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HIGHER ORDER UNIFORM SMOOTHNESS
AND DIFFERENTIABILITY OF REAL

FUNCTIONS

Abstract

It is known that smoothness-type conditions have several implica-
tions on continuity and differentiability properties of real functions.
When these conditions hold uniformly on an interval the implications
become even stronger. The aim of this paper is to extend to higher
orders the relations between uniform smoothness-type conditions and
differentiability, taking into account higher order divided differences.

1 Introduction

A function f : (a, b)→ R is said to satisfy a smoothness-type condition at the
point x ∈ (a, b) when there exists a function φ converging to 0 as h→ 0, such
that

f(x+ h)− 2f(x) + f(x− h)
φ(h)

= O(1)

as h→ 0 (see for instance [17]). More specifically if

f(x+ h)− 2f(x) + f(x− h)
h

= o(1) (1)

as h→ 0, then f is said to be ”smooth” at the point x , while if

f(x+ h)− 2f(x) + f(x− h)
h

= O(1) (2)

as h → 0, then f is said to be ”quasi-smooth” at x. If condition (1) (resp.
(2)) holds at every point x of an interval (a, b), then f is said to be smooth
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(resp. quasi-smooth) on (a, b). It is known that smoothness-type conditions
have strong implications on the differentiability properties of a function. For a
review of classical results one can see [17]. In particular we recall the following
theorems.

Theorem 1.1. [17] If f is a continuous smooth function on an interval (a, b),
then f is differentiable on a set which is of the power of the continuum in any
subinterval of (a, b).

The previous result cannot be extended to quasi-smooth functions [17].
Anyway, we have the following:

Theorem 1.2. [17] Let f be a measurable function and suppose that for some

α ∈ (0, 1] one has
f(x+ h)− 2f(x) + f(x− h)

h1+α
= O(1) as h → 0+, at every

point in a measurable set E. Then f is differentiable at almost every point of
E.

When smoothness type conditions hold uniformly with respect to x ∈ (a, b),
they have stronger implications for what concerns continuity and differentia-
bility of a function as we will see with Theorems 1.3 and 1.4 below.

Definition 1.1. A function f : (a, b)→ R is locally Hölder of degree α ∈ (0, 1]
at x0 ∈ (a, b) when there exist a constant K and a neighborhood U of x0 such
that:

|f(x)− f(y)| ≤ K|x− y|α, whenever x, y ∈ U.

Definition 1.2. A function f : (a, b)→ R is of class Ck,α at x0 ∈ (a, b) when
f (k) exists in a neighborhood of x0 and f (k) is locally Hölder of degree α at
x0 (we set f (0) = f).

Theorem 1.3. [17] Assume that the function f : (a, b) → R is bounded on
a neighborhood of the point x0 ∈ (a, b) and let α ∈ (0, 1]. If there exists a

neighborhood U of x0 ∈ (a, b) such that
f(x+ h)− 2f(x) + f(x− h)

h1+α
= O(1)

as h→ 0+, uniformly with respect to x ∈ U , then f is of class C1,α at x0.

It is known [17] that the previous theorem does not hold when α = 0. In
this case we have the following.

Theorem 1.4. [17] Assume that the function f : (a, b) → R is bounded on
a neighborhood of the point x0 ∈ (a, b). If on a neighborhood U of the point

x0 ∈ (a, b) f satisfies the condition
f(x+ h)− 2f(x) + f(x− h)

h
= O(1) as

h → 0+, uniformly with respect to x ∈ U , then f is of class C0,α at x0 for
every α ∈ (0, 1).
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The aim of this paper is to extend to higher orders Theorems 1.3 and 1.4
(in the case α = 1, an extension to higher orders of Theorem 1.3 has been
obtained by the authors in [13]). Section 2 is devoted to preliminary concepts
and results, while in section 3 we give the main results.

2 Preliminary Tools

2.1 Divided Differences, Peano Derivatives and k-Convex Func-
tions

In the following we will consider a function f : (a, b)→ R. For such a function
we put

∆kf(x;h) =
k∑
i=0

(−1)k−i
(
k

i

)
f(x+ ih− 1

2
kh).

Besides this expression, in the proof of Theorem 3.1, we will consider differ-
ences ∆̃kf(x;h) defined recursively as follows:

∆̃1f(x;h) = f(x+ h)− f(x), ∆̃kf(x;h) = ∆̃k−1f(x; 2h)− 2k−1∆̃k−1f(x;h).

As observed in [14], we have

∆̃kf(x;h) = akf(x+ 2k−1h) + ak−1f(x+ 2k−2h) + · · ·+ a1f(x+ h) + a0f(x),

where, for any fixed k, aj depends only on j (j = 0, 1, ..., k − 1) and ak = 1.

