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JENSEN’S INEQUALITY FOR
CONDITIONAL EXPECTATIONS IN

BANACH SPACES

Abstract

In this note we present a simple proof of the inequality Φ
`
EAξ

´
≤

EAΦ(ξ) a.s. for separable random elements ξ ∈ L1(Ω,F , P ;X) in a Ba-
nach space X, where EA (·) denotes conditional expectation with respect
to the σ-field A ⊂ F , and Φ : X → R is a convex functional satisfying
certain additional assumptions which are less restrictive than known till
now. Some consequences of the above result are also discussed; e.g., it
is shown that if ξ is a Gaussian random element in X, then there exists
a constant 0 < c < ∞ such that for each σ-field A0 ⊂ F the familyn

exp{c
‚‚EAξ‚‚2} : A0 ⊆ A ⊆ F

o
is uniformly integrable.

1 Introduction.

Let (Ω,F , P ) be a probability space, let A ⊂ F be a sub-σ-field of the σ-
field F and let X be a Banach space. Denote by Lp(A;X), 1 ≤ p ≤ ∞, the
space of equivalence classes of separable A-measurable Borel random elements
ξ : Ω→ X such that

‖ξ‖p =
{∫

Ω

‖ξ‖p dP
}1/p

<∞ for 1 ≤ p <∞

and

‖ξ‖∞ = ess sup
ω∈Ω
‖ξ(ω)‖ <∞ for p =∞.
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It is fairly well-known that there exists a continuous linear operator EA

acting from L1(F ;X) to L1(A;X) such that
∫
A

EAξ dP =
∫
A

ξ dP for all

ξ ∈ L1(F ;X) and arbitrary A ∈ A. The random element EAξ ∈ L1(A;X) is
called conditional expectation of ξ ∈ L1(F ;X) with respect to the σ-field A
and it is defined uniquely as an element of L1(A;X); i.e., as a random element
in X uniquely up to sets A ∈ A of P -measure zero.

Conditional expectations of random elements in a Banach space possess
similar properties to that of real valued random variables. The following in-
teresting feature of this notion is worth mentioning here. If T : X → Y is
a continuous linear operator acting on X into another Banach space Y , then
EA (Tξ) = T

(
EAξ

)
a.s. for every ξ ∈ L1(F ;X). In particular, if x∗ ∈ X∗

and ξ ∈ L1(F ;X), then

EA (x∗ξ) = x∗
(
EAξ

)
in L1(A; R). (1)

The aim of this note is to present a simple proof of Jensen′s inequality for
conditional expectations in a Banach space. In various monographs and survey
articles devoted to conditional expectations and martingales such a property
is either merely mentioned, cf. Vahania, Tarieladze and Chobanyan (1985),
Ch. II, § 4, or even quite omitted, as in Diestel and Uhl (1977), Metivier and
Pellaumail (1980), or Woyczyński (1978). Vahania, Tarieladze and Chobanyan
in Ch. II, § 4, of their monograph formulated without proof the following
result. If ξ ∈ L1(F ;X) and Φ : X → R is a continuous convex functional in a
Banach space X such that Φ (ξ) ∈ L1(F ;X), then

Φ
(
EAξ

)
≤ EAΦ(ξ) a.s. (2)

We consider a convex functional Φ on arbitrary convex closed separable subset
K ⊂ X and we do not assume that Φ is continuous, but only lower or upper
semi–continuous. It is shown in § 3 that under these conditions (2) remains
true. Next the examples of convex semi–continuous but discontinuous func-
tionals Φ : K → R are given. Moreover, a few applications of the conditional
Jensen’s inequality are presented.

2 Preliminary Result.

The auxiliary result below is a conditional analogue of the similar statement
for the usual expectation in a Banach space. We include it here for future
reference, but it may be also of independent interest.
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Lemma. Let ξ ∈ L1(F ;X) and let A ⊆ X be a separable subset of a Banach
space X, such that ξ ∈ A a.s. Then, for an arbitrary σ-field A ⊂ F ,

EAξ ∈ convA a.s.,

where convA is the closed convex hull of the set A.

