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I-CONVERGENCE∗

Abstract

In this paper we introduce and study the concept of I-convergence
of sequences in metric spaces, where I is an ideal of subsets of the
set N of positive integers. We extend this concept to I-convergence of
sequence of real functions defined on a metric space and prove some
basic properties of these concepts.

1 Introduction

This paper was inspired by [14], where the concept of I-convergence of se-
quences of real numbers is introduced. We will often quote some results from
[14] that can be easily transferred to sequences of points in a metric space. In
[14] it is shown that our I-convergence is, in a sense, equivalent to µ-statistical
convergence of J. Connor ([8]).

The concept of statistical convergence is introduced in [10] and [29] and
developed in [6], [7], [8], [9], [10], [12], [26] and [28]. Some applications of
statistical convergence in number theory and mathematical analysis can be
found in [4], [5] and [19]. The concept of I-convergence is a generalization of
statistical convergence and it is based on the notion of the ideal I of subsets
of the set N of positive integers.

This paper consists of five sections with the new results in sections 3–5.
In the Section 3 the concept of the I-convergence of sequences in a metric
space is introduced and its fundamental properties are studied. In Section
4 we introduce and study the concept of an I-cluster point and an I-limit

Key Words: statistical convergence, ideals of sets, Baire classification of functions
Mathematical Reviews subject classification: Primary 40A30; Secondary 40A99 40C15
Received by the editors July 28, 2000

∗The work on this paper was partially supported by GRANT VEGA 1/7173/20.

669
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point of a sequence in a metric space. In Section 5 we extend the concept
of I-convergence to sequences of real functions defined on a metric space and
we will discuss some questions concerning the limit functions of I-convergent
sequences, specially in the case when all functions in the sequence are contin-
uous.

2 Definitions and Notation

Throughout the paper N will denote the set of positive integers χA – the
characteristic function of A ⊂ N, R – the set of all real numbers, (X, ρ) –
a metric space, B(ξ, ε) – an open ball in X with center ξ ∈ X and radius
ε > 0. The topological terminology in taken from [20]. We recall the concept
of asymptotic and logarithmic density of a set A ⊂ N (see [22], pp. 71, 95-96
and [27]).

Let A ⊂ N. Put dn(A) = 1
n

∑n
k=1

χ
A(k) and δn(A) = 1

sn

∑n
k=1

χ
A(k)
k

for n ∈ N, where sn =
∑n
k=1

1
k . The numbers d(A) = lim infn→∞ dn(A)

and d(A) = lim supn→∞ dn(A) are called the lower and upper asymptotic
density of A, respectively. Similarly, the numbers δ(A) = lim infn→∞ δn(A)
and δ(A) = lim supn→∞ δn(A) are called the lower and upper logarithmic
density of A, respectively. If d(A) = d(A) (δ(A) = δ(A)), then d(A) = d(A)
is called the asymptotic density of A (δ(A) = δ(A) is called the logarithmic
density of A, respectively). It is well known that for each A ⊂ N d(A) ≤
δ(A) ≤ δ(A) ≤ d(A) (see [22], 70-75, 95-96). Hence if d(A) exists, then also
δ(A) exists and d(A) = δ(A). The converse is not true. Obviously all numbers
d(A), d(A), δ(A), δ(A) (and so d(A), δ(A)) belong to [0, 1]. Since

n∑
k=1

1
k

= lnn+ γ +O(
1
n

) (1)

where γ is an Euler constant, if we put δ∗n(A) = 1
lnn

∑n
k=1

χ
A(k)
k for n ∈ N,

then δ(A) = lim infn→∞ δ∗n(A), δ(A) = lim supn→∞ δ∗n(A) and if δ(A) exists,
then δ(A) = limn→∞ δ∗n(A).

Now recall the concept of statistical convergence of real sequences (see [9],
[28]).

Definition A. A sequence x = {xn}n∈N of real numbers is said to be statis-
tically convergent to ξ ∈ R provided that for each ε > 0 we have d(A(ε)) = 0,
where A(ε) = {n ∈ N : |xn − ξ| ≥ ε}.

Recall that if X is a non-empty set then a family of sets I ⊂ 2X is an
ideal if and only if for each A,B ∈ I we have A ∪ B ∈ I and for each A ∈ I
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and each B ⊂ A we have B ∈ I. A non-empty family of sets F ⊂ 2X is
a filter on X if and only if φ /∈ F , for each A,B ∈ F we have A ∩ B ∈ F
and for each A ∈ F and each B ⊃ A we have B ∈ F . An ideal I is called
non-trivial if I 6= ∅ and X /∈ I. I ⊂ 2X is a non-trivial ideal if and only if
F = F(I) = {X \ A : A ∈ I} is a filter on X. A non-trivial ideal I ⊂ 2X is
called admissible if and only if I ⊃ {{x} : x ∈ X}.

3 I-Convergence of Sequences of Elements of a Metric
Space

3.1 I-Convergence, Examples and Properties

In what follows (X, ρ) is a fixed metric space and I denotes a non-trivial ideal
of subsets of N.