Lemma 2.1. [14] There are constants C0, C1, . . . , C2k−1−k such that:

∆̃kf(x;h) =
2k−1−k∑
i=0

Ci∆kf(x+
1
2
kh+ ih;h).

The proof of the following lemma is straightforward from the previous
result.

Lemma 2.2. If there exist a neighborhood U of the point x0 and a number

α ∈ [0, 1] such that
∆kf(x;h)
hk−1+α

= O(1) as h → 0+, uniformly with respect to

x ∈ U , then there exists a neighborhood U ′ of x0 such that
∆̃kf(x;h)
hk−1+α

= O(1)

as h→ 0+, uniformly with respect to x ∈ U ′.

Lemma 2.3. Assume that f is bounded in a neighborhood of the point x0.
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(i) If there exist a neighborhood U of the point x0 and a number α ∈ (0, 1]

such that
∆̃kf(x;h)
hk−1+α

= O(1) as h → 0+, uniformly with respect to x ∈ U ,

then we also have
∆̃k−1f(x;h)

hk−1
= O(1) as h→ 0+, uniformly with respect

to x ∈ U .

(ii) If there exists a neighborhood U of the point x0 such that
∆̃kf(x;h)
hk−1

= O(1)

as h → 0+, uniformly with respect to x ∈ U , then, for every α ∈ [0, 1) we

also have
∆̃k−1f(x;h)
hk−2+α

= O(1) as h→ 0+, uniformly with respect to x ∈ U .

Proof. (i) The proof is analogous to that of Lemma 2.3 in [13] and we omit
it.
(ii) From the hypotheses we obtain the existence of numbers δ > 0 and M ≥ 0
such that ∀x ∈ U and ∀h ∈ (0, δ)∣∣∣∆̃k−1f(x;h)− 2k−1∆̃k−1f(x;h/2)

∣∣∣ ≤M(h/2)k−1,∣∣∣∆̃k−1f(x;h/2)− 2k−1∆̃k−1f(x;h/4)
∣∣∣ ≤M(h/4)k−1, . . .∣∣∣∆̃k−1f(x;h/2n−1)− 2k−1∆̃k−1f(x;h/2n)
∣∣∣ ≤M(h/2n)k−1.

Multiplying these inequalities by 1, 2k−1, 22(k−1), . . . , 2(n−1)(k−1) respectively,
by addition we obtain∣∣∣∆̃k−1f(x;h)− 2n(k−1)∆̃k−1f(x;h/2n)

∣∣∣ ≤Mn(h/2)k−1,

and hence
∣∣∣2n(k−1)∆̃k−1f(x;h/2n)

∣∣∣ ≤ Mn(h/2)k−1 + M ′, for 1
2δ ≤ h ≤ δ,

by using the boundedness of f . Hence, writing ξ = h/2n, for every x ∈ U

we have
∣∣∣∆̃k−1f(x; ξ)

∣∣∣ ≤ Mnξk−1

2k−1
+

M ′

2n(k−1)
for ξ ∈ (δ/2n+1, δ/2n), n =

0, 1, . . . . Since δ/2n+1 ≤ ξ ≤ δ/2n we obtain that n = O(log ξ) and hence

for x ∈ U we get
∣∣∣∆̃k−1f(x; ξ)

∣∣∣ ≤ O(ξk−1 log ξ) +
M ′ξk−1

(δ/2)k−1
. Hence we obtain

that
∆̃k−1f(x; ξ)
ξk−1logξ

= O(1), as ξ → 0+, uniformly with respect to x ∈ U . The

assertion now follows observing that for every α ∈ [0, 1) we have | log ξ| ≤
|ξ|α−1, for ξ “small enough”.
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Definition 2.1. If there exist numbers f1(x), . . . , fk(x) such that

f(x+ h) = f(x) + f1(x)h+
1
2
f2(x)h2 + · · ·+ 1

k!
fk(x)hk + o(hk),

where o(hk)/hk → 0 as h→ 0, then f is said to admit a k-th Peano derivative
at x. The number fk(x) is said the k-th Peano derivative of f at x.

We say that f admits k-th Peano derivative on an interval when it admits
k-th Peano derivative at any point of this interval. It is well known that
the existence of the ordinary k-th derivative of f at x, f (k)(x), implies the
existence of fk(x).

Lemma 2.4. [14] If fk(x) exists, then so does limh→0
∆̃kf(x;h)

hk
and there

exists a number λk, depending only on k, such that λk limh→0
∆̃kf(x;h)

hk
=

fk(x).