Proof. Let K = convA and observe that under our assumptions K is a
separable subset of X. In fact, finite rational linear combinations of points
taken from the separability set As ⊂ A form a countable dense subset of K.
Thus, assume that {x1, x2, ...} is a denumerable dense subset of K. Let

Bn,1 = {x ∈ K : ‖x− x1‖ < 1/n},
Bn,k = {x ∈ K : ‖x− xj‖ ≥ 1/n, j = 1 . . . k − 1, ‖x− xk‖ < 1/n} for k > 1,

and fn(x) =
∑

k
xkJ {x ∈ Bn,k}, n ≥ 1. Then Bn,k, k ≥ 1 are mutually

disjoint,
⋃
k Bn,k = K for each n ≥ 1, and ‖fn(x)− x‖ < 1/n, x ∈ K.

Consequently, ‖fn (ξ(ω))− ξ(ω)‖ ≤ 1/n for all ω ∈ Ω, whereas fn (ξ(ω)) =∑
k
xkJ {ξ(ω) ∈ Bn,k} are elementary random elements in X. Furthermore,

‖fn (ξ(ω))‖ ≤ ‖fn (ξ(ω))− ξ(ω)‖+ ‖ξ(ω)‖ ≤ 1/n+ ‖ξ(ω)‖ ,

so that fn (ξ(ω)) ∈ L1(F ;X), and in addition fn (ξ(ω)) ∈ K a.s.
Since EA : L1(F ;X)→ L1(A;X) is a bounded linear operator with norm

1 (cf. Vahania, Tarieladze and Chobanyan, Ch. II, § 4, Prop. 4.1, p. 108, or
Diestel and Uhl, Ch. V, § 1, Th. 4, p. 123), we have

∥∥EAfn(ξ)− EAξ
∥∥

1
≤ ‖fn(ξ)− ξ‖1 =

∫
Ω

‖fn(ξ)− ξ‖ dP

≤ 1/n→ 0 as n→∞;

i.e., EAfn(ξ)→ EAξ in L1(A;X). Selecting from
{
EAfn(ξ)

}
a suitable sub-

sequence
{
EAfn′(ξ)

}
that is convergent with probability 1 to EAξ, we infer

that the relation EAfn(ξ) ∈ K a.s. implies EAξ = limn′ E
Afn′(ξ) ∈ K a.s.

Therefore it suffices to prove our lemma for an elementary random element
η =

∑
k
xkJAk ∈ L1(F ;X) such that xk ∈ K, k ≥ 1, where Ak ∈ F are any

disjoint random events,
⋃
k Ak = Ω.

To this end, let η =
∑

k≥1
xkJAk ∈ L1(F ;X), where xk ∈ K and Ak are as

above, and let x0 ∈ K be fixed arbitrarily. Put A0 = A
(n)
0 = Ω \

⋃n
k=1Ak and
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notice that ηn(ω) =
∑n

k=0
xkJAk(ω) → η(ω) as n → ∞ for each ω ∈ Ω.

Indeed, if ω ∈ Ω, then ω ∈ Ar for some r = r(ω) ≥ 1, and so

‖ηn(ω)− η(ω)‖ =
∥∥∥∑n

k=0
xkJAk(ω)−

∑
k≥1

xkJAk(ω)
∥∥∥ = ‖xr − xr‖ = 0

whenever n ≥ r. Moreover,

EAηn =
∑n

k=0
xkE

AJAk =
∑n

k=0
xkP

A[Ak] ∈ K a.s.,

because the right side is a finite convex linear combination of x0, x1, ..., xn ∈ K.
Since η ∈ L1(F ;X), we conclude that

‖η‖1 =
∫

Ω

∥∥∥∑
k≥1

xkJAk
∥∥∥ dP =

∑
k≥1
‖xk‖P [Ak] <∞.

Thus∥∥EAηn − EAη∥∥1
≤ ‖ηn − η‖1 =

∫
Ω

∥∥∥∑n

k=0
xkJAk −

∑
k≥1

xkJAk
∥∥∥ dP

=
∑

k>n
‖x0 − xk‖P [Ak]

≤ ‖x0‖
∑

k>n
P [Ak] +

∑
k>n
‖xk‖P [Ak]→ 0 as n→∞.

Finally, choosing from
{
EAηn

}
an appropriate subsequence

{
EAηn′

}
conver-

gent a.s. to EAη we obtain EAη = limn′ E
Aηn′ ∈ K a.s.

3 The Main Theorem.

Let K ⊆ X be a convex subset of a Banach space X. By