Definition 3.1. A sequence {xn}n∈N of elements of X is said to be I-converg-
ent to ξ ∈ X (ξ = I-limn→∞ xn) if and only if for each ε > 0 the set A(ε) =
{n ∈ N : ρ(xn, ξ) ≥ ε} belongs to I. The element ξ is called the I-limit of the
sequence x = {xn}n∈N.

Example 3.1. (a) Take for I the class If of all finite subsets of N. Then If
is a non-trivial admissible ideal and If -convergence coincides with the usual
convergence with respect to the metric ρ in X.

(b) Denote by Id (Iδ) the class of all A ⊂ N with d(A) = 0 (δ(A) = 0, re-
spectively). Then Id and Iδ are non-trivial admissible ideals, Id-convergence
coincides with the statistical convergence. Iδ-convergence is said to be loga-
rithmic statistical convergence.

(c) The uniform density of a set A ⊂ N is defined as follows.For integers
t ≥ 0 and s ≥ 1 let A(t + 1, t + s) = card{n ∈ A : t + 1 ≤ n ≤ t + s}. Put
βs = lim inft→∞A(t+1, t+s), βs = lim supt→∞A(t+1, t+s). It can be shown
(see [3]) that the following limits exist: u(A) = lims→∞

βs

s , u(A) = lims→∞
βs

s .
If u(A) = u(A), then u(A) = u(A) is called the uniform density of the set A.

Put Iu = {A ⊂ N : u(A) = 0}. Then Iu is a non-trivial ideal and Iu-
convergence is said to be the uniform statistical convergence.

(d) A wide class of I-convergences can be obtained as follows. Let T =
{tn,k}n,k∈N be a regular non negative matrix (see [23], p. 8). For A ⊂ N we
put d(n)

T (A) =
∑∞
k=1 tn,k ·χA(k) for n ∈ N. If limn→∞ d

(n)
T (A) = dT (A) exists,

then dT (A) is called a T -density of A (see [18]). From the regularity of T it
follows that limn→∞

∑∞
k=1 tn,k = 1 and from this we see that dT (A) ∈ [0, 1]

(if it exists). Put IdT
= {A ⊂ N : dT (A) = 0}. Then IdT

is a non-trivial
ideal and IdT

contains both Id- and Iδ-convergence as special cases. Indeed,
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Id-convergence can be obtained by choosing tn,k = 1
n for k ≤ n, tn,k = 0

for k > n and Iδ-convergence by choosing tn,k =
1
k

sn
for k ≤ n, tn,k = 0 for

k > 0, where sn =
∑n
j=1

1
j for n ∈ N. Choosing tn,k = φ(k)

n for k ≤ n, k|n
and tn,k = 0 for k ≤ n k - n and tn,k = 0 for k > n we get φ-convergence of
Schoenberg (see [29]), where φ is the Euler function.

Another special case of IdT
-convergence is the following. Take an arbitrary

divergent series
∑∞
n=1 cn, where cn > 0 for n ∈ N and put tn,k = ck

sn
for k ≤ n,

where sn =
∑n
j=1 cj , and tn,k = 0 for k > n (see [1]).

(e) Let ν be an arbitrary finitely additive normed measure defined on a
field U ⊂ 2N. Suppose that U contains all singletons {n}, n ∈ N. Then
Iν = {A ⊂ N : ν(A) = 0} is a non-trivial ideal in N which generates the
Iν-convergence.

(f) Suppose that µm : 2N → [0, 1] is a finitely additive normed measure
for m ∈ N. If for A ⊂ N there exists µ(A) = limm→∞ µm(A), then the set
A is said to be measurable and µ(A) is called the measure of A. Obviously
µ is a finitely additive measure on some field S ⊂ 2N (see [16]). The family
Iµ = {A ⊂ N : µ(A) = 0} is a non-trivial ideal which generates the Iµ-
convergence.

For µm we can take dm or δm (compare the definition).
(g) Let N =

⋃∞
j=1 ∆j be a decomposition of N such that each ∆j is infinite

and obviously ∆i ∩∆j = ∅ for i 6= j. Denote by E the class of all A ⊂ N that
intersect only a finite number of ∆′js. Then E is a non-trivial ideal.

(h) Put Ic = {A ⊂ N :
∑
a∈A a

−1 < ∞} (see [23]). Then Ic is a non-
trivial ideal. Since

∑
a∈A a

−1 < ∞ implies d(A) = 0 (see [24]), we see that
Ic-convergence implies statistical convergence.

Remark 3.1. Note that if I is an admissible ideal, then the usual convergence
in X implies I-convergence in X.

We shall now investigate which axioms of convergence are satisfied by I-
convergence. The following properties are the most familiar axioms of conver-
gence (see [17]):

(S) Every constant sequence {ξ, ξ, . . . , ξ, . . . } converges to ξ.

(H) The limit of any convergent sequence is uniquely determined.

(F ) If a sequence x = {xn}n∈N has the limit ξ, then each of its subsequences
has the same limit.

(U) If each subsequence of the sequence x = {xn}n∈N has a subsequence
which converges to ξ, then x converges to ξ.
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Proposition 3.1. Suppose that X has at least two points. Let I ⊂ 2X be an
admissible ideal.