For a survey on Peano derivatives one can see for instance [6], [11], [15]
and [18]. Further properties of Peano derivatives are given in [8], [9] and [10].
In particular we recall the following result.

Theorem 2.1. [15] If fk exists and is bounded (above or below) on an interval,
then fk coincides with the ordinary derivative f (k) on this interval.

Definition 2.2. A continuous function f : (a, b) → R is said to be k-convex

when
∆k+1f(x;h)

hk+1
≥ 0, for every x ∈ (a, b) and for every h such that x ±

k + 1
2

h ∈ (a, b).

Remark 2.1. If f is not continuous the definition of k-convexity must be
given considering divided differences at arbitrary (not equally spaced) points
(see [2] for details).

When k = 1 the previous definition reduces to that of convex function.

Theorem 2.2. [2] Let f : (a, b)→ R be a k-convex function.

(i) For 1 ≤ r ≤ k− 1 the derivative f (r) exists and is continuous in (a, b) and
furthermore f (k)

+ exists on (a, b) and is increasing (we denote by f
(k)
+ the

k-th right derivative).



662 Davide La Torre and Matteo Rocca

(ii) If h > 0; x, t, y ∈ (a, b) and y +
k

2
h ≤ t ≤ x, then

∆kf(y;h)
hk

≤ f (k)
+ (t) ≤ ∆kf(x;h)

hk
.

(iii) The function
∆kf(x, h)

hk
is increasing in h.

Theorem 2.3. [2] Let f : (a, b)→ R be a function that admits f (k)
+ on (a, b).

Then f is k-convex if and only if f (k)
+ is increasing on (a, b).

Lemma 2.5. Assume that the function f : (a, b) → R is continuous and
k-convex on a neighborhood (x0 − ε, x0 + ε) of the point x0 ∈ (a, b) and let
ε′ ∈ (0, ε). For every x ∈ (x0 − ε′, x0 + ε′) and h ∈ (0, (ε− ε′)/k), there exists

a point ξ ∈ (x0 − ε, x0 + ε) such that
∆kf(ξ;h)

hk
= f

(k)
+ (x).

Proof. It is always possible to find y ∈ (x0−ε, x0 +ε) such that y+
k

2
h < x.

From Theorem 2.2 it follows that
∆kf(y;h)

hk
≤ f

(k)
+ (x) ≤ ∆kf(x;h)

hk
. Since

∆kf(x;h)
hk

is continuous as a function of x, the assertion follows from the
Darboux Theorem.

2.2 Standard Mollifiers

The function φ, defined by

φ(x) =

{
C exp( 1

x2−1 ) if |x| < 1
0 if |x| ≥ 1

is C∞(R) and we can choose the constant C ∈ R such that
∫
R φ(x) dx = 1.

Definition 2.3. Let ε > 0. The functions φε(x) =
φ(xε )
ε

are called standard
mollifiers.

Definition 2.4. Let f : (a, b) → R. We say that f ∈ Ck0 ((a, b)) if f ∈
Ck((a, b)) and

sptf = {x ∈ (a, b) : f(x) 6= 0} ⊂ (a, b).

Theorem 2.4. [1] The functions φε are C∞(R) and satisfy
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(i)
∫
R φε(x) dx = 1

(ii) sptφε
⊂ B(0, ε).

For f ∈ L1
loc(a, b), and ε > 0 we define functions fε by the convolution

fε(x) =
∫ b
a
φε(x−y)f(y) dy. Since φε(x) is an even function, we can also write

fε(x) =
∫ b
a
φε(y−x)f(y) dy. Observe that fε(x) = 0 if x ∈ R\[a− ε, b+ ε] and

that fε ∈ C∞(R).

Theorem 2.5. [1] Suppose that f ∈ L1
loc(a, b). Then for a.e. x ∈ (a, b) we

have fε(x) → f(x), as ε → 0+. If f ∈ C((a, b)), then the convergence is
uniform on compact subsets of (a,b).

Theorem 2.6. [1] Let [c, d] ⊂ (a, b). Then ∃ ε0 > 0 such that ∀ε ∈ (0, ε0) and
∀x ∈ [c, d] the function y → φε(x− y) is C∞0 ((a, b)).

3 Higher Order Uniform Smoothness and Differentiabil-
ity

In this section we extend Theorems 1.3 and 1.4 to higher orders.

Theorem 3.1. Assume that the function f : (a, b) → R is bounded on a
neighborhood of the point x0 ∈ (a, b), let α ∈ (0, 1] and k ≥ 2. If there exists

a neighborhood U of x0 such that
∆k+1f(x;h)

hk+α
= O(1) as h→ 0+, uniformly

with respect to x ∈ U , then f is of class Ck,α at x0.

