Pavel Kostyrko and Tibor Salát, Department of Algebra and Number Theory, Comenius University, Mlynská dolina, SL-842 15 Bratislava, Slovakia. e-mail: kostyrko@fmph.uniba.sk

Władysław Wilczyński, Department of Real Functions, Faculty of Mathematics, University of Łódź, Banacha 22, PL-90-238 Łódź, Poland. e-mail: wwil@krysia.uni.lodz.pl

*I***-CONVERGENCE***

Abstract

In this paper we introduce and study the concept of \mathcal{I} -convergence of sequences in metric spaces, where \mathcal{I} is an ideal of subsets of the set \mathbb{N} of positive integers. We extend this concept to \mathcal{I} -convergence of sequence of real functions defined on a metric space and prove some basic properties of these concepts.

1 Introduction

This paper was inspired by [14], where the concept of \mathcal{I} -convergence of sequences of real numbers is introduced. We will often quote some results from [14] that can be easily transferred to sequences of points in a metric space. In [14] it is shown that our \mathcal{I} -convergence is, in a sense, equivalent to μ -statistical convergence of J. Connor ([8]).

The concept of statistical convergence is introduced in [10] and [29] and developed in [6], [7], [8], [9], [10], [12], [26] and [28]. Some applications of statistical convergence in number theory and mathematical analysis can be found in [4], [5] and [19]. The concept of \mathcal{I} -convergence is a generalization of statistical convergence and it is based on the notion of the ideal \mathcal{I} of subsets of the set \mathbb{N} of positive integers.

This paper consists of five sections with the new results in sections 3–5. In the Section 3 the concept of the \mathcal{I} -convergence of sequences in a metric space is introduced and its fundamental properties are studied. In Section 4 we introduce and study the concept of an \mathcal{I} -cluster point and an \mathcal{I} -limit

Key Words: statistical convergence, ideals of sets, Baire classification of functions

Mathematical Reviews subject classification: Primary 40A30; Secondary 40A99 40C15 Received by the editors July 28, 2000

^{*}The work on this paper was partially supported by GRANT VEGA 1/7173/20.

⁶⁶⁹

point of a sequence in a metric space. In Section 5 we extend the concept of \mathcal{I} -convergence to sequences of real functions defined on a metric space and we will discuss some questions concerning the limit functions of \mathcal{I} -convergent sequences, specially in the case when all functions in the sequence are continuous.

2 Definitions and Notation

Throughout the paper \mathbb{N} will denote the set of positive integers χ_A – the characteristic function of $A \subset \mathbb{N}$, \mathbb{R} – the set of all real numbers, (X, ρ) – a metric space, $B(\xi, \epsilon)$ – an open ball in X with center $\xi \in X$ and radius $\epsilon > 0$. The topological terminology in taken from [20]. We recall the concept of asymptotic and logarithmic density of a set $A \subset \mathbb{N}$ (see [22], pp. 71, 95-96 and [27]).

Let $A \subset \mathbb{N}$. Put $d_n(A) = \frac{1}{n} \sum_{k=1}^n \chi_A(k)$ and $\delta_n(A) = \frac{1}{s_n} \sum_{k=1}^n \frac{\chi_A(k)}{k}$ for $n \in \mathbb{N}$, where $s_n = \sum_{k=1}^n \frac{1}{k}$. The numbers $\underline{d}(A) = \liminf_{n \to \infty} d_n(A)$ and $\overline{d}(A) = \limsup_{n \to \infty} d_n(A)$ are called the lower and upper asymptotic density of A, respectively. Similarly, the numbers $\underline{\delta}(A) = \liminf_{n \to \infty} \delta_n(A)$ and $\overline{\delta}(A) = \limsup_{n \to \infty} \delta_n(A)$ are called the lower and upper logarithmic density of A, respectively. If $\underline{d}(A) = \overline{d}(A)$ ($\underline{\delta}(A) = \overline{\delta}(A)$), then $d(A) = \underline{d}(A)$ is called the asymptotic density of A ($\delta(A) = \underline{\delta}(A)$) is called the logarithmic density of A, respectively). It is well known that for each $A \subset \mathbb{N} \underline{d}(A) \leq \underline{\delta}(A) \leq \overline{\delta}(A) \leq \overline{d}(A)$ (see [22], 70-75, 95-96). Hence if d(A) exists, then also $\delta(A)$ exists and $d(A) = \delta(A)$. The converse is not true. Obviously all numbers $\underline{d}(A), \overline{d}(A), \underline{\delta}(A), \overline{\delta}(A)$ (and so $d(A), \delta(A)$) belong to [0, 1]. Since

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + O(\frac{1}{n})$$
(1)

where γ is an Euler constant, if we put $\delta_n^*(A) = \frac{1}{\ln n} \sum_{k=1}^n \frac{\chi_{A(k)}}{k}$ for $n \in \mathbb{N}$, then $\underline{\delta}(A) = \liminf_{n \to \infty} \delta_n^*(A)$, $\overline{\delta}(A) = \limsup_{n \to \infty} \delta_n^*(A)$ and if $\delta(A)$ exists, then $\overline{\delta}(A) = \lim_{n \to \infty} \delta_n^*(A)$.

Now recall the concept of statistical convergence of real sequences (see [9], [28]).

Definition A. A sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of real numbers is said to be statistically convergent to $\xi \in \mathbb{R}$ provided that for each $\epsilon > 0$ we have $d(A(\epsilon)) = 0$, where $A(\epsilon) = \{n \in \mathbb{N} : |x_n - \xi| \ge \epsilon\}$.

Recall that if X is a non-empty set then a family of sets $\mathcal{I} \subset 2^X$ is an ideal if and only if for each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$ and for each $A \in \mathcal{I}$

and each $B \subset A$ we have $B \in \mathcal{I}$. A non-empty family of sets $\mathcal{F} \subset 2^X$ is a filter on X if and only if $\phi \notin \mathcal{F}$, for each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$ and for each $A \in \mathcal{F}$ and each $B \supset A$ we have $B \in \mathcal{F}$. An ideal \mathcal{I} is called non-trivial if $\mathcal{I} \neq \emptyset$ and $X \notin \mathcal{I}$. $\mathcal{I} \subset 2^X$ is a non-trivial ideal if and only if $\mathcal{F} = \mathcal{F}(\mathcal{I}) = \{X \setminus A : A \in \mathcal{I}\}$ is a filter on X. A non-trivial ideal $\mathcal{I} \subset 2^X$ is called admissible if and only if $\mathcal{I} \supset \{\{x\} : x \in X\}$.

3 *I*-Convergence of Sequences of Elements of a Metric Space

3.1 *I*-Convergence, Examples and Properties

In what follows (X, ρ) is a fixed metric space and \mathcal{I} denotes a non-trivial ideal of subsets of \mathbb{N} .

Definition 3.1. A sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of X is said to be \mathcal{I} -convergent to $\xi \in X$ ($\xi = \mathcal{I}$ -lim_{$n\to\infty$} x_n) if and only if for each $\epsilon > 0$ the set $A(\epsilon) = \{n \in \mathbb{N} : \rho(x_n, \xi) \ge \epsilon\}$ belongs to \mathcal{I} . The element ξ is called the \mathcal{I} -limit of the sequence $\mathbf{x} = \{x_n\}_{n\in\mathbb{N}}$.

Example 3.1. (a) Take for \mathcal{I} the class \mathcal{I}_f of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is a non-trivial admissible ideal and \mathcal{I}_f -convergence coincides with the usual convergence with respect to the metric ρ in X.