(i) The I-convergence satisfies (S), (H) and (U).

(ii) If I contains an infinite set, then I-convergence does not satisfy (F ).

Proof. (i) (S) is obviously fulfilled. To prove (H) it is sufficient to observe
that for any A1, A2 ∈ I we have (N \A1)∩ (N \A2) 6= ∅ since the last two sets
belong to the filter associated with I. If there are two limits ξ, η ∈ X, ξ 6= η,
choose ε such that

0 < ε <
1
2
ρ(ξ, η) (2)

and put A1 = {n ∈ N : ρ(xn, ξ) ≥ ε}, A2 = {n ∈ N : ρ(xn, η) ≥ ε}.
Suppose now that (U) does not hold. Then there exists ε0 > 0 such that

A(ε0) = {n ∈ N : ρ(xn, ξ) ≥ ε0} /∈ I.

But then A(ε0) is an infinite set since I is admissible. Let A(ε0) = {n1 < n2 <
· · · < nk < . . . }. Put yk = xnk

for k ∈ N. Then y = {yk}k∈N is a subsequence
of x without a subsequence I-convergent to ξ.

(ii) Suppose that A ∈ I is an infinite set, A = {n1 < n2 < · · · < nk < . . . }.
B = N \ A = {m1 < m2 < · · · < mk < . . . }. The set B is also infinite since
I is non-trivial ideal. Define x = {xn}n∈N by choosing ξ1, ξ2 ∈ X, ξ1 6= ξ2
and put xnk

= ξ1, xmk
= ξ2 for k ∈ N. Obviously I-limk→∞ xk = ξ2, but the

subsequence yk = xnk
, k ∈ N, I-converges to ξ1.

Remark 3.2. If I is an admissible ideal which does not contains any infinite
set, then I-convergence coincides with the usual convergence and obviously
fulfills (F ).

3.2 I-Convergence and I∗-Convergence

The following result is well known in the theory of statistical convergence. A
sequence {xn}n∈N of real numbers is statistically convergent to ξ if and only
if there exists a set M = {m1 < m2 < . . .mk < . . . } ⊂ N such that d(M) = 1
and limk→∞ xmk

= ξ (see [10], [11], [18], [26]).
This result suggests the introduction of the following concept of conver-

gence (which we shall call I∗-convergence) closely related to I-convergence.

Definition 3.2. A sequence x = {xn}n∈N of elements of X is said to be I∗-
convergent to ξ ∈ X if and only if there exists a set M ∈ F(I) (i.e. N\M ∈ I),
M = {m1 < m2 < · · · < mk < . . . } such that limk→∞ ρ(xmk

, ξ) = 0.
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Proposition 3.2. Let I be an admissible ideal. If I∗-limn→∞ xn = ξ, then
I-limn→∞ xn = ξ.

Proof. By assumption there exists a set H ∈ I such that for M = N \H =
{m1 < m2 < · · · < mk < . . . } we have

lim
k→∞

xmk
= ξ. (3)

Let ε > 0. By virtue of (3) there exists k0 ∈ N such that ρ(xmk
, ξ) < ε for

each k > k0. Then obviously

A(ε) = {n ∈ N : ρ(xn, ξ) ≥ ε} ⊂ H ∪ {m1 < m2 < · · · < mk0}. (4)

The set on the right-hand side of (4) belongs to I (since I is admissible). So
A(ε) ∈ I.

The converse implication between I- and I∗-convergence depends essen-
tially on the structure of the metric space (X, ρ).

Theorem 3.1. Let (X, ρ) be a metric space.

(i) If X has no accumulation point, then I- and I∗-convergence coincide for
each admissible ideal I ⊂ 2N.

(ii) If X has an accumulation point ξ, then there exists an admissible ideal
I ⊂ 2N and a sequence {yn}n∈N of elements of X such that I-limn→∞ yn = ξ
but I∗-lim yn does not exist.

Proof. (i) Let ξ ∈ X and I-limn→∞ xn = ξ. By virtue of Proposition 1.2. it
suffices to prove that I∗-limn→∞ xn = ξ. Since X has no accumulation points,
there exists δ > 0 such that B(ξ, δ) = {x ∈ X : ρ(x, ξ) < δ} = {ξ}. From the
assumption we have {n ∈ N : ρ(xn, ξ) ≥ δ} ∈ I. Hence

{n ∈ N : ρ(xn, ξ) < δ} = {n ∈ N : xn = ξ} ∈ F(I)

and obviously I∗-limn→∞ xn = ξ.
(ii) Since ξ is an accumulation point of X, there exists a sequence {xn}n∈N

of elements of X such that ξ = limn→∞ xn and the sequence {ρ(xn, ξ)}n∈N is
decreasing to 0. Put εn = ρ(xn, ξ) for n ∈ N. For I we take the ideal E from
Example 1.1. (g).

Define the sequence {yn}n∈N by yn = xj if n ∈ ∆j . Let η > 0. Choose
ν ∈ N such that εν < η. Then A(η) = {n : ρ(yn, ξ) ≥ η} ⊂ ∆1 ∪ · · · ∪ ∆ν .
Hence A(η) ∈ E and E-limn→∞ yn = ξ.