Proof. From the hypotheses we deduce the existence of a right neighborhood

V+ of the origin such that
∆k+1f(x;h)

hk+α
is bounded on U × V+\{0}. Hence

from Lemmas 2.2 and 2.3 (i) we obtain the existence of a neighborhood U ′ of

x0 and a right neighborhood V ′+ of 0 such that
∆̃jf(x;h)

hj
are bounded on U ′×

V ′+\{0},∀j = 1, . . . , k. Observe that the boundedness of
∆̃1f(x;h)

h
means that

f is locally Lipschitz at the point x0 and hence continuous in a neighborhood
of x0. For every x in a neighborhood of x0 and for ε “sufficiently small”,
recalling Lemma 2.4 and Theorem 2.6, and using the Lebesgue convergence
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Theorem, for 1 ≤ j ≤ k we have

f (j)
ε (x) = (−1)j

∫ b

a

φ(j)
ε (y − x)f(y) dy

= (−1)jλj
∫ b

a

lim
h→0+

∆̃jφε(y − x;h)
hj

f(y) dy

= (−1)jλj
∫ b

a

lim
h→0+

∑j
i=1 aiφε(y − x+ 2i−1h) + a0φε(y − x)

hj
f(y) dy

= (−1)jλj lim
h→0+

∫ b

a

∑j
i=1 aiφε(y − x+ 2i−1h) + a0φε(y − x)

hj
f(y) dy.

Now, putting z = y + 2i−1h, we obtain∫ b

a

aiφε(y − x+ 2i−1h)
hj

f(y) dy =
∫ b+2i−1h

a+2i−1h

aif(z − 2i−1h)φε(z − x)
hj

dz.

Thus

(−1)jλj
∫ b

a

∑j
i=1 aiφε(y − x+ 2i−1h) + a0φε(y − x)

hj
f(y) dy

=(−1)jλj
j∑
i=1

∫ b+2i−1h

a+2i−1h

aif(z − 2i−1h)φε(z − x)
hj

dz

+ (−1)jλj
∫ b

a

a0f(z)φε(z − x)
hj

dz.

For h <
b− a
2k−1

, from Theorem 2.6 for all “sufficiently small” ε, the previous
equation is equal to

(−1)jλj
j∑
i=1

∫ b

a

aif(z − 2i−1h)φε(z − x)
hj

dz + (−1)jλj
∫ b

a

a0f(z)φε(z − x)
hj

dz

= (−1)jλj
∫ b

a

∆̃jf(z,−h)
hj

φε(z − x) dz = λj

∫ b

a

∆̃jf(z,−h)
(−h)j

φε(z − x) dz.

Hence we get f (j)
ε (x) = λj limh→0+

∫ b
a

∆̃jf(z,h)
hj φε(z − x) dz.

From the boundedness of
∆̃jf(x, h)

hj
we get the existence of a constant

M such that
∣∣∣f (j)
ε (x)

∣∣∣ ≤ M , for every ε “sufficiently small” and for every x
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in a neighborhood of x0. In this way we established that f (j)
ε (x) is bounded

(uniformly with respect to ε) on a neighborhood of x0, ∀j = 1, . . . , k. Hence,
there exists a neighborhood Ũ of x0 such that for x ∈ Ũ there is a sequence
εn converging to 0 such that for all j = 1, ..., k − 1, the sequence f

(j)
εn (x)

converges to a limit which we denote by αj(x). Notice that the functions
αj(x), j = 1, . . . , k − 1, are bounded on Ũ . The functions fεn

(x) are of class
C∞ and hence ∀x, y ∈ Ũ

fεn(y) = fεn(x)+f ′εn
(x)(y−x)+ · · ·+ f

(k−1)
εn (x)
(k − 1)!

(y−x)k−1 +
f

(k)
εn (ξn)
k!

(y−x)k,

where ξn ∈ (x, y). Recalling Theorem 2.5, taking the limit for n → +∞ it
follows that f (k)

εn (ξn) converges to a limit which we denote by β(x, y). Moreover

f(y) = f(x)+α1(x)(y−x)+· · ·+ 1
(k − 1)!

αk−1(x)(y−x)k−1+
1
k!
β(x, y)(y−x)k.

Observing that β(x, y) is bounded for x, y ∈ Ũ , we have that ∀x ∈ Ũ , αk−1(x)
is the (k− 1)-th Peano derivative of f at x. From Theorem 2.1 it follows that
αk−1(x) = f (k−1)(x),∀x ∈ Ũ . Furthermore the functions f (k)

ε are bounded
uniformly with respect to ε, for ε “sufficiently small” and thus the functions
f

(k−1)
εn satisfy the uniform Lipschitz condition∣∣∣f (k−1)

εn
(y)− f (k−1)

εn
(x)
∣∣∣ ≤ B |y − x| ,∀x, y ∈ Ũ .

