14]).

Lemma 4.1. A function u : Ω→ R is differentiable a.e. if and only if

lim sup
y→x

|u(x)− u(y)|
|x− y|

<∞ a.e.
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Now (i) of Theorem 1.2 follows from Lemma 3.1 and Lemma 4.1 if

lim sup
r→0

r−
n

n−1 ||∇u||Ln−1,1(B(a,r))

is finite for almost every a ∈ Ω.
The following lemma is due to Stein [16]. It is a consequence of the standard

estimate for the Hardy-Littlewood maximal function: If g ∈ L1(Rn), then

|{x ∈ Rn : sup
r>0
−
∫
B(x,r)

|g(y)|dy > t}| ≤ C(n)
t

∫
Rn

|g(x)|dx. (10)

Lemma 4.2. Suppose that f ∈ Lp,1(Ω), 1 < p <∞. Then for a.e. x ∈ Ω

lim sup
r→0

r−
n
p ||f ||Lp,1(B(x,r)) <∞.

For the convenience of the reader we give a short proof below; Stein’s proof
in [16] consists of a list of references to various estimates.
Proof. For x ∈ Ω let Mp(f)(x) = sup

r>0
r−

n
p ||f ||Lp,1(B(x,r)). We will show that

||Mp(f)||Lp,∞(Ω) ≤ C||f ||Lp,1(Ω). (11)

If we take inequality (11) as known, then

|{x ∈ Ω : lim sup
r→0

r−
n
p ||f ||Lp,1(B(x,r)) =∞}| ≤ lim sup

k→∞

C||f ||pLp,1(Ω)

kp
= 0

as desired.
We observe that it suffices to establish inequality (11) when f =

∑h
i=1 ci

χ
Ai

is a non-negative simple function (see [20, Proposition 1.8.4]). We can assume
that c1 > c2 > · · · > ch, Ai ∩ Aj = ∅, when i 6= j and |Ai| < ∞ for all
i ∈ {1, . . . h}. Set ch+1 = 0. Then

||f ||Lp,1(Ω) =
h∑
i=1

∫ ci

ci+1

|{x ∈ Ω : f(x) > t}|
1
p dt

=
h∑
i=1

(ci − ci+1)| ∪ij=1 Aj |
1
p .

(12)

Because f =
∑h
i=1 ci

χ
Ai

=
∑h
i=1(ci − ci+1)χ∪i

j=1Aj
, we obtain

||Mp(f)||Lp,∞(Ω) ≤
h∑
i=1

(ci − ci+1)||Mp(χ∪i
j=1Aj

)||Lp,∞(Ω)

≤C
h∑
i=1

(ci − ci+1)| ∪ij=1 Aj |
1
p .

(13)
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The last inequality follows from

Mp(χA)(x) = sup
r>0

r−
n
p |A ∩B(x, r)|

1
p = (sup

r>0
r−n|A ∩B(x, r)|n)

1
p

for arbitrary A of finite measure and inequality (10). Now inequality (11)
follows from (12) and (13).

(ii) Suppose that q > 1. Then there is a radial function f ∈W 1,1(Bn−1(0, 2))
such that |∇f | ∈ Ln−1,q(Bn−1(0, 2)) and lim

r→0
ess sup{f(x) : x ∈ B(0, r)} =∞.

The existence of such a function follows from [3] or [9]. The set

{(x1, . . . , xn−1) ∈ Bn−1(0, 1) : xi ∈ Q, i = 1, . . . , n− 1}

is dense in Bn−1(0, 1). Denote those points q1, q2, q3, . . . and define gj(x) =
2−jf(x − qj). Set hk(x) =

∑k
j=1 gj(x) for all x ∈ Bn−1(0, 1). Because the

space W 1,1(Bn−1(0, 1)) is a Banach space and for j < k

||hk − hj ||W 1,1(Bn−1(0,1)) =||
k∑

i=j+1

gi||W 1,1(Bn−1(0,1))

≤
k∑

i=j+1

||gi||W 1,1(Bn−1(0,1))

≤||f ||W 1,1(Bn−1(0,2))

k∑
i=j+1

2−i,

we have that the sequence (hj)j converges to some h in W 1,1(Bn−1(0, 1)). Fur-
thermore Ln−1,q(Bn−1(0, 1)) is a Banach space [17,Chapter v, Theorem 3.22.]
and thus the same argument as above shows that |∇h| ∈ Ln−1,q(Bn−1(0, 1)).
Finally set v(x1, . . . , xn) = h(x1, . . . , xn−1) for all x ∈ Bn(0, 1). It follows
that the function v is weakly monotone. Suppose v̂ = v almost everywhere
in Bn(0, 1), and fix i ∈ N and z ∈ Q such that Bn((qi, z), r0) ⊂ Bn(0, 1) for
some r0 > 0. Then

lim
r→0

sup{v̂(x) : x ∈ Bn((qi, z), r)} ≥ lim
r→0

ess sup{gi(x) : x ∈ Bn−1(qi, r)} =∞

Because the set {x ∈ Bn(0, 1) : xi ∈ Q, i = 1, . . . , n} is dense in Bn(0, 1), it
follows that v̂ is non-differentiable (even discontinuous) everywhere inBn(0, 1).

In 1981, Stein [16] proved that if f ∈ W 1,1(Ω) and |∇f | ∈ Ln,1(Ω), then
f is differentiable a.e. We can give an alternate proof of the first part of
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Theorem 1.2 based on this fact on spheres and some tools from nonlinear
potential theory, along the lines of the argument in [19]. This approach is
however technical and involves the notion of trace. Notice that our function
u need not be continuous.
Acknowledgement: We thank Pekka Koskela for important suggestions.
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