I-Convergence 675

Suppose that E∗-limn→∞ yn = ξ. Then there exists a set H ∈ E such that
for M = N\H = {m1 < m2 < · · · < mk < . . . } we have limk→∞ ρ(ymk

, ξ) = 0.
By definition of E there exists l ∈ N such that H ⊂ ∆1 ∪ · · · ∪∆l. But then
∆l+1 ⊂ N \H = M , so for infinitely many k’s (each ∆i is an infinite set) we
have ρ(ymk

, ξ) = εl+1 > 0, which contradicts ymk
→ ξ. Also the assumption

E∗-limn→∞ yn = y for y 6= ξ leads to the contradiction.

Now we shall formulate a necessary and sufficient condition (for the ideal
I) under which I- and I∗-convergence are equivalent. This condition (AP ) is
similar to the condition (APO) used in [7] and [10].

Definition 3.3. An admissible ideal I ⊂ 2N is said to satisfy the condition
(AP ) if for every countable family of mutually disjoint sets {A1, A2, . . . } be-
longing to I there exists a countable family of sets {B1, B2, . . . } such that
Aj4Bj is a finite set for j ∈ N and B =

⋃∞
j=1Bj ∈ I.

Remark 3.3. Observe that also Bj ∈ I for j ∈ N.

Theorem 3.2. Let I ⊂ 2N be an admissible ideal.

(i) If the ideal I has property (AP ) and (X, ρ) is an arbitrary metric space, then
for arbitrary sequence {xn}n∈N of elements of X I-limn→∞ xn = ξ implies I∗-
limn→∞ xn = ξ.

(ii) If (X, ρ) has at least one accumulation point and for arbitrary sequence
{xn}n∈N of elements of X and for each ξ ∈ X I-limn→∞ xn = ξ implies
I∗-limn→∞ xn = ξ, then I has property (AP ).

Proof. (i) Suppose that I satisfies condition (AP ). Let I-limn→∞ xn = ξ.
Then A(ε) = {n ∈ N : ρ(xn, ξ) ≥ ε} ∈ I for ε > 0. Put A1 = {n ∈ N :
ρ(xn, ξ) ≥ 1} and An = {n ∈ N : 1

n ≤ ρ(xn, ξ) < 1
n−1} for n ≥ 2, n ∈ N.

Obviously Ai∩Aj = ∅ for i 6= j. By condition (AP ) there exists a sequence of
sets {Bn}n∈N such that Aj4Bj are finite sets for j ∈ N and B =

⋃∞
j=1Bj ∈ I.

It is sufficient to prove that for M = N \B we have

lim
n→∞
n∈M

xn = ξ. (5)

Let η > 0. Choose k ∈ N such that 1
k+1 < η. Then {n ∈ N : ρ(xn, ξ) ≥ η} ⊂⋃k+1

j=1 Aj . Since Aj4Bj , j = 1, 2, . . . , k + 1 are finite sets, there exists n0 ∈ N
such that( k+1⋃

j=1

Bj

)
∩ {n ∈ N : n > n0} =

( k+1⋃
j=1

Aj
)
∩ {n ∈ N : n > n0}. (6)
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If n > n0 and n /∈ B, then n /∈
⋃k+1
j=1 Bj and, by (6), n /∈

⋃k+1
j=1 Aj . But then

ρ(xn, ξ) < 1
n+1 < η; so (5) holds.

(ii) Suppose that ξ ∈ X is an accumulation point of X. There exists a
sequence {xn}n∈N of elements of X such that ξ = limn→∞ xn and the sequence
{ρ(xn, ξ)}n∈N is decreasing to 0. For n ∈ N let εn = ρ(xn, ξ). Let {An}n∈N
be a disjoint family of non-empty sets from I. Define a sequence {yn}n∈N
by yn = xj if n ∈ Aj . Let η > 0. Choose m ∈ N such that εm < η. Then
A(η) = {n ∈ N : ρ(yn, ξ) ≥ η} ⊂ A1 ∪ · · · ∪ Am. Hence A(η) ∈ I and I-
limn→∞ yn = ξ. By virtue of our assumption we have also I∗-limn→∞ yn = ξ.
Hence there exists a set B ∈ I such that if M = N \ B = {m1 < m2 < . . . },
then

lim
k→∞

ymk
= ξ. (7)

Put Bj = Aj ∩ B for j ∈ N. Then Bj ∈ I for each n. Further
⋃∞
j=1Bj =

B ∩
⋃∞
j=1Aj ⊂ B. Hence

⋃∞
j=1Bj ∈ I. Fix j ∈ N. From (7) it is clear

that Aj has only a finite numbers of elements common with the set M . Thus
there exists k0 ∈ N such that Aj ⊂ (Aj ∩ B) ∪ {m1,m2, . . . ,mk0}. Hence
Aj4Bj = Aj \ Bj ⊂ {m1,m2, . . . ,mk0}; so Aj4Bj is a finite set. From the
arbitrariness of j ∈ N it follows that I has property (AP ).

