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ON MARCZEWSKI-BURSTIN
REPRESENTATIONS OF CERTAIN

ALGEBRAS OF SETS

Abstract

We show that the Generalized Continuum Hypothesis GCH (its ap-
propriate part) implies that many natural algebras on R, including the
algebra B of Borel sets and the interval algebra Σ, are outer Marczewski-
Burstin representable by families of non-Borel sets. Also we construct,
assuming again an appropriate part of GCH, that there are algebras on
R which are not MB-representable. We prove that some algebras (in-
cluding B and Σ) are not inner MB-representable. We give examples of
algebras which are inner and outer MB-representable, or are inner but
not outer MB-representable.

1 Introduction

Our set theoretic notation is standard and follows that from [Ci].
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For a fixed non-empty set X and a family F ⊂ P(X)\{∅} define, following
the idea of Burstin and Marczewski,

S(F) = {A ⊂ X : (∀T ∈ F)(∃W ∈ F)(W ⊂ T ∩A or W ⊂ T ∩Ac)}

and
S0(F) = {A ⊂ X : (∀T ∈ F)(∃W ∈ F)(W ⊂ T ∩Ac)}.

Then S(F) constitutes an algebra of sets and S0(F) is an ideal of subsets
of X. (See [BBRW].) We will always assume that the whole space X is in an
algebra; usually such a family is called a field of sets. Burstin in [Bu] proved
that the σ-algebra of Lebesgue measurable subsets of R is of the form S(F) for
F being the family of perfect subsets of R of positive measure. It can be also
shown that, for the same F , the family S0(F) consists of Lebesgue null sets.
(See [Re] or [BET].) On the other hand, if F is the family of all perfect subsets
of R then S(F) and S0(F) constitute a quite different pair of a σ-algebra and
a σ-ideal on R which were introduced by Marczewski in [Ma].

If a given algebra A (an ideal I, respectively) on a set X can be represented
as S(F) (respectively, as S0(F)) for some family F ⊂ P(X) \ {∅}, we say that
it is Marczewski-Burstin representable (or, briefly, MB-representable) by F . If
additionally, F ⊂ A (respectively, F ∩ A = ∅), we say that A is inner (outer)
MB-representable by F . Similarly, for I ⊂ A we say that the pair 〈A, I〉 is
MB-representable if A = S(F) and I = S0(F) for the same family F . This
notion is most often considered when I is the ideal

H(A) = {A ⊂ X : (∀B ⊂ A)(B ∈ A)}

of sets which hereditarily belong to A.
Systematic studies of MB-representations of algebras and ideals were ini-

tiated in [Re], [BET], and [BBRW]. For instance, in [BET] it is proved that
the algebra of sets in R with the Baire property is inner MB-representable by
a family of Borel sets, and in [BBRW] it is shown that the interval algebra Σ
generated by intervals [a, b) with a < b, is MB-representable by a family of
Borel sets. Some necessary conditions for MB-representability of a pair 〈A, I〉
by a family of Borel sets are given in [BET] and [ET]. Until now, however, the
following basic questions about MB-representability (see [BBRW]) were with-
out an answer: Is every algebra of sets MB-representable? What about some
basic algebras, like the algebra B of Borel subsets of R? Is it MB-representable,
and if so, is it inner (outer) MB-representable?

In this note we show that, assuming appropriate set theoretical assump-
tions (which follow from the Generalized Continuum Hypothesis GCH), there
are algebras (on R and other infinite sets) which are not MB-representable.
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We also show, under similar set theoretical assumptions, that many “natural”
algebras, including the algebras B and Σ, are outer MB-representable in some
strong manner. It has to be pointed out here that our representation families
F ⊂ P(X), unlike those studied in the earlier papers, are not nice in a sense
that they are not connected with the Borel structure of a space. The same is
true for our example of algebras which are not MB-representable. Moreover,
these facts are not proved in ZFC. On the other hand we prove that the alge-
bras B and Σ are not inner MB-representable. In Section 1 we show a simple
criterion for an inner MB-representable algebra to be outer MB-representable.
We apply it to some classical σ-algebras on R.