(b) Denote by \mathcal{I}_d (\mathcal{I}_δ) the class of all $A \subset \mathbb{N}$ with d(A) = 0 ($\delta(A) = 0$, respectively). Then \mathcal{I}_d and \mathcal{I}_δ are non-trivial admissible ideals, \mathcal{I}_d -convergence coincides with the statistical convergence. \mathcal{I}_δ -convergence is said to be logarithmic statistical convergence.

(c) The uniform density of a set $A \subset \mathbb{N}$ is defined as follows. For integers $t \geq 0$ and $s \geq 1$ let $A(t+1,t+s) = \operatorname{card}\{n \in A : t+1 \leq n \leq t+s\}$. Put $\beta_s = \liminf_{t \to \infty} A(t+1,t+s), \beta^s = \limsup_{t \to \infty} A(t+1,t+s)$. It can be shown (see [3]) that the following limits exist: $\underline{u}(A) = \lim_{s \to \infty} \frac{\beta_s}{s}, \overline{u}(A) = \lim_{s \to \infty} \frac{\beta^s}{s}$. If $\underline{u}(A) = \overline{u}(A)$, then $u(A) = \underline{u}(A)$ is called the uniform density of the set A.

Put $\mathcal{I}_u = \{A \subset \mathbb{N} : u(A) = 0\}$. Then \mathcal{I}_u is a non-trivial ideal and \mathcal{I}_u convergence is said to be the uniform statistical convergence.

(d) A wide class of \mathcal{I} -convergences can be obtained as follows. Let $T = \{t_{n,k}\}_{n,k\in\mathbb{N}}$ be a regular non negative matrix (see [23], p. 8). For $A \subset \mathbb{N}$ we put $d_T^{(n)}(A) = \sum_{k=1}^{\infty} t_{n,k} \cdot \chi_A(k)$ for $n \in \mathbb{N}$. If $\lim_{n\to\infty} d_T^{(n)}(A) = d_T(A)$ exists, then $d_T(A)$ is called a T-density of A (see [18]). From the regularity of T it follows that $\lim_{n\to\infty} \sum_{k=1}^{\infty} t_{n,k} = 1$ and from this we see that $d_T(A) \in [0,1]$ (if it exists). Put $\mathcal{I}_{d_T} = \{A \subset \mathbb{N} : d_T(A) = 0\}$. Then \mathcal{I}_{d_T} is a non-trivial ideal and \mathcal{I}_{d_T} contains both \mathcal{I}_d - and \mathcal{I}_δ -convergence as special cases. Indeed,

 \mathcal{I}_d -convergence can be obtained by choosing $t_{n,k} = \frac{1}{n}$ for $k \leq n$, $t_{n,k} = 0$ for k > n and \mathcal{I}_{δ} -convergence by choosing $t_{n,k} = \frac{\frac{1}{k}}{s_n}$ for $k \leq n$, $t_{n,k} = 0$ for k > 0, where $s_n = \sum_{j=1}^n \frac{1}{j}$ for $n \in \mathbb{N}$. Choosing $t_{n,k} = \frac{\phi(k)}{n}$ for $k \leq n$, k|n and $t_{n,k} = 0$ for $k \leq n$ $k \nmid n$ and $t_{n,k} = 0$ for k > n we get ϕ -convergence of Schoenberg (see [29]), where ϕ is the Euler function.

Another special case of \mathcal{I}_{d_T} -convergence is the following. Take an arbitrary divergent series $\sum_{n=1}^{\infty} c_n$, where $c_n > 0$ for $n \in \mathbb{N}$ and put $t_{n,k} = \frac{c_k}{s_n}$ for $k \leq n$, where $s_n = \sum_{j=1}^n c_j$, and $t_{n,k} = 0$ for k > n (see [1]).

(e) Let ν be an arbitrary finitely additive normed measure defined on a field $\mathcal{U} \subset 2^{\mathbb{N}}$. Suppose that \mathcal{U} contains all singletons $\{n\}, n \in \mathbb{N}$. Then $\mathcal{I}_{\nu} = \{A \subset \mathbb{N} : \nu(A) = 0\}$ is a non-trivial ideal in \mathbb{N} which generates the \mathcal{I}_{ν} -convergence.

(f) Suppose that $\mu_m : 2^{\mathbb{N}} \to [0, 1]$ is a finitely additive normed measure for $m \in \mathbb{N}$. If for $A \subset \mathbb{N}$ there exists $\mu(A) = \lim_{m \to \infty} \mu_m(A)$, then the set A is said to be measurable and $\mu(A)$ is called the measure of A. Obviously μ is a finitely additive measure on some field $S \subset 2^{\mathbb{N}}$ (see [16]). The family $\mathcal{I}_{\mu} = \{A \subset \mathbb{N} : \mu(A) = 0\}$ is a non-trivial ideal which generates the \mathcal{I}_{μ} convergence.

For μ_m we can take d_m or δ_m (compare the definition).

(g) Let $\mathbb{N} = \bigcup_{j=1}^{\infty} \Delta_j$ be a decomposition of \mathbb{N} such that each Δ_j is infinite and obviously $\Delta_i \cap \Delta_j = \emptyset$ for $i \neq j$. Denote by \mathcal{E} the class of all $A \subset \mathbb{N}$ that intersect only a finite number of $\Delta'_i s$. Then \mathcal{E} is a non-trivial ideal.

(h) Put $\mathcal{I}_c = \{A \subset \mathbb{N} : \sum_{a \in A} a^{-1} < \infty\}$ (see [23]). Then \mathcal{I}_c is a non-trivial ideal. Since $\sum_{a \in A} a^{-1} < \infty$ implies d(A) = 0 (see [24]), we see that \mathcal{I}_c -convergence implies statistical convergence.

Remark 3.1. Note that if \mathcal{I} is an admissible ideal, then the usual convergence in X implies \mathcal{I} -convergence in X.

We shall now investigate which axioms of convergence are satisfied by \mathcal{I} convergence. The following properties are the most familiar axioms of convergence (see [17]):

- (S) Every constant sequence $\{\xi, \xi, \dots, \xi, \dots\}$ converges to ξ .
- (H) The limit of any convergent sequence is uniquely determined.
- (F) If a sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ has the limit ξ , then each of its subsequences has the same limit.
- (U) If each subsequence of the sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ has a subsequence which converges to ξ , then \mathbf{x} converges to ξ .

\mathcal{I} -Convergence

Proposition 3.1. Suppose that X has at least two points. Let $\mathcal{I} \subset 2^X$ be an admissible ideal.

- (i) The \mathcal{I} -convergence satisfies (S), (H) and (U).
- (ii) If \mathcal{I} contains an infinite set, then \mathcal{I} -convergence does not satisfy (F).

PROOF. (i) (S) is obviously fulfilled. To prove (H) it is sufficient to observe that for any $A_1, A_2 \in \mathcal{I}$ we have $(\mathbb{N} \setminus A_1) \cap (\mathbb{N} \setminus A_2) \neq \emptyset$ since the last two sets belong to the filter associated with \mathcal{I} . If there are two limits $\xi, \eta \in X, \xi \neq \eta$, choose ϵ such that

$$0 < \epsilon < \frac{1}{2}\rho(\xi,\eta) \tag{2}$$

and put $A_1 = \{n \in \mathbb{N} : \rho(x_n, \xi) \ge \epsilon\}, A_2 = \{n \in \mathbb{N} : \rho(x_n, \eta) \ge \epsilon\}.$

Suppose now that (U) does not hold. Then there exists $\epsilon_0 > 0$ such that

 $A(\epsilon_0) = \{ n \in \mathbb{N} : \rho(x_n, \xi) \ge \epsilon_0 \} \notin \mathcal{I}.$

But then $A(\epsilon_0)$ is an infinite set since \mathcal{I} is admissible. Let $A(\epsilon_0) = \{n_1 < n_2 < \cdots < n_k < \ldots\}$. Put $y_k = x_{n_k}$ for $k \in \mathbb{N}$. Then $\mathbf{y} = \{y_k\}_{k \in \mathbb{N}}$ is a subsequence of \mathbf{x} without a subsequence \mathcal{I} -convergent to ξ .