In [18] it is proved that IdT
- and I∗dT

-convergence are equivalent (in R) pro-
vided that T = {tn,k}n,k∈N is a non-negative triangular matrix with

∑n
k=1 tnk =

1 for n ∈ N. From this we get that Id-, Iδ-convergence (Example 1.1. (b))
and Iφ-convergence (Example 1.1. (d)) coincide, respectively, with I∗d -, I∗δ -
and I∗φ-convergence.

3.3 Functions Preserving I-Convergence

Let (X, ρ) be a metric space and I ⊂ 2N-an admissible ideal. As in [2] we say
that a function g : X → X preserves I-convergence in X if I-limn→∞ xn = ξ
implies I-limn→∞ g(xn) = g(ξ) for each sequence {xn}n∈N of elements of X
and each ξ ∈ X. As is not difficult to predict, we have the following.

Proposition 3.3. A function g : X → X preserves I-convergence in X (for
an arbitrary admissible ideal I) if and only if g is continuous on X.

Proof. 1. Let I-limn→∞ xn = ξ. If g is continuous, then for each η > 0
there exists δ > 0 such that if x ∈ B(ξ, δ), then g(x) ∈ B(g(ξ), η). But then
we have

C(δ) = {n ∈ N : ρ(xn, ξ) < δ} ⊂ {n ∈ N : ρ(g(xn), g(ξ)) < η} = D(η)

and D(η) ∈ F(I), since C(δ) ∈ F(I). Hence I-limn→∞ g(xn) = g(ξ).
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2. If g is not continuous at some ξ ∈ X, then there exists a number
η > 0 and a sequence {xn}n∈N of elements of X such that limn→∞ xn = ξ and
ρ(g(xn), g(ξ)) ≥ η for n ∈ N. Hence g does not preserve I-convergence for any
ideal I.

3.4 Relationship between Id- and Iδ-Convergence and Cesaro Summ-
ability

Recall that a sequence {xn}n∈N of real numbers is said to be (C, 1)-summable
(or (C, 1)-convergent) to ξ ∈ R if and only if limn→∞

1
n

∑n
i=1 xi = ξ (see [23],

p. 3) (abreviated (C, 1)-limn→∞ xn = ξ) and is said to be strongly (C, 1)-
summable to ξ if and only if limn→∞

1
n

∑n
i=1 |xi − ξ| = 0 (see [23], p. 5,

[7]).
If {xn}n∈N ∈ `∞, then Id-limn→∞ xn = ξ implies (C, 1)-limn→∞ xn = ξ

(see [7], [10], [26]). The converse is obviously not true (e.g. {0, 1, 0, 1, . . . }).
However, in `∞ the Id-convergence to some number is equivalent to strong
Cesaro summability to the same number. For Iδ-convergence the situation is
different.

Proposition 3.4. In `∞ there is a sequence {xn}n∈N such that Iδ-limn→∞ xn =
0 and (C, 1)-limn→∞ xn does not exist.

Proof. Put A =
⋃∞
k=2Ak, where Ak = {kk2

+1, kk
2
+2, . . . , kk

2+1} for k ∈ N,
k ≥ 2. If A(n) = dn(A) for n ∈ N (compare section 2), then

d(A) ≥ lim sup
k→∞

A(kk
2+1)

kk2+1
≥ lim sup

k→∞

kk
2+1 − kk2

kk2+1
= 1.

Hence
d(A) = 1. (8)

Simultaneously by (1) we have
∑
j∈An

1
j = ln k + O( 1

kk2 ) for k ∈ N, k ≥ 2.
From this by a simple calculation we get

δ(A) ≤ lim
n→∞

∑n
k=1 ln k +O(1)∑nn2+1

j=1
1
j

≤ lim
n→∞

n lnn+O(1)
(n2 + 1) lnn+O(1)

= 0.

So we have δ(A) = 0 and consequently

d(A) = 0. (9)

So d(A) does not exist.
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Define x = {xn}n∈N by

xn =

{
0 if n ∈ N \A
1 if n ∈ A.

Since δ(A) = 0 we have Iδ-limn→∞ xn = 0. But (C, 1)-limn→∞ xn does not
exist because 1

n

∑n
i=1 xi = A(n)

n for n ∈ N (compare (8), (9)).

4 I-Limit Points and I-Cluster Points

Recall that a number ξ ∈ R is said to be a statistical limit point of a sequence
{xn}n∈N of real numbers provided that there exists a set M = {m1 < m2 <
. . . } ⊂ N such that d(M) > 0 and limk→∞ xmk

= ξ. A number ξ ∈ R is said
to be a statistical cluster point of x = {xn}n∈N provided that for each ε > 0
we have d{n ∈ N : |xn − ξ| < ε} > 0 (see [9], [12], [13]).

We can extend these concepts to I-convergence in the following way.