2 Algebras Which Are Inner and Outer MB-representable

Recall that the algebras of Lebesgue measurable sets, of sets with the Baire
property, and of Marczewski s-sets are inner MB-representable. We shall
prove that they are also outer MB-representable. To this end we propose
some general scheme.

We need the following fact which easily results from the definition of S(F)
and S0(F). (See [BBRW].)

Fact 1. For F0,F1 ⊂ P(X) \ {∅} assume that

(∀i ∈ {0, 1})(∀A ∈ Fi)(∃B ∈ F1−i)(B ⊂ A).

(We thus say that F0,F1 are mutually coinitial.) Then S(F0) = S(F1) and
S0(F0) = S0(F1).

Proposition 2. Assume that an algebra A on X is inner MB-representable
by a family F ⊂ A with the following properties:

(a) (∀F ∈ F)(∃F1, F2 ∈ F)(F1 ∪ F2 ⊂ F & F1 ∩ F2 = ∅);

(b) (∃B ⊂ X)(∀F ∈ F)B ∩ F /∈ A.

Then A is outer MB-representable by the family

FB = {F1 ∪ (F2 ∩B) : F1, F2 ∈ F & F1 ∩ F2 = ∅},

where B is a set realizing (b).

Proof. From (a) and the definition of FB it follows that F and FB are
mutually coinitial. So S(F) = S(FB) by Fact 1. Condition (b) implies that
FB ∩ A = ∅.
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Corollary 3. The following algebras on R are outer MB-representable:

• the algebra of Lebesgue measurable sets,

• the algebra of sets with the Baire property, and

• the algebra of Marczewski measurable sets.

Proof. We use Proposition 2. For any algebra listed in the assertion, the
role of F is played by: the perfect sets of positive measure, the comeager Gδ
sets in nonempty open sets (see [BET]), and by all perfect sets, respectively.
In every case, F satisfies conditions (a) and (b) where B in (b) stands for a
Bernstein set.

3 Algebras Which Are Strongly Outer MB-representable

Let A be an algebra on X. If, for each family C ⊂ P(X) with A ⊂ C and
|C| = |A|, there is an F ⊂ P(X) \ C such that A = S(F), we say that A is
strongly outer MB-representable. If additionally, H(A) = S0(F), we say that
the pair 〈A,H(A)〉 is strongly outer MB-representable.

Let X be an infinite set of cardinality κ. The following is the main theorem
of this section.

Theorem 4. Let A be an algebra of subsets of X such that [X]<κ ⊂ A. If
2κ = κ+ and |A| < 2κ then the pair 〈A,H(A)〉 is strongly outer MB-represen-
table.

From this theorem we immediately obtain the following corollary.

Corollary 5. If 2ω = ω1 and 2ω1 = ω2 then the pair 〈B, [R]≤ω〉 is strongly
outer MB-representable.

In the sequel we will use the following fact which is well known (see e.g.
[Wr1, Lemma 2]). However we provide its easy proof for the reader’s conve-
nience.

Fact 6. For every algebra A on X and Z ∈ P(X)\A there exists an ultrafilter
UZ in A such that U ∩ Z /∈ A for every U ∈ UZ .

Proof. Observe that the family G = {E ∈ A : Z \ E ∈ A} is a filter in the
algebra A. Consider an ultrafilter UZ ⊃ G in A. Then UZ is as desired.
Proof of Theorem 4. To construct family F let {Zξ : ξ < κ+} be an
enumeration of P(X) \A. For each ξ < κ+ use Fact 6 to choose an ultrafilter
Uξ = UZξ

in A for which

U ∩ Zξ /∈ A for each U ∈ Uξ. (1)
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Fix a family C ⊂ P(X) with A ⊂ C and |C| = |A|. By induction on ξ < κ+ we
construct a sequence 〈Dξ ⊂ X : ξ < κ+〉 of “very independent sets” in a sense
that

|Dξ ∩ Y | = κ = |Dc
ξ ∩ Y | (2)

for each set Y ⊂ X of cardinality κ which belongs to the algebra Kξ of sets
generated by the family

{Dζ : ζ < ξ} ∪ {Zζ : ζ ≤ ξ} ∪ C. (3)

Such Dξ can be chosen by an easy diagonal argument (another transfinite
induction) since |Kξ| = κ.

F =
⋃
ξ<κ+

{U ∩Dξ : U ∈ Uξ}.