(ii) Suppose that $A \in \mathcal{I}$ is an infinite set, $A = \{n_1 < n_2 < \cdots < n_k < \ldots\}$. $B = \mathbb{N} \setminus A = \{m_1 < m_2 < \cdots < m_k < \ldots\}$. The set B is also infinite since \mathcal{I} is non-trivial ideal. Define $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ by choosing $\xi_1, \xi_2 \in X, \ \xi_1 \neq \xi_2$ and put $x_{n_k} = \xi_1, \ x_{m_k} = \xi_2$ for $k \in \mathbb{N}$. Obviously \mathcal{I} -lim_{$k \to \infty$} $x_k = \xi_2$, but the subsequence $y_k = x_{n_k}, \ k \in \mathbb{N}, \ \mathcal{I}$ -converges to ξ_1 .

Remark 3.2. If \mathcal{I} is an admissible ideal which does not contains any infinite set, then \mathcal{I} -convergence coincides with the usual convergence and obviously fulfills (F).

3.2 *I*-Convergence and I^* -Convergence

The following result is well known in the theory of statistical convergence. A sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers is statistically convergent to ξ if and only if there exists a set $M = \{m_1 < m_2 < \ldots m_k < \ldots\} \subset \mathbb{N}$ such that d(M) = 1 and $\lim_{k\to\infty} x_{m_k} = \xi$ (see [10], [11], [18], [26]).

This result suggests the introduction of the following concept of convergence (which we shall call \mathcal{I}^* -convergence) closely related to \mathcal{I} -convergence.

Definition 3.2. A sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X is said to be \mathcal{I}^* convergent to $\xi \in X$ if and only if there exists a set $M \in \mathcal{F}(\mathcal{I})$ (i.e. $\mathbb{N} \setminus M \in \mathcal{I}$), $M = \{m_1 < m_2 < \cdots < m_k < \dots\}$ such that $\lim_{k \to \infty} \rho(x_{m_k}, \xi) = 0$.

Proposition 3.2. Let \mathcal{I} be an admissible ideal. If \mathcal{I}^* - $\lim_{n\to\infty} x_n = \xi$, then \mathcal{I} - $\lim_{n\to\infty} x_n = \xi$.

PROOF. By assumption there exists a set $H \in \mathcal{I}$ such that for $M = \mathbb{N} \setminus H = \{m_1 < m_2 < \cdots < m_k < \dots\}$ we have

$$\lim_{k \to \infty} x_{m_k} = \xi. \tag{3}$$

Let $\epsilon > 0$. By virtue of (3) there exists $k_0 \in \mathbb{N}$ such that $\rho(x_{m_k}, \xi) < \epsilon$ for each $k > k_0$. Then obviously

$$A(\epsilon) = \{ n \in \mathbb{N} : \rho(x_n, \xi) \ge \epsilon \} \subset H \cup \{ m_1 < m_2 < \dots < m_{k_0} \}.$$

$$(4)$$

The set on the right-hand side of (4) belongs to \mathcal{I} (since \mathcal{I} is admissible). So $A(\epsilon) \in \mathcal{I}$.

The converse implication between \mathcal{I} - and \mathcal{I}^* -convergence depends essentially on the structure of the metric space (X, ρ) .

Theorem 3.1. Let (X, ρ) be a metric space.

(i) If X has no accumulation point, then \mathcal{I} - and \mathcal{I}^* -convergence coincide for each admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$.

(ii) If X has an accumulation point ξ , then there exists an admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ and a sequence $\{y_n\}_{n \in \mathbb{N}}$ of elements of X such that $\mathcal{I}\operatorname{-lim}_{n \to \infty} y_n = \xi$ but $\mathcal{I}^*\operatorname{-lim} y_n$ does not exist.

PROOF. (i) Let $\xi \in X$ and $\mathcal{I}-\lim_{n\to\infty} x_n = \xi$. By virtue of Proposition 1.2. it suffices to prove that $\mathcal{I}^*-\lim_{n\to\infty} x_n = \xi$. Since X has no accumulation points, there exists $\delta > 0$ such that $B(\xi, \delta) = \{x \in X : \rho(x, \xi) < \delta\} = \{\xi\}$. From the assumption we have $\{n \in \mathbb{N} : \rho(x_n, \xi) \ge \delta\} \in \mathcal{I}$. Hence

$$\{n \in \mathbb{N} : \rho(x_n, \xi) < \delta\} = \{n \in \mathbb{N} : x_n = \xi\} \in \mathcal{F}(\mathcal{I})$$

and obviously \mathcal{I}^* -lim $_{n\to\infty} x_n = \xi$.

(ii) Since ξ is an accumulation point of X, there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of X such that $\xi = \lim_{n\to\infty} x_n$ and the sequence $\{\rho(x_n,\xi)\}_{n\in\mathbb{N}}$ is decreasing to 0. Put $\epsilon_n = \rho(x_n,\xi)$ for $n \in \mathbb{N}$. For \mathcal{I} we take the ideal \mathcal{E} from Example 1.1. (g).

Define the sequence $\{y_n\}_{n\in\mathbb{N}}$ by $y_n = x_j$ if $n \in \Delta_j$. Let $\eta > 0$. Choose $\nu \in \mathbb{N}$ such that $\epsilon_{\nu} < \eta$. Then $A(\eta) = \{n : \rho(y_n, \xi) \ge \eta\} \subset \Delta_1 \cup \cdots \cup \Delta_{\nu}$. Hence $A(\eta) \in \mathcal{E}$ and \mathcal{E} -lim $_{n\to\infty} y_n = \xi$. Suppose that \mathcal{E}^* -lim $_{n\to\infty} y_n = \xi$. Then there exists a set $H \in \mathcal{E}$ such that for $M = \mathbb{N} \setminus H = \{m_1 < m_2 < \cdots < m_k < \dots\}$ we have $\lim_{k\to\infty} \rho(y_{m_k}, \xi) = 0$. By definition of \mathcal{E} there exists $l \in \mathbb{N}$ such that $H \subset \Delta_1 \cup \cdots \cup \Delta_l$. But then $\Delta_{l+1} \subset \mathbb{N} \setminus H = M$, so for infinitely many k's (each Δ_i is an infinite set) we have $\rho(y_{m_k}, \xi) = \epsilon_{l+1} > 0$, which contradicts $y_{m_k} \to \xi$. Also the assumption \mathcal{E}^* -lim $_{n\to\infty} y_n = y$ for $y \neq \xi$ leads to the contradiction.

Now we shall formulate a necessary and sufficient condition (for the ideal \mathcal{I}) under which \mathcal{I} - and \mathcal{I}^* -convergence are equivalent. This condition (AP) is similar to the condition (APO) used in [7] and [10].

Definition 3.3. An admissible ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ is said to satisfy the condition (AP) if for every countable family of mutually disjoint sets $\{A_1, A_2, \ldots\}$ belonging to \mathcal{I} there exists a countable family of sets $\{B_1, B_2, \ldots\}$ such that $A_j \triangle B_j$ is a finite set for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$.