Definition 4.1. Let (X, ρ) be a metric space, x = {xn}n∈N a sequence of
elements of X.

a) An element ξ ∈ X is said to be an I-limit point of x provided that there is
a set M = {m1 < m2 < . . . } ⊂ N such that M /∈ I and limk→∞ xmk

= ξ.

b) An element ξ ∈ X is said to be an I-cluster point of x if and only if for each
ε > 0 we have {n ∈ N : ρ(xn, ξ) < ε} /∈ I.

Denote by I(Λx) and I(Γx) the set of all I-limit and I-cluster points of
x, respectively.

Proposition 4.1. Let I be an admissible ideal. Then for each sequence x =
{xn}n∈N of elements of X we have I(Λx) ⊂ I(Γx).

Proof. Let ξ ∈ I(Λx). Then there exists a set M = {m1 < m2 < . . . } /∈ I
such that

lim
k→∞

ρ(xmk
, ξ) = 0. (10)

Take δ > 0. According to (10) there exists k0 ∈ N such that for k > k0 we
have ρ(xmk

, ξ) < δ. Hence {n ∈ N : ρ(xn, ξ) < δ} ⊃ M \ {m1, . . . ,mk0} and
so {n ∈ N : ρ(xn, ξ) < δ} /∈ I, which means that ξ ∈ I(Γx).

Theorem 4.1. Let I be an admissible ideal.

(i) The set I(Γx) is closed in X for each sequence x = {xn}n∈N of elements of
X.
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(ii) Suppose that (X, ρ) is a separable metric space. Suppose that there exists a
disjoint sequence of sets {Mn}n∈N such that Mn ⊂ N and Mn /∈ I for n ∈ N.
Then for each closed set F ⊂ X there exists a sequence x = {xn}n∈N of
elements of X such that F = I(Γx).

Proof. (i) Let y ∈ I(Γx). Take ε > 0. There exists ξ0 ∈ I(Γx) ∩ B(y, ε).
Choose δ > 0 such that B(ξ0, δ) ⊂ B(y, ε). We obviously have

{n ∈ N : ρ(y, xn) < ε} ⊃ {n ∈ N : ρ(ξ0, xn) < δ}.

Hence {n ∈ N : ρ(y, xn) < ε} /∈ I and y ∈ I(Γx).
(ii) Let A = {a1, a2, . . . } ⊂ F be a countable set dense in F . For n ∈Mi we

put xn = ai. Obviously we have I(Γx) ⊂ F . To prove the converse inclusion
take z ∈ F and ε > 0. There exists i0 ∈ N such that ρ(ai0 , z) < ε. Since
xn = ai0 for each n ∈ Mi0 , we obtain {n ∈ N : ρ(xn, z) < ε} ⊃ Mi0 ; so
{n ∈ N : ρ(xn, z) < ε} /∈ I and z ∈ I(Γx).

In [13] the following result has been established for sequences of real num-
bers.

Theorem A.

(i) For each sequence x = {xn}n∈N of real numbers the set Id(Λx) is of type
Fσ.

(ii) If F ⊂ R is a set of type Fσ, then there exists a sequence x = {xn}n∈N of
real numbers such that F = Id(Λx).

A detailed analysis of the proof of Theorem 4 in [13] shows that in this
theorem Id can be replaced by Iδ. It would be desirable to extend Theorem
4 for more general I-convergence.

It is not difficult to observe that I-convergence cannot in general be metriz-
able.

Proposition 4.2. Suppose that X has at least two elements and I ⊂ 2N is
an admissible ideal containing an infinite set M ⊂ N. Then I-convergence
cannot be metrizable.

Proof. Suppose that there exists a metric σ on X such that I-limn→∞ xn = ξ
if and only if limn→∞ σ(xn, ξ) = 0. Take ξ1, ξ2 ∈ X, ξ1 6= ξ2 and put xn = ξ1
if n ∈ M , xn = ξ2 if n /∈ M . Obviously we have I-limn→∞ xn = ξ2 and
limn→∞ σ(xn, ξ2) = 0, which implies σ(ξ1, ξ2) = 0 since N \M is an infinite
set. This contradicts ξ1 6= ξ2.
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In connection with the above mentioned results about Id(Λx) (compare
[14]) we can conjecture that (at least under some reasonable conditions) the
set I(Λx) is of type Fσ. To show that the separability of (X, ρ) is essential,
we prove the following.

Theorem 4.2. Suppose that (X, ρ) is not separable and I ⊂ 2N is an admis-
sible ideal.

(i) There exists a closed set F ⊂ X such that for each sequence x = {xn}n∈N
of elements of X we have I(Γx) 6= F.

(ii) There exists an open set G ⊂ X (so also G is of type Fσ) such that for
each sequence x = {xn}n∈N of elements of X we have I(Λx) 6= G.

In the proof we shall need the following lemma (see [21]).

Lemma 4.1. Suppose that (X, ρ) is not separable. Then there exists ε1 > 0
and an uncountable set D = {d0, d1, . . . , dα, . . . } ⊂ X, α < Ω such that for
α, β < Ω, α 6= β we have ρ(dα, dβ) ≥ ε1.