Note that by (2) and (3) we clearly have F ∩C = ∅. The remaining properties
of F will be shown in the following three steps.

Step 1. If Z = Zξ ∈ P(X) \ A then Z /∈ S(F).

To see this let T = Dξ. Then T = X ∩ Dξ ∈ F . We shall prove that
W 6⊂ T ∩Z and W 6⊂ T ∩Zc for all W ∈ F . Thus let W ∈ F , say W = U ∩Dη

for some U ∈ Uη, η < κ+. Consider three cases:

• If η < ξ then W 6⊂ T since, by (2), W ∩ T c = (U ∩Dη) ∩Dc
ξ 6= ∅.

• If η > ξ then once again we have W 6⊂ T since condition (2) implies that
W ∩ T c = (U ∩Dη) ∩Dc

ξ = Dη ∩ (U ∩Dc
ξ) 6= ∅.

• If η = ξ then by (1) we have U ∩ Z /∈ A. So, |U ∩ Z| = |U ∩ Zc| = κ.
Consequently, by (2), |Dξ ∩ (U ∩ Z)| = |Dξ ∩ (U ∩ Zc)| = κ. Thus we
have W 6⊂ T ∩ Z since

W 6⊂ T ∩ Z ⇐⇒ U ∩Dξ 6⊂ Dξ ∩ Z ⇐⇒ U ∩Dξ ∩ Zc 6= ∅,

and also W 6⊂ T ∩ Zc since

W 6⊂ T ∩ Zc ⇐⇒ U ∩Dξ 6⊂ Dξ ∩ Zc ⇐⇒ U ∩Dξ ∩ Z 6= ∅.

This completes Step 1.

Step 2. If V ∈ A then V ∈ S(F).

Let T ∈ F , say T = U ∩ Dξ where ξ < κ+ and U ∈ Uξ. Since Uξ is an
ultrafilter in A, we have either V ∈ Uξ or V /∈ Uξ. If V ∈ Uξ then U ∩ V ∈ Uξ
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and thus for W = (U ∩ V ) ∩ Dξ = T ∩ V we have W ∈ F . If V /∈ Uξ then
V c ∈ Uξ and thus for W = (U ∩ V c) ∩Dξ = T ∩ V c we have W ∈ F . Hence
in the both cases V ∈ S(F). Step 2 has been completed.

Step 3. S0(F) = H(A).

We clearly have
S0(F) ⊂ H(S(F)) = H(A).

To show that H(A) ⊂ S0(F) consider V ∈ H(A) and let T = U ∩ Dξ ∈ F
where ξ < κ+ and U ∈ Uξ. Since V ∈ H(A), by (1) we have V /∈ Uξ. So
V c ∈ Uξ and W = (U ∩ V c) ∩Dξ = T ∩ V c belongs to F . Hence V ∈ S0(F).
This finishes the proof of Theorem 4.
Remark. It is worth to point out here that we do not need a full strength of
the assumption 2κ = κ+ to prove Theorem 4. In fact there are models of ZFC
in which 2κ > κ+ and we can find sets Dξ satisfying (2) for any family of less
than 2κ-many sets of cardinality κ. In such models the proof presented above
remains valid.

The structural assumptions on A in Theorem 4 were that |A| < 2κ and
[X]<κ ⊂ A. Although the example presented in the next section clearly vi-
olates both of these assumptions, it is worth to mention that the second as-
sumption can be modified with resulting statement still being true. This is
stated in the next theorem.

Theorem 7. Let A be an algebra of subsets of X such that A∩ [X]<κ = {∅}.
If 2κ = κ+ and |A| < 2κ then the pair 〈A,H(A)〉 = 〈A, {∅}〉 is strongly outer
MB-representable.

Sketch of proof. Put A = {A ∪M : A ∈ A & M ∈ [X]<κ}, where A is as
above, and notice that the following version of Fact 6 remains true:

For every Z ∈ P(X) \ A there exists an ultrafilter UZ in A such
that U ∩ Z /∈ A for every U ∈ UZ .