Remark 3.3. Observe that also $B_j \in \mathcal{I}$ for $j \in \mathbb{N}$.

Theorem 3.2. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal.

(i) If the ideal \mathcal{I} has property (AP) and (X, ρ) is an arbitrary metric space, then for arbitrary sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of X \mathcal{I} -lim_{$n\to\infty$} $x_n = \xi$ implies \mathcal{I}^* lim_{$n\to\infty$} $x_n = \xi$.

(ii) If (X, ρ) has at least one accumulation point and for arbitrary sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of X and for each $\xi \in X$ \mathcal{I} -lim_{$n\to\infty$} $x_n = \xi$ implies \mathcal{I}^* -lim_{$n\to\infty$} $x_n = \xi$, then \mathcal{I} has property (AP).

PROOF. (i) Suppose that \mathcal{I} satisfies condition (AP). Let $\mathcal{I}-\lim_{n\to\infty} x_n = \xi$. Then $A(\epsilon) = \{n \in \mathbb{N} : \rho(x_n, \xi) \ge \epsilon\} \in \mathcal{I}$ for $\epsilon > 0$. Put $A_1 = \{n \in \mathbb{N} : \rho(x_n, \xi) \ge 1\}$ and $A_n = \{n \in \mathbb{N} : \frac{1}{n} \le \rho(x_n, \xi) < \frac{1}{n-1}\}$ for $n \ge 2$, $n \in \mathbb{N}$. Obviously $A_i \cap A_j = \emptyset$ for $i \ne j$. By condition (AP) there exists a sequence of sets $\{B_n\}_{n\in\mathbb{N}}$ such that $A_j \triangle B_j$ are finite sets for $j \in \mathbb{N}$ and $B = \bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. It is sufficient to prove that for $M = \mathbb{N} \setminus B$ we have

$$\lim_{\substack{n \to \infty \\ n \in M}} x_n = \xi.$$
(5)

Let $\eta > 0$. Choose $k \in \mathbb{N}$ such that $\frac{1}{k+1} < \eta$. Then $\{n \in \mathbb{N} : \rho(x_n, \xi) \ge \eta\} \subset \bigcup_{j=1}^{k+1} A_j$. Since $A_j \triangle B_j$, $j = 1, 2, \ldots, k+1$ are finite sets, there exists $n_0 \in \mathbb{N}$ such that

$$\left(\bigcup_{j=1}^{k+1} B_j\right) \cap \{n \in \mathbb{N} : n > n_0\} = \left(\bigcup_{j=1}^{k+1} A_j\right) \cap \{n \in \mathbb{N} : n > n_0\}.$$
 (6)

If $n > n_0$ and $n \notin B$, then $n \notin \bigcup_{j=1}^{k+1} B_j$ and, by (6), $n \notin \bigcup_{j=1}^{k+1} A_j$. But then $\rho(x_n,\xi) < \frac{1}{n+1} < \eta$; so (5) holds.

(ii) Suppose that $\xi \in X$ is an accumulation point of X. There exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of X such that $\xi = \lim_{n\to\infty} x_n$ and the sequence $\{\rho(x_n,\xi)\}_{n\in\mathbb{N}}$ is decreasing to 0. For $n\in\mathbb{N}$ let $\epsilon_n = \rho(x_n,\xi)$. Let $\{A_n\}_{n\in\mathbb{N}}$ be a disjoint family of non-empty sets from \mathcal{I} . Define a sequence $\{y_n\}_{n\in\mathbb{N}}$ by $y_n = x_j$ if $n \in A_j$. Let $\eta > 0$. Choose $m \in \mathbb{N}$ such that $\epsilon_m < \eta$. Then $A(\eta) = \{n \in \mathbb{N} : \rho(y_n,\xi) \ge \eta\} \subset A_1 \cup \cdots \cup A_m$. Hence $A(\eta) \in \mathcal{I}$ and \mathcal{I} -lim $_{n\to\infty} y_n = \xi$. By virtue of our assumption we have also \mathcal{I}^* -lim $_{n\to\infty} y_n = \xi$. Hence there exists a set $B \in \mathcal{I}$ such that if $M = \mathbb{N} \setminus B = \{m_1 < m_2 < \dots\}$, then

$$\lim_{k \to \infty} y_{m_k} = \xi. \tag{7}$$

Put $B_j = A_j \cap B$ for $j \in \mathbb{N}$. Then $B_j \in \mathcal{I}$ for each n. Further $\bigcup_{j=1}^{\infty} B_j = B \cap \bigcup_{j=1}^{\infty} A_j \subset B$. Hence $\bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$. Fix $j \in \mathbb{N}$. From (7) it is clear that A_j has only a finite numbers of elements common with the set M. Thus there exists $k_0 \in \mathbb{N}$ such that $A_j \subset (A_j \cap B) \cup \{m_1, m_2, \ldots, m_{k_0}\}$. Hence $A_j \triangle B_j = A_j \setminus B_j \subset \{m_1, m_2, \ldots, m_{k_0}\}$; so $A_j \triangle B_j$ is a finite set. From the arbitrariness of $j \in \mathbb{N}$ it follows that \mathcal{I} has property (AP).

In [18] it is proved that \mathcal{I}_{d_T} - and $\mathcal{I}^*_{d_T}$ -convergence are equivalent (in \mathbb{R}) provided that $T = \{t_{n,k}\}_{n,k\in\mathbb{N}}$ is a non-negative triangular matrix with $\sum_{k=1}^{n} t_{nk} = 1$ for $n \in \mathbb{N}$. From this we get that \mathcal{I}_{d} -, \mathcal{I}_{δ} -convergence (Example 1.1. (b)) and \mathcal{I}_{ϕ} -convergence (Example 1.1. (d)) coincide, respectively, with \mathcal{I}^*_{d} -, \mathcal{I}^*_{δ} - and \mathcal{I}^*_{ϕ} -convergence.

3.3 Functions Preserving *I*-Convergence

Let (X, ρ) be a metric space and $\mathcal{I} \subset 2^{\mathbb{N}}$ -an admissible ideal. As in [2] we say that a function $g: X \to X$ preserves \mathcal{I} -convergence in X if \mathcal{I} -lim_{$n\to\infty$} $x_n = \xi$ implies \mathcal{I} -lim_{$n\to\infty$} $g(x_n) = g(\xi)$ for each sequence $\{x_n\}_{n\in\mathbb{N}}$ of elements of X and each $\xi \in X$. As is not difficult to predict, we have the following.

Proposition 3.3. A function $g: X \to X$ preserves \mathcal{I} -convergence in X (for an arbitrary admissible ideal \mathcal{I}) if and only if g is continuous on X.

PROOF. 1. Let \mathcal{I} -lim_{$n\to\infty$} $x_n = \xi$. If g is continuous, then for each $\eta > 0$ there exists $\delta > 0$ such that if $x \in B(\xi, \delta)$, then $g(x) \in B(g(\xi), \eta)$. But then we have

 $C(\delta) = \{n \in \mathbb{N} : \rho(x_n, \xi) < \delta\} \subset \{n \in \mathbb{N} : \rho(g(x_n), g(\xi)) < \eta\} = D(\eta)$

and $D(\eta) \in \mathcal{F}(\mathcal{I})$, since $C(\delta) \in \mathcal{F}(\mathcal{I})$. Hence \mathcal{I} -lim_{$n\to\infty$} $g(x_n) = g(\xi)$.

2. If g is not continuous at some $\xi \in X$, then there exists a number $\eta > 0$ and a sequence $\{x_n\}_{n \in \mathbb{N}}$ of elements of X such that $\lim_{n \to \infty} x_n = \xi$ and $\rho(g(x_n), g(\xi)) \ge \eta$ for $n \in \mathbb{N}$. Hence g does not preserve \mathcal{I} -convergence for any ideal \mathcal{I} .

3.4 Relationship between I_d - and I_{δ} -Convergence and Cesaro Summability

Recall that a sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers is said to be (C, 1)-summable (or (C, 1)-convergent) to $\xi \in \mathbb{R}$ if and only if $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} x_i = \xi$ (see [23], p. 3) (abreviated (C, 1)-lim $_{n\to\infty} x_n = \xi$) and is said to be strongly (C, 1)summable to ξ if and only if $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} |x_i - \xi| = 0$ (see [23], p. 5, [7]).

If $\{x_n\}_{n\in\mathbb{N}} \in \ell_{\infty}$, then \mathcal{I}_d -lim $_{n\to\infty} x_n = \xi$ implies (C, 1)-lim $_{n\to\infty} x_n = \xi$ (see [7], [10], [26]). The converse is obviously not true (e.g. $\{0, 1, 0, 1, \ldots\}$). However, in ℓ^{∞} the \mathcal{I}_d -convergence to some number is equivalent to strong Cesaro summability to the same number. For \mathcal{I}_{δ} -convergence the situation is different.

Proposition 3.4. In ℓ^{∞} there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that \mathcal{I}_{δ} -lim_{$n\to\infty$} $x_n = 0$ and (C, 1)-lim_{$n\to\infty$} x_n does not exist.

PROOF. Put $A = \bigcup_{k=2}^{\infty} A_k$, where $A_k = \{k^{k^2} + 1, k^{k^2} + 2, \dots, k^{k^2+1}\}$ for $k \in \mathbb{N}$, $k \ge 2$. If $A(n) = d_n(A)$ for $n \in \mathbb{N}$ (compare section 2), then

$$\overline{d}(A) \geq \limsup_{k \to \infty} \frac{A(k^{k^2+1})}{k^{k^2+1}} \geq \limsup_{k \to \infty} \frac{k^{k^2+1} - k^{k^2}}{k^{k^2+1}} = 1.$$

Hence

$$\overline{d}(A) = 1. \tag{8}$$

Simultaneously by (1) we have $\sum_{j \in A_n} \frac{1}{j} = \ln k + O(\frac{1}{k^{k^2}})$ for $k \in \mathbb{N}, k \ge 2$. From this by a simple calculation we get

$$\overline{\delta}(A) \le \lim_{n \to \infty} \frac{\sum_{k=1}^n \ln k + O(1)}{\sum_{j=1}^{n^{n^2+1}} \frac{1}{j}} \le \lim_{n \to \infty} \frac{n \ln n + O(1)}{(n^2 + 1) \ln n + O(1)} = 0.$$

So we have $\delta(A) = 0$ and consequently

$$\underline{d}(A) = 0. \tag{9}$$

So d(A) does not exist.

Define $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ by

678

$$x_n = \begin{cases} 0 & \text{if } n \in \mathbb{N} \setminus A \\ 1 & \text{if } n \in A. \end{cases}$$

Since $\delta(A) = 0$ we have \mathcal{I}_{δ} -lim_{$n \to \infty$} $x_n = 0$. But (C, 1)-lim_{$n \to \infty$} x_n does not exist because $\frac{1}{n} \sum_{i=1}^n x_i = \frac{A(n)}{n}$ for $n \in \mathbb{N}$ (compare (8), (9)).

4 *I*-Limit Points and *I*-Cluster Points

Recall that a number $\xi \in \mathbb{R}$ is said to be a statistical limit point of a sequence $\{x_n\}_{n\in\mathbb{N}}$ of real numbers provided that there exists a set $M = \{m_1 < m_2 < \dots\} \subset \mathbb{N}$ such that $\overline{d}(M) > 0$ and $\lim_{k\to\infty} x_{m_k} = \xi$. A number $\xi \in \mathbb{R}$ is said to be a statistical cluster point of $\mathbf{x} = \{x_n\}_{n\in\mathbb{N}}$ provided that for each $\epsilon > 0$ we have $\overline{d}\{n\in\mathbb{N}: |x_n-\xi| < \epsilon\} > 0$ (see [9], [12], [13]).

We can extend these concepts to \mathcal{I} -convergence in the following way.

Definition 4.1. Let (X, ρ) be a metric space, $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ a sequence of elements of X.

a) An element $\xi \in X$ is said to be an \mathcal{I} -limit point of \mathbf{x} provided that there is a set $M = \{m_1 < m_2 < \dots\} \subset \mathbb{N}$ such that $M \notin \mathcal{I}$ and $\lim_{k \to \infty} x_{m_k} = \xi$.

b) An element $\xi \in X$ is said to be an \mathcal{I} -cluster point of \mathbf{x} if and only if for each $\epsilon > 0$ we have $\{n \in \mathbb{N} : \rho(x_n, \xi) < \epsilon\} \notin \mathcal{I}$.

Denote by $\mathcal{I}(\Lambda_{\mathbf{x}})$ and $\mathcal{I}(\Gamma_{\mathbf{x}})$ the set of all \mathcal{I} -limit and \mathcal{I} -cluster points of \mathbf{x} , respectively.

Proposition 4.1. Let \mathcal{I} be an admissible ideal. Then for each sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X we have $\mathcal{I}(\Lambda_{\mathbf{x}}) \subset \mathcal{I}(\Gamma_{\mathbf{x}})$.

PROOF. Let $\xi \in \mathcal{I}(\Lambda_{\mathbf{x}})$. Then there exists a set $M = \{m_1 < m_2 < \dots\} \notin \mathcal{I}$ such that

$$\lim_{k \to \infty} \rho(x_{m_k}, \xi) = 0. \tag{10}$$

Take $\delta > 0$. According to (10) there exists $k_0 \in \mathbb{N}$ such that for $k > k_0$ we have $\rho(x_{m_k},\xi) < \delta$. Hence $\{n \in \mathbb{N} : \rho(x_n,\xi) < \delta\} \supset M \setminus \{m_1,\ldots,m_{k_0}\}$ and so $\{n \in \mathbb{N} : \rho(x_n,\xi) < \delta\} \notin \mathcal{I}$, which means that $\xi \in \mathcal{I}(\Gamma_{\mathbf{x}})$.

Theorem 4.1. Let \mathcal{I} be an admissible ideal.

(i) The set $\mathcal{I}(\Gamma_{\mathbf{x}})$ is closed in X for each sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X.

$\mathcal{I} ext{-}\mathrm{CONVERGENCE}$

(ii) Suppose that (X, ρ) is a separable metric space. Suppose that there exists a disjoint sequence of sets $\{M_n\}_{n \in \mathbb{N}}$ such that $M_n \subset \mathbb{N}$ and $M_n \notin \mathcal{I}$ for $n \in \mathbb{N}$. Then for each closed set $F \subset X$ there exists a sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X such that $F = \mathcal{I}(\Gamma_{\mathbf{x}})$.

PROOF. (i) Let $y \in \overline{\mathcal{I}(\Gamma_{\mathbf{x}})}$. Take $\epsilon > 0$. There exists $\xi_0 \in \mathcal{I}(\Gamma_{\mathbf{x}}) \cap B(y, \epsilon)$. Choose $\delta > 0$ such that $B(\xi_0, \delta) \subset B(y, \epsilon)$. We obviously have

$$\{n \in \mathbb{N} : \rho(y, x_n) < \epsilon\} \supset \{n \in \mathbb{N} : \rho(\xi_0, x_n) < \delta\}.$$

Hence $\{n \in \mathbb{N} : \rho(y, x_n) < \epsilon\} \notin \mathcal{I}$ and $y \in \mathcal{I}(\Gamma_{\mathbf{x}})$.

(ii) Let $A = \{a_1, a_2, \dots\} \subset F$ be a countable set dense in F. For $n \in M_i$ we put $x_n = a_i$. Obviously we have $\mathcal{I}(\Gamma_{\mathbf{x}}) \subset F$. To prove the converse inclusion take $z \in F$ and $\epsilon > 0$. There exists $i_0 \in \mathbb{N}$ such that $\rho(a_{i_0}, z) < \epsilon$. Since $x_n = a_{i_0}$ for each $n \in M_{i_0}$, we obtain $\{n \in \mathbb{N} : \rho(x_n, z) < \epsilon\} \supset M_{i_0}$; so $\{n \in \mathbb{N} : \rho(x_n, z) < \epsilon\} \notin \mathcal{I}$ and $z \in \mathcal{I}(\Gamma_{\mathbf{x}})$.

In [13] the following result has been established for sequences of real numbers.

Theorem A.

(i) For each sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of real numbers the set $\mathcal{I}_d(\Lambda_{\mathbf{x}})$ is of type F_{σ} .

(ii) If $F \subset \mathbb{R}$ is a set of type F_{σ} , then there exists a sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of real numbers such that $F = \mathcal{I}_d(\Lambda_{\mathbf{x}})$.

A detailed analysis of the proof of Theorem 4 in [13] shows that in this theorem \mathcal{I}_d can be replaced by \mathcal{I}_{δ} . It would be desirable to extend Theorem 4 for more general \mathcal{I} -convergence.

It is not difficult to observe that $\mathcal I\text{-}\mathrm{convergence}$ cannot in general be metrizable.

Proposition 4.2. Suppose that X has at least two elements and $\mathcal{I} \subset 2^{\mathbb{N}}$ is an admissible ideal containing an infinite set $M \subset \mathbb{N}$. Then \mathcal{I} -convergence cannot be metrizable.

PROOF. Suppose that there exists a metric σ on X such that $\mathcal{I}\operatorname{-lim}_{n\to\infty} x_n = \xi$ if and only if $\lim_{n\to\infty} \sigma(x_n,\xi) = 0$. Take $\xi_1, \xi_2 \in X, \ \xi_1 \neq \xi_2$ and put $x_n = \xi_1$ if $n \in M, \ x_n = \xi_2$ if $n \notin M$. Obviously we have $\mathcal{I}\operatorname{-lim}_{n\to\infty} x_n = \xi_2$ and $\lim_{n\to\infty} \sigma(x_n,\xi_2) = 0$, which implies $\sigma(\xi_1,\xi_2) = 0$ since $\mathbb{N} \setminus M$ is an infinite set. This contradicts $\xi_1 \neq \xi_2$. In connection with the above mentioned results about $\mathcal{I}_d(\Lambda_{\mathbf{x}})$ (compare [14]) we can conjecture that (at least under some reasonable conditions) the set $\mathcal{I}(\Lambda_{\mathbf{x}})$ is of type F_{σ} . To show that the separability of (X, ρ) is essential, we prove the following.

Theorem 4.2. Suppose that (X, ρ) is not separable and $\mathcal{I} \subset 2^{\mathbb{N}}$ is an admissible ideal.

(i) There exists a closed set $F \subset X$ such that for each sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X we have $\mathcal{I}(\Gamma_{\mathbf{x}}) \neq F$.

(ii) There exists an open set $G \subset X$ (so also G is of type F_{σ}) such that for each sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X we have $\mathcal{I}(\Lambda_{\mathbf{x}}) \neq G$.

In the proof we shall need the following lemma (see [21]).

Lemma 4.1. Suppose that (X, ρ) is not separable. Then there exists $\epsilon_1 > 0$ and an uncountable set $D = \{d_0, d_1, \ldots, d_\alpha, \ldots\} \subset X$, $\alpha < \Omega$ such that for $\alpha, \beta < \Omega, \alpha \neq \beta$ we have $\rho(d_\alpha, d_\beta) \ge \epsilon_1$.

PROOF OF THEOREM 4.2 (i) Let D be the (closed) set from Lemma 4.1. We shall prove that $D \neq \mathcal{I}(\Gamma_{\mathbf{x}})$ for each sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of elements of X. Consider the uncountable family $\{B(d_{\alpha}, \frac{\epsilon_1}{2}) : \alpha < \Omega\}$ of disjoint balls. There exists $\alpha_0 < \Omega$ such that $\{n \in \mathbb{N} : x_n \in B(d_{\alpha_0}, \frac{\epsilon_1}{2})\} = \emptyset$. Hence $d_{\alpha_0} \notin \mathcal{I}(\Gamma_{\mathbf{x}})$.

(ii) Put $G = \bigcup_{\alpha < \Omega} B(d_{\alpha}, \frac{\epsilon_1}{2})$. The proof is similar to that of part (i). \Box

5 *I*-Convergence of Sequences of Functions

In a natural manner we can extend the notion of \mathcal{I} -convergence of sequences in X to \mathcal{I} -convergence of sequences of functions.

Definition 5.1. Let X be a non-empty set and let (Y, τ) be a metric space. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal. The sequence of functions $\{f_n\}_{n \in \mathbb{N}}$ transforming X into Y is said to \mathcal{I} -converge to a function $f: X \to Y$ provided that for each $x \in X$ we have \mathcal{I} -lim_{$n \to \infty$} $f_n(x) = f(x)$.

The function f is called the \mathcal{I} -limit function of the sequence $\{f_n\}_{n\in\mathbb{N}}$ and we write $f = \mathcal{I}$ -lim_{$n\to\infty$} f_n .

Remark 5.1. (a) From Proposition 3.1 it follows that the \mathcal{I} -limit function is uniquely determined.

(b) From Proposition 4.2 it follows that the \mathcal{I} -convergence of sequences of functions is not metrizable.

\mathcal{I} -Convergence

If we additionally assume that (X, ρ) is a metric space and (Y, τ) is \mathbb{R} equipped with the natural metric, the question arises whether the \mathcal{I} -limit function of a sequence of continuous functions belongs to B_1 (Baire class one) and a similar question arises for higher Baire classes. Taking into account that \mathcal{I}_d -convergence of bounded real sequences implies (C, 1)-summability one can answer positively for questions concerning all Baire classes. However, for ideals different from \mathcal{I}_d the situation is a little bit more complicated. Under some conditions (concerning the ideal \mathcal{I}) we are able to give the answer to the question concerning continuous functions.

We shall suppose that μ is a finitely additive, normed measure defined on some class of subsets of \mathbb{N} (as in Example 3.1 (f)), $\mu(A) = \lim_{m \to \infty} \mu_m(A)$, where $\mu_m : 2^{\mathbb{N}} \to [0, 1]$ is a finitely additive measure on $2^{\mathbb{N}}$. Further, we shall assume that each μ_m satisfies the following condition.

For each
$$m \in \mathbb{N}$$
 and for each $A \subset \mathbb{N}$ $\mu_m(A)$
= $\lim_{k \to \infty} \mu_m(A \cap \{n \in \mathbb{N} : n \le k\}).$ (11)

Theorem 5.1. Suppose that (X, ρ) is a complete metric space and $f_n : X \to \mathbb{R}$ are continuous functions for $n \in \mathbb{N}$. If \mathcal{I}_{μ} -lim $f_n = f$, then $f \in B_1$.

PROOF. Suppose that $f \notin B_1$. Then from [25] (see also [15], p. 39), we can conclude that there exists a perfect set $F \subset X$ and two numbers a, b, a < b such that each of the sets $T_1 = \{x \in F : f(x) < a\}, T_2 = \{x \in F : f(x) > b\}$ is dense in F. Choose $x_1 \in T_1 \cap F$. Then \mathcal{I}_{μ} -lim_{n\to\infty} $f_n(x_1) = f(x_1) < a$. Put $\epsilon_1 = \frac{1}{2}(a - f(x_1))$ and $A(\epsilon_1) = \{n \in \mathbb{N} : f_n(x_1) < f(x_1) + \epsilon_1\} = \{n \in \mathbb{N} : f_n(x_1) < \frac{1}{2}(a + f(x_1))\}$. Then $\mu(A(\epsilon_1)) = 1$; so $\lim_{m\to\infty} \mu_m(A(\epsilon_1)) = 1$. Therefore there exists $m_1 \in \mathbb{N}$ such that $\mu_{m_1}(A(\epsilon_1)) > \frac{1}{2}$. By (11) we conclude that there exists $k_1 \in \mathbb{N}$ such that $\mu_{m_1}(A(\epsilon_1) \cap \{n \in \mathbb{N} : n \leq k_1\}) > \frac{1}{2}$.

Since all functions f_j for $j \leq k_1, j \in A(\epsilon_1)$ are continuous, there exists $\delta_1 > 0$ such that for each $x \in \overline{B(x_1, \delta_1)}$ and each $n \leq k_1, n \in A(\epsilon_1)$ we have $f_n(x) \leq a$ and so

$$\mu_{m_1}(\{n \in \mathbb{N} : n \le k_1, n \in A(\epsilon_1) \text{ and } f_n(x) \le a \text{ for each } x \in \overline{B(x_1, \delta_1)}\}) > \frac{1}{2}.$$

Choose arbitrary $x_2 \in T_2 \cap F \cap B(x_1, \delta_1)$. Then $\mathcal{I}_{\mu}-\lim_{n\to\infty} f_n(x_2) = f(x_2) > b$. Take $\epsilon_2 = \frac{1}{2}(f(x_2) - b)$ and put

$$A(\epsilon_2) = \{n \in \mathbb{N} : f_n(x_2) > f(x_2) - \epsilon_2\} = \{n \in \mathbb{N} : f_n(x_2) > \frac{1}{2}(f(x_2) + b)\}.$$

We have $\mu(A(\epsilon_2)) = 1$, so as before we can find $m_2 \in \mathbb{N}$ and $k_2 \in \mathbb{N}$ (moreover, $k_2 > k_1$) such that $\mu_{m_2}(A(\epsilon_2) \cap \{n \in \mathbb{N} : n \leq k_2\}) > \frac{1}{2}$. Again from the

continuity of all functions f_j , $j \leq k_2$, $j \in A(\epsilon_2)$ it follows that there exists $\delta_2 > 0$ such that $\delta_2 < \frac{1}{2}\delta_1$, $B(x_2, \delta_2) \subset B(x_1, \delta_1)$ and for each $x \in \overline{B(x_2, \delta_2)}$ and each $n \leq k_1$, $n \in A(\epsilon_2)$ we have $f_n(x) \geq b$ and so

$$\mu_{m_2}(\{n \in \mathbb{N} : n \le k_2, n \in A(\epsilon_2) \text{ and } f_n(x) \ge b \text{ for each } x \in \overline{B(x_2, \delta_2)}\}) > \frac{1}{2}.$$

In this way (by induction) we construct a sequence $\{x_n\}_{n\in\mathbb{N}}$ of points of F, a sequence $\{\delta_n\}_{n\in\mathbb{N}}$ decreasing to 0, a sequence $\{\epsilon_n\}_{n\in\mathbb{N}}$ of positive numbers, a sequence $A(\epsilon_n)$ of subsets of \mathbb{N} and a descending sequence $\{\overline{B}(x_n, \delta_n)\}_{n\in\mathbb{N}}$ of closed sets with diameters tending to 0. Simultaneously we obtain two increasing sequences of natural numbers $\{m_i\}_{i\in\mathbb{N}}$ and $\{k_i\}_{i\in\mathbb{N}}$ such that

$$\mu_{m_{2i-1}}(\{n \in \mathbb{N} : n \le k_{2i-1}, n \in A(\epsilon_{2i-1}) \text{ and } f_n(x) \le a$$

for each $x \in \overline{B(x_{2i-1}, \delta_{2i-1})}\}) > \frac{1}{2}$ (12)

$$\mu_{m_{2i}}(\{n \in \mathbb{N} : n \le k_{2i}, n \in A(\epsilon_{2i}) \text{ and } f_n(x) \ge b$$

for each $x \in \overline{B(x_{2i}, \delta_{2i})}\}) > \frac{1}{2}$ (13)

Let $x_0 \in \bigcap_{k=1}^{\infty} \overline{B(x_k, \delta_k)}$. By the monotonicity of $\mu_m, m \in \mathbb{N}$ from (12) and (13) we obtain

$$\mu_{m_{2i-1}}(\{n \in \mathbb{N} : f_n(x_0) \le a\}) > \frac{1}{2}$$
(14)

$$\mu_{m_{2i}}(\{n \in \mathbb{N} : f_n(x_0) \ge b\}) > \frac{1}{2}$$
(15)

for $i \in \mathbb{N}$. Suppose that \mathcal{I}_{μ} -lim $_{n\to\infty} f_n(x_0) = f(x_0)$. If $f(x_0) \leq a$, we obtain a contradiction to (15), if $f(x_0) \geq b$; a contradiction to (14), if $a < f(x_0) < b$; a contradiction to both (14) and (15).

Remark 5.2. According to Theorem 5.1 \mathcal{I} -limit function of a sequence of continuous real functions belongs to Baire class one if $\mathcal{I} = \mathcal{I}_d, \mathcal{I}_\delta, \mathcal{I}_{d_T}, \mathcal{I}_\phi$. Using similar technique one can prove that the same holds also for the ideal from Example 3.1 (g).

Now we shall show that there are also admissible ideals $\mathcal{I} \subset 2^{\mathbb{N}}$ and sequences $\{f_n\}_{n\in\mathbb{N}}$ of continuous real functions defined on [0,1] such that $f = \mathcal{I}$ - $\lim_{n\to\infty} f_n$ does not belong to B_1 . Using Zorn's lemma one can show that in the family of all admissible ideals $\mathcal{I} \subset 2^{\mathbb{N}}$ there exists a maximal ideal (with respect to inclusion). We shall need the following properties of maximal ideals.

Lemma 5.1. If $\mathcal{I} \subset 2^{\mathbb{N}}$ is a maximal admissible ideal, then for each $A \subset \mathbb{N}$ we have either $A \in \mathcal{I}$, or $\mathbb{N} \setminus A \in \mathcal{I}$.

Lemma 5.2. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a maximal admissible ideal. Then each bounded sequence $\mathbf{x} = \{x_n\}_{n \in \mathbb{N}}$ of real numbers is \mathcal{I} -convergent; i.e., there exists $\xi \in \mathbb{R}$ such that $\xi = \mathcal{I}$ -lim_{$n \to \infty$} x_n .

PROOF. See Theorem 4.1. in [14].

Theorem 5.2. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a maximal admissible ideal. There exists an \mathcal{I} -convergent sequence $\{f_n\}_{n \in \mathbb{N}}$ of continuous functions transforming [0, 1] onto [0, 1] such that $f = \mathcal{I}$ -lim_{$n \to \infty$} f_n does not belong to B_1 .

PROOF. Let $\{r_i\}_{i\in\mathbb{N}}$ be a sequence containing each rational number from [0,1] exactly once. For $n\in\mathbb{N}$, let $f_n:[0,1]\to[0,1]$ be a continuous function such that $f_n(r_i)=1$ for $i\in\{1,\ldots,n\}$ and $\lambda(\{x\in[0,1]:f_n(x)>0\})<2^{-n}$, where λ is a Lebesgue measure. Then we have $\limsup_{n\to\infty}f_n(x)=0$ a.e. on [0,1] and $\lim_{n\to\infty}f_n(r_i)=1$ for $i\in\mathbb{N}$. Since obviously $\mathcal{I}\text{-lim}_{n\to\infty}f_n(x)=f(x)$ exists everywhere by Lemma 5.2 and $\mathcal{I}\text{-lim}_{n\to\infty}f_n(x)\leq\limsup_{n\to\infty}f_n(x)$, we have $\mathcal{I}\text{-lim}_{n\to\infty}f_n(x)=0$ a.e.; so f is 1 on a set dense in [0,1] and is 0 on another set dense in [0,1] and consequently $f\notin B_1$.

Observe that in the above proof f is Lebesgue measurable. We can construct another sequence $\{f_k\}_{k\in\mathbb{N}}$ of continuous real functions defined on [0, 1]such that \mathcal{I} -lim_{$k\to\infty$} f_k is non-measurable for each admissible maximal ideal $\mathcal{I} \subset 2^{\mathbb{N}}$.

A function f is a function of accumulation of $\{f_k\}_{k\in\mathbb{N}}$ if and only if for each $\epsilon > 0$ and for each finite set $\{x_1, x_2, \ldots, x_m\}$ (included in the domain) there exists an infinite subset $K = \{k_1, k_2, \ldots, k_p, \ldots\} \subset \mathbb{N}$ such that for each $k \in K$ and for each $i \in \{1, \ldots, m\}$ we have $|f_k(x_i) - f(x_i)| < \epsilon$.

Sierpiński in [30] found a sequence $\{f_k\}_{k\in\mathbb{N}}$ of continuous functions transforming [0,1] onto [0,1] such that each function of accumulation of this sequence is non-measurable.

Observe that if $f = \mathcal{I}$ -lim_n f_n , then f is a function of accumulation of $\{f_n\}$. Indeed, take $\epsilon > 0$ and a finite set $\{x_1, x_2, \ldots, x_m\} \subset [0, 1]$. Then for each $i \in \{1, \ldots, m\} E_i(\epsilon) = \{n : |f_n(x_i) - f(x_i)| \ge \epsilon\} \in \mathcal{I}$; so $\bigcup_{i=1}^m E_i(\epsilon) \in \mathcal{I}$. But then (for our ideals) $\mathbb{N} \setminus \bigcup_{i=1}^m E_i(\epsilon)$ is an infinite set (It does not belong to \mathcal{I} .) and for each $i \in \{1, \ldots, m\}$ and each $k \in \mathbb{N} \setminus \bigcup_{i=1}^m E_i(\epsilon) = \bigcap_{i=1}^m (\mathbb{N} \setminus E_i(\epsilon))$ we have $|f_k(x_i) - f(x_i)| < \epsilon$. Now if \mathcal{I} is a maximal ideal and $\{f_n\}_{n \in \mathbb{N}}$ is a sequence constructed by Sierpiński, then there exists a function $f = \mathcal{I}$ -lim_n f_n . Hence f is also a function of accumulation and therefore f is non-measurable. \Box

References

- R. Alexander, Density and multiplicative structure of sets of integers, Acta Arithm., 12 (1967), 321–332.
- [2] R. G. Bartle, J. I. Joichi, The preservation of convergence of measurable functions under composition, Proc. Amer. Math. Soc., 12 (1968), 122– 126.
- [3] T. C. Brown, A. R. Freedman, The uniform density of sets of integers and Fermat's last Theorem, Compt. Rendus Math. L'Acad. Sci., 12 (1990), 1–6.
- [4] R. C. Buck, The measure theoretic approach to density, Amer. J. Math., 68 (1946), 560–580.
- [5] R. C. Buck, Generalized asymptotic density, Amer. J. Math., 75 (1953), 335–346.
- [6] J. Červeňanský, Statistical convergence and statistical continuity, Zbornik Vedeckých Prác M_tFSTU, 6 (1998), 207–212.
- [7] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988), 47–63.
- [8] J. S. Connor, Two valued measures and summability, Analysis, 10 (1990), 373–385.
- [9] J. S. Connor, J. Kline, On statistical limit points and consistency of statistical convergence, J. Math. Appl., 197 (1996), 392–399.
- [10] H. Fast, Sur la convergence statistique, Coll. Math., 2 (1951), 241–244.
- [11] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
- [12] J. A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187–1192.
- [13] P. Kostyrko, M. Mačaj, T. Šalát and O. Strauch, On statistical limit points, Proc. Amer. Math. Soc., to appear.
- [14] P. Kostyrko, M. Mačaj, T. Šalát, Statistical convergence and Iconvergence, Real Analysis Exch., submitted.
- [15] K. Kuratowski, *Topology*, Academic Press, Warszawa, 1966.

- [16] D. Maharam, Finitely additive measures on the integers, Sankhya Indian J. Stat., 38A (1976), 44–59.
- [17] P. Mikusiński, Axiomatic theory of convergence, (Polish) Uniw. Śląski. Prace Nauk. Prace Matem., 12 (1982), 13–21.
- [18] H. I. Miller, A measure theoretic subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347 (1945), 1811–1819.
- [19] D. S. Mitrinović, J. Sandor, B. Crstici, Handbook of Number Theory, Kluwer Acad. Publ., Dordrecht-Boston-London, 1996.
- [20] Jun-iti Nagata, Modern General Topology, North Holland Publ. Comp., Amsterdam-London, 1974.
- [21] T. Neubrunn, J. Smital, T, Šalát, On certain properties characterizing locally separable metric spaces, Čas. pešt. mat., 92 (1967), 157–161.
- [22] H. H. Ostmann, Additive Zahlentheorie I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
- [23] G. M. Petersen, Regular Matrix Transformations, Mc Graw-Hill, London-New York-Toronto-Sydney, 1966.
- [24] B. J. Powell, T. Šalát, Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ. Inst. Math. (Beograd), 50 (1964), 60–70.
- [25] D. Preiss, Approximate derivatives and Baire classes, Czechoslovak Math. J. Z1, 96 (1971), 373–382.
- [26] T. Šalát, R. Tijdeman, On statistically convergent sequences of real numbers, Math. Slov., 30 (1980), 139–150.
- [27] T. Šalát, R. Tijdeman, Asymptotic densities of sets of positive integers, Math. Slov., 33 (1983), 199–207.
- [28] T. Salát, R. Tijdeman, On density measures of sets of positive integers, Coll. Math. Soc. J. Bolyai 34. Topics in Classical Number Theory, Budapest 1981, 1445–1457.
- [29] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
- [30] W. Sierpiński, Sur un suite infinie de fonctions continues dont tout fonction d'accumulation est non measurable, Publ. Inst. Math. Beograd, 1 (1947), 5–10

686 Pavel Kostyrko, Tibor Šalát and Władysław Wilczyński