Since f (k−1)
εn (x) and f (k−1)

εn (y) converge to f (k−1)(x) and f (k−1)(y) respectively,
we see that f (k−1) is Lipschitzian on Ũ .

For ε “small enough”, let M be an upper bound for f (k)
ε on Ũ and consider

the function f̃(x) = f(x) + p(x), where p(x) = c0 + c1x + · · · + ckx
k is any

polynomial of degree k, with ckk! ≥ −M . With easy calculations we get
f̃

(k)
ε (x) = f

(k)
ε (x) + k!ck ≥ 0 for x ∈ Ũ and hence f̃ (k−2)

ε (x) is convex on Ũ
(we let f (0) = f). For x, y ∈ Ũ and t ∈ [0, 1],

f̃ (k−2)
ε (tx+ (1− t)y) ≤ tf̃ (k−2)

ε (x) + (1− t)f̃ (k−2)
ε (y).

Sending ε to 0 and recalling Theorem 2.5, we obtain that f̃ (k−2)(x) is convex
on Ũ . It follows from Theorem 2.3 that f̃ is (k − 1)-convex on Ũ and hence,
by Lemma 2.5 , for x in a suitable neighborhood of x0 and h “small enough”

(h 6= 0),
∆k−1f̃(ξ;h)

hk−1
= f̃ (k−1)(x) for some ξ ∈ Ũ . Now, using classical



666 Davide La Torre and Matteo Rocca

properties of differences ∆k, we have

∆2f̃
(k−1)(x;h)
h1+α

=
∆2∆k−1f̃(ξ;h)

hk+α
=

∆k+1f̃(ξ;h)
hk+α

=
∆k+1f(ξ;h)

hk+α

and hence we get that
∆2f̃

(k−1)(x;h)
h1+α

is bounded for x in a neighborhood of x0

and h “sufficiently small”. From f̃ (k−1)(x) = f (k−1)(x) + ak−1(k− 1)! + akk!x

we easily obtain
∆2f̃

(k−1)(x;h)
h1+α

=
∆2f

(k−1)(x;h)
h1+α

. To complete the proof it

is enough to apply Theorem 1.3 to the function f (k−1).

Theorem 3.2. Assume that the function f : (a, b) → R is bounded in a
neighborhood of the point x0 ∈ (a, b). If there exists a neighborhood U of x0

such that that
∆k+1f(x;h)

hk
= O(1) as h → 0+, uniformly with respect to

x ∈ U , hen f is of class Ck−1,α at x0, whenever α ∈ (0, 1).

Proof. The proof is analogous to that of the previous theorem and we give

only a sketch of it. From Lemma 2.2 , we get
∆̃k+1f(x;h)

hk
= O(1) as h→ 0+,

uniformly with respect to x in a neighborhood U ′ of x0. Using Lemma 2.3

(ii), we get
∆̃kf(x;h)
hk−1+α

= O(1) as h → 0+, uniformly with respect to x ∈ U ′,
whenever α ∈ (0, 1). Now the proof follows in a fashion similar to that of
Theorem 3.1, with the steps sketched below

(i) We prove that f (k−2)(x) exists and is bounded for x in a neighborhood Ũ

of x0 and that f (k−1)
ε is bounded on Ũ (uniformly with respect to ε).

(ii) Let M be an upper bound for the functions f (k−1)
ε on Ũ . The function

f̃(x) = f(x)+p(x), where p(x) = c0+c1x+· · ·+ck−1x
k−1 and ck−1(k−1)! ≥

M , is (k − 2)-convex.

(iii) Recalling Lemma 2.5 we get that
∆2f

(k−2)(x;h)
h1+α

= O(1) as h → 0+,

uniformly with respect to x in a neighborhood of x0, whenever α ∈ (0, 1).

(iv) Applying Theorem 1.3 to the function f (k−2) we get the assertion.

Remark 3.1. The requirement

∆k+1f(x;h)
hk

= O(1), as h→ 0+ (3)
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can be considered as an higher order quasi-smoothness condition for f at
x. Higher order smoothness and quasi-smoothness conditions of a different
type have been investigated in [3], [4], [5] and [7], where the authors recall a
definition introduced by Zygmund [19] (but the uniform case is not studied in
these papers). Furthermore it can be easily seen that condition (3) is more
general than the quasi-smoothness notion studied in the papers above.
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