Indeed, similarly as in Fact 6, it is enough to show that if V is a maximal filter
in A such that V ∩Z /∈ A for each V ∈ V then V is an ultrafilter in A. But if
V is not an ultrafilter in A then there are V0, V1 ∈ V such that V0 ∩A∩Z ∈ A
and V1 ∩ Ac ∩ Z ∈ A. Hence there are A0, A1 ∈ A and M0,M1 ∈ [X]<κ such
that

V0 ∩ V1 ∩A ∩ Z = A0 ∪M0 ∈ A and V0 ∩ V1 ∩Ac ∩ Z = A1 ∪M1 ∈ A

which implies that V0∩V1∩Z = (A0∪A1)∪(M0∪M1) ∈ A where V0∩V1 ∈ V,
a contradiction.
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Then proceed as in the proof above listing as sets Zξ only the sets from
P(X) \ A. This will clearly results with F ∩ C = ∅, A ⊂ S(F), and with
(P(X) \ A) ∩ S(F) = ∅. To finish the proof it is enough to notice that if
Z ∈ A \ A then Zc /∈ A, as A ∩ [X]<κ = {∅}, and so Zc /∈ S(F). Thus we
have also Z /∈ S(F).

It was proved in [BBRW] that the interval algebra Σ on R is outer repre-
sentable by a family of Borel sets. If we use Theorem 7 with A = Σ, we obtain
the following

Corollary 8. If 2c = c+ then the interval algebra Σ on R is strongly outer
MB-representable. In particular, it is outer MB-representable by a family of
non-Borel sets.

4 Algebras Which Are Not MB-representable

The key step towards constructing an algebra which is not MB-representable
is the following fact.

Proposition 9. Let X be an infinite set of cardinality κ and let A be an
algebra on X having the following properties:

(i) A ∩ [X]<κ = {∅};

(ii) for every E ∈ [X]<κ and x /∈ E there exists an A ∈ A such that x ∈
A ⊂ X \ E;

(iii) for every Z ∈ [X]κ and x /∈ Z there exists an A ∈ A \ {∅} such that
either |A ∩ Zc| < κ or x ∈ A and |A ∩ Z| < κ.

If F ⊂ P(X) \ {∅} is such that A ⊂ S(F) then S(F) contains a singleton. In
particular algebra A is not MB-representable.

Proof. Let A and F be as in the assumptions. If {x} ∈ S(F) for every
x ∈ X then there is nothing to prove. So assume that there exists an x ∈ X
for which {x} /∈ S(F). This means that there exists a Z ∈ F for which neither
W ⊂ Z ∩ {x} nor W ⊂ Z \ {x} for every W ∈ F . Thus x ∈ Z and

x ∈W for every W ∈ F with W ⊂ Z. (4)

Next note that

there is no A ∈ A containing x with |A ∩ Z| < κ. (5)

Indeed, if there is such an A then, by (ii) used with E = A∩Z \{x} we can
find an A1 ∈ A with A∩A1∩Z = {x}. Since A∩A1 ∈ A ⊂ S(F), there exists a
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W ∈ F such that either W ⊂ Z∩(A∩A1) = {x} or W ⊂ Z\(A∩A1) = Z\{x}.
But, by (4), the second case is impossible. Thus, {x} = W ∈ F and so
{x} ∈ S(F), contradicting our choice of x.

Note that the condition (5) works also for Z replaced with Z ′ = Z \ {x},
which implies that |Z ′| = κ. Thus, applying (iii) to Z ′ and our x, we conclude
that there is an A ∈ A\{∅} such that |A∩ (Z ′)c| < κ. For this A we have also
|A ∩ Zc| < κ. Now, using (ii) if necessary to decrease A, we can additionally
assume that A∩Zc = ∅ and x /∈ A. (Indeed, pick an x0 ∈ A∩Z, x0 6= x, and
let E = (A ∩ Zc) ∪ {x}. Then x0 /∈ E and, by (ii), there exists an A∗ ∈ A
such that x0 ∈ A∗ ⊂ X \ E. Then Â = A ∩ A∗ 3 x0 is as required.) So
A ⊂ Z \ {x}. Thus, by (4), A contains no W ∈ F . Since A ∈ S(F), this
implies that A ∈ S0(F). So {a} ∈ S(F) for every a ∈ A.

Proposition 10. If 2κ = κ+ and |X| = κ then there exists an algebra A on
X satisfying conditions (i)–(iii) from Proposition 9.