Proof of Theorem 4.2 (i) Let D be the (closed) set from Lemma 4.1. We
shall prove that D 6= I(Γx) for each sequence x = {xn}n∈N of elements of X.
Consider the uncountable family {B(dα, ε12 ) : α < Ω} of disjoint balls. There
exists α0 < Ω such that {n ∈ N : xn ∈ B(dα0 ,

ε1
2 )} = ∅. Hence dα0 /∈ I(Γx).

(ii) Put G =
⋃
α<ΩB(dα, ε12 ). The proof is similar to that of part (i).

5 I-Convergence of Sequences of Functions

In a natural manner we can extend the notion of I-convergence of sequences
in X to I-convergence of sequences of functions.

Definition 5.1. Let X be a non-empty set and let (Y, τ) be a metric space.
Let I ⊂ 2N be an admissible ideal. The sequence of functions {fn}n∈N trans-
forming X into Y is said to I-converge to a function f : X → Y provided that
for each x ∈ X we have I-limn→∞ fn(x) = f(x).

The function f is called the I-limit function of the sequence {fn}n∈N and
we write f = I-limn→∞ fn.

Remark 5.1. (a) From Proposition 3.1 it follows that the I-limit function is
uniquely determined.

(b) From Proposition 4.2 it follows that the I-convergence of sequences of
functions is not metrizable.
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If we additionally assume that (X, ρ) is a metric space and (Y, τ) is R
equipped with the natural metric, the question arises whether the I-limit
function of a sequence of continuous functions belongs to B1 (Baire class one)
and a similar question arises for higher Baire classes. Taking into account
that Id-convergence of bounded real sequences implies (C, 1)-summability one
can answer positively for questions concerning all Baire classes. However, for
ideals different from Id the situation is a little bit more complicated. Under
some conditions (concerning the ideal I) we are able to give the answer to the
question concerning continuous functions.

We shall suppose that µ is a finitely additive, normed measure defined on
some class of subsets of N (as in Example 3.1 (f)), µ(A) = limm→∞ µm(A),
where µm : 2N → [0, 1] is a finitely additive measure on 2N. Further, we shall
assume that each µm satisfies the following condition.

For each m ∈ N and for each A ⊂ N µm(A)
= lim
k→∞

µm(A ∩ {n ∈ N : n ≤ k}). (11)

Theorem 5.1. Suppose that (X, ρ) is a complete metric space and fn : X → R
are continuous functions for n ∈ N. If Iµ-lim fn = f , then f ∈ B1.

Proof. Suppose that f /∈ B1. Then from [25] (see also [15], p. 39), we can
conclude that there exists a perfect set F ⊂ X and two numbers a, b, a < b
such that each of the sets T1 = {x ∈ F : f(x) < a}, T2 = {x ∈ F : f(x) > b}
is dense in F. Choose x1 ∈ T1 ∩ F . Then Iµ-limn→∞ fn(x1) = f(x1) < a.
Put ε1 = 1

2 (a − f(x1)) and A(ε1) = {n ∈ N : fn(x1) < f(x1) + ε1} = {n ∈
N : fn(x1) < 1

2 (a + f(x1)}. Then µ(A(ε1)) = 1; so limm→∞ µm(A(ε1)) = 1.
Therefore there exists m1 ∈ N such that µm1(A(ε1)) > 1

2 . By (11) we conclude
that there exists k1 ∈ N such that µm1(A(ε1) ∩ {n ∈ N : n ≤ k1}) > 1

2 .
Since all functions fj for j ≤ k1, j ∈ A(ε1) are continuous, there exists

δ1 > 0 such that for each x ∈ B(x1, δ1) and each n ≤ k1, n ∈ A(ε1) we have
fn(x) ≤ a and so

µm1({n ∈ N : n ≤ k1, n ∈ A(ε1) and fn(x) ≤ a for each x ∈ B(x1, δ1)}) > 1
2
.

Choose arbitrary x2 ∈ T2∩F∩B(x1, δ1). Then Iµ-limn→∞ fn(x2) = f(x2) > b.
Take ε2 = 1

2 (f(x2)− b) and put

A(ε2) = {n ∈ N : fn(x2) > f(x2)− ε2} = {n ∈ N : fn(x2) >
1
2

(f(x2) + b}.

We have µ(A(ε2)) = 1, so as before we can find m2 ∈ N and k2 ∈ N (moreover,
k2 > k1) such that µm2(A(ε2) ∩ {n ∈ N : n ≤ k2}) > 1

2 . Again from the
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continuity of all functions fj , j ≤ k2, j ∈ A(ε2) it follows that there exists
δ2 > 0 such that δ2 < 1

2δ1, B(x2, δ2) ⊂ B(x1, δ1) and for each x ∈ B(x2, δ2)
and each n ≤ k1, n ∈ A(ε2) we have fn(x) ≥ b and so

µm2({n ∈ N : n ≤ k2, n ∈ A(ε2) and fn(x) ≥ b for each x ∈ B(x2, δ2)}) > 1
2
.

In this way (by induction) we construct a sequence {xn}n∈N of points of F ,
a sequence {δn}n∈N decreasing to 0, a sequence {εn}n∈N of positive numbers,
a sequence A(εn) of subsets of N and a descending sequence {B(xn, δn)}n∈N
of closed sets with diameters tending to 0. Simultaneously we obtain two
increasing sequences of natural numbers {mi}i∈N and {ki}i∈N such that

µm2i−1({n ∈ N :n ≤ k2i−1, n ∈ A(ε2i−1) and fn(x) ≤ a

for each x ∈ B(x2i−1, δ2i−1)}) > 1
2

(12)

µm2i
({n ∈ N :n ≤ k2i, n ∈ A(ε2i)and fn(x) ≥ b

for each x ∈ B(x2i, δ2i)}) >
1
2

(13)

Let x0 ∈
⋂∞
k=1B(xk, δk). By the monotonicity of µm, m ∈ N from (12) and

(13) we obtain

µm2i−1({n ∈ N : fn(x0) ≤ a}) > 1
2

(14)

µm2i({n ∈ N : fn(x0) ≥ b}) > 1
2

(15)

for i ∈ N. Suppose that Iµ-limn→∞ fn(x0) = f(x0). If f(x0) ≤ a, we obtain a
contradiction to (15), if f(x0) ≥ b; a contradiction to (14), if a < f(x0) < b; a
contradiction to both (14) and (15).

Remark 5.2. According to Theorem 5.1 I-limit function of a sequence of
continuous real functions belongs to Baire class one if I = Id, Iδ, IdT

, Iφ.
Using similar technique one can prove that the same holds also for the ideal
from Example 3.1 (g).

Now we shall show that there are also admissible ideals I ⊂ 2N and se-
quences {fn}n∈N of continuous real functions defined on [0, 1] such that f = I-
limn→∞ fn does not belong to B1. Using Zorn’s lemma one can show that in
the family of all admissible ideals I ⊂ 2N there exists a maximal ideal (with
respect to inclusion). We shall need the following properties of maximal ideals.
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Lemma 5.1. If I ⊂ 2N is a maximal admissible ideal, then for each A ⊂ N
we have either A ∈ I, or N \A ∈ I.

Lemma 5.2. Let I ⊂ 2N be a maximal admissible ideal. Then each bounded
sequence x = {xn}n∈N of real numbers is I-convergent; i.e., there exists ξ ∈ R
such that ξ = I-limn→∞ xn.

Proof. See Theorem 4.1. in [14].

Theorem 5.2. Let I ⊂ 2N be a maximal admissible ideal. There exists an I-
convergent sequence {fn}n∈N of continuous functions transforming [0, 1] onto
[0, 1] such that f = I-limn→∞ fn does not belong to B1.

Proof. Let {ri}i∈N be a sequence containing each rational number from [0, 1]
exactly once. For n ∈ N, let fn : [0, 1] → [0, 1] be a continuous function such
that fn(ri) = 1 for i ∈ {1, . . . , n} and λ({x ∈ [0, 1] : fn(x) > 0}) < 2−n, where
λ is a Lebesgue measure. Then we have lim supn→∞ fn(x) = 0 a.e. on [0, 1]
and limn→∞ fn(ri) = 1 for i ∈ N. Since obviously I-limn→∞ fn(x) = f(x)
exists everywhere by Lemma 5.2 and I-limn→∞ fn(x) ≤ lim supn→∞ fn(x),
we have I-limn→∞ fn(x) = 0 a.e.; so f is 1 on a set dense in [0, 1] and is 0 on
another set dense in [0, 1] and consequently f /∈ B1.

Observe that in the above proof f is Lebesgue measurable. We can con-
struct another sequence {fk}k∈N of continuous real functions defined on [0, 1]
such that I-limk→∞ fk is non-measurable for each admissible maximal ideal
I ⊂ 2N.

A function f is a function of accumulation of {fk}k∈N if and only if for
each ε > 0 and for each finite set {x1, x2, . . . , xm} (included in the domain)
there exists an infinite subset K = {k1, k2, . . . , kp, . . . } ⊂ N such that for each
k ∈ K and for each i ∈ {1, . . . ,m} we have |fk(xi)− f(xi)| < ε.

Sierpiński in [30] found a sequence {fk}k∈N of continuous functions trans-
forming [0, 1] onto [0, 1] such that each function of accumulation of this se-
quence is non-measurable.

Observe that if f = I-limn fn, then f is a function of accumulation of {fn}.
Indeed, take ε > 0 and a finite set {x1, x2, . . . , xm} ⊂ [0, 1]. Then for each
i ∈ {1, . . . ,m} Ei(ε) = {n : |fn(xi)− f(xi)| ≥ ε} ∈ I; so

⋃m
i=1Ei(ε) ∈ I. But

then (for our ideals) N \
⋃m
i=1Ei(ε) is an infinite set (It does not belong to I.)

and for each i ∈ {1, . . . ,m} and each k ∈ N \
⋃m
i=1Ei(ε) =

⋂m
i=1(N \Ei(ε)) we

have |fk(xi)−f(xi)| < ε. Now if I is a maximal ideal and {fn}n∈N is a sequence
constructed by Sierpiński, then there exists a function f = I-limn fn. Hence
f is also a function of accumulation and therefore f is non-measurable.
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