Proof. Let {〈Zξ, xξ〉 : ξ < κ+} be an enumeration of all pairs 〈Z, x〉 ∈
P(X)×X with x /∈ Z. Similarly as in the proof of Theorem 4, by induction
on ξ < κ+, we construct a sequence 〈Dξ ⊂ X : ξ < κ+〉 such that

|Dξ ∩A| = κ = |Dc
ξ ∩A| (6)

for every non-empty set A which belongs to the algebra Lξ of sets generated
by the family {Dζ : ζ < ξ}. In addition, if there is no A ∈ Lξ \ {∅} with
|A \ Zξ| < κ then we will additionally require that zξ ∈ Dξ ⊂ X \ Zξ.

Such Dξ can be chosen by an easy diagonal argument since |Lξ| ≤ κ and
sets Dξ and Dc

ξ need to intersect all sets A ∈ Lξ \ {∅} and, if additional
requirement is claimed, they need also to intersect all sets A \ Zξ ∈ [X \ Zξ]κ
for A ∈ Lξ \{∅}. Let A denote the algebra generated by all sets {Dξ : ξ < κ+}.
Then A has all the desired properties.

Indeed, (i) is obvious.
To see (ii) let E ∈ [X]<κ, x /∈ E, and take an ξ < κ+ with 〈Zξ, xξ〉 = 〈E, x〉.

Then from |Zξ| < κ and (6) it follows that |A \ Zξ| = κ for all A ∈ Lξ \ {∅}.
So x = zξ ∈ Dξ ⊂ X \ Zξ = X \ E and A = Dξ ∈ A is as desired.

To see (iii) let E ∈ [X]κ, x /∈ E, and take a ξ < κ+ such that 〈Zξ, xξ〉 =
〈Z, x〉. If there exists an A ∈ Lξ \ {∅} such that |A ∩ Zc| = |A \ Zξ| < κ then
(iii) holds. Otherwise x = zξ ∈ Dξ ⊂ X \ Zξ = X \ Z and A = Dξ ∈ A is as
desired since A ∩ Z = ∅.

Corollary 11. If 2κ = κ+ and |X| = κ then there exists an algebra A on X
which is not MB-representable.
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It is also worth to notice that, as in the case of Theorem 4, Corollary 11
remains valid also in some models with 2κ > κ+. However, it is also worth
to note that if A is an example as in Proposition 10 and X ⊂ Y , then the
algebra AY on Y generated by A still is not MB-representable. Thus if X is
such that there exists an infinite κ ≤ |X| with 2κ = κ+ then there exists an
algebra A on X which is not MB-representable.

5 Algebras Which Are Not Inner MB-representable

Now, we shall prove that the algebras Σ and B are not inner MB-representable.

Proposition 12. (S. Wroński [Wr2]) The interval algebra Σ is not inner MB-
representable.

Proof. Suppose that Σ = S(F) for some F ⊂ Σ. Let G stand for the family
of all intervals [a, b) with a < b. Evidently, Σ and G are mutually coinitial, so
S(Σ) = S(G) by Fact 1. Since S(G) contains singletons, we have S(G)\Σ 6= ∅.
Thus, by Fact 1, G and F cannot be mutually coinitial, and since F ⊂ Σ,
it follows that there is a A ∈ G such that P \ A 6= ∅ for each P ∈ F . Let
A = [a, b). To obtain a contradiction we shall show that {a} ∈ S(F). Let
P ∈ F . If a /∈ P then obviously P ⊂ P ∩ {a}c. Let a ∈ P . Since A ∈ S(F)
and since we cannot find a Q ∈ F such that Q ⊂ P ∩A, there is a Q ⊂ P ∩Ac,
so Q ⊂ P ∩ {a}c. Consequently {a} ∈ S(F) ⊂ S0(F).

Theorem 13. Let X be an infinite set of cardinality κ. Let A be an algebra
on X such that:

(I) H(A) ⊂ [X]<κ;

(II) A ∩ [X]<κ ⊂ H(A);

(III) for A∗ = A \ [X]<κ we have S(A∗) \ A 6= ∅.

Then A is not inner MB-representable.

Proof. Suppose that A = S(F) for some F ⊂ A. Put F∗ = F \ [X]<κ. First
we shall prove that

(∀B ∈ A∗)(∃F ∈ F∗) F ⊂ B. (7)

Suppose it is not the case and let B ∈ A∗ witness that (7) is false. We have
|B| = κ and so, B /∈ S0(F) since, by (I),

S0(F) ⊂ H(S(F)) = H(A) ⊂ [X]<κ. (8)
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From B /∈ S0(F) it follows that there are sets Q ∈ F , Q ⊂ B. Since (7) is
false, we have |Q| < κ for each set Q ∈ F contained in B. We shall show that
B ∈ H(S(F)) which yields a contradiction since |B| = κ and H(S(F)) ⊂ [X]<κ

by (I). Let Z ⊂ B and P ∈ F . We have to find T ∈ F such that either
T ⊂ P ∩ Zc or T ⊂ P ∩ Z.

Since B ∈ A = S(F), there is a Q ∈ F such that either Q ⊂ P ∩ Bc or
Q ⊂ P∩B. IfQ ⊂ P∩Bc then T = Q is as desired. So, assume thatQ ⊂ P∩B.
Then |Q| < κ by our supposition. Thus, by (II), we have Q ∩ Z ∈ A = S(F)
and so, there is a T ∈ F such that either T ⊂ Q ∩ (Q ∩ Z) ⊂ P ∩ Z or
T ⊂ Q ∩ (Q ∩ Z)c ⊂ P ∩ Zc. Consequently, Z ∈ S(F) and thus B ∈ H(S(F))
as desired.

By Fact 1, condition (7) together with an obvious inclusion F∗ ⊂ A∗ imply
that S(F∗) = S(A∗).

Next, we shall show that S(F∗) ⊂ S(F). Assume that B ∈ S(F∗). Let
P ∈ F . Consider two cases:

• if P ∈ F∗ then B ∈ S(F∗) implies that we can find a Q ∈ F∗ (hence
Q ∈ F) with Q ⊂ P ∩B or Q ⊂ P ∩Bc;

• if |P | < κ then, by (II), P ∩ B ∈ A = S(F), so there is a Q ∈ F with
Q ⊂ P ∩ (P ∩B) or Q ⊂ P ∩ (P ∩B)c = P ∩Bc.

Hence B ∈ S(F).
Finally, we have S(A∗) = S(F∗) ⊂ S(F) = A which contradicts (III).
From the result by Elaloui-Talibi [ET, Thm. 1.1] it follows that there is

no F ⊂ B with B = S(F) and [R]≤ω = S0(F). We can derive a bit more

Corollary 14. The algebra B is not inner MB-representable.

Proof. It suffices to check (III). Here B∗ is the family of uncountable Borel
sets. Thus B∗ and the family of perfect sets are mutually coinitial. So, by
Fact 1, S(B∗) is exactly the algebra of classical Marczewski (s)-sets. Since
there is a non-Borel (s0)-set [Mi], therefore it belongs to S(B∗) \ B.

Example. Let us observe that the condition (III) in Theorem 13 is essential.
It was shown in [BBRW] that if I is an ideal in P(X) then, for the dual filter
FI = {Ec : E ∈ I} and the algebra AI = I ∪ FI , we have AI = S(FI)
and I = S0(FI). Hence AI is inner MB-representable. Let us consider a
special case. Assume that λ is an infinite cardinal with λ ≤ κ = |X|, and put
I = [X]<λ, A = AI . Then conditions (I) and (II), stated in Theorem 13, are
obviously satisfied. However, A is inner MB-representable, and (III) is false
since A∗ = FI and so A = S(FI) = S(A∗). Finally, note that A is not outer
MB-representable. Indeed, suppose that A = S(G) and G ∩ A = ∅. Thus
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|E| ≥ λ and |Ec| ≥ λ for all E ∈ G. Since for each A ∈ FI there is an E ∈ G
such that E ⊂ A, therefore, by Fact 1, from S(FI) = A = S(G) it follows
that for each E ∈ G there is an A ∈ FI such that A ⊂ E. This however is
impossible.
Acknowledgements. We would like to thank S. Wroński for a fruitful dis-
cussion. He has allowed us to include Proposition 12 in our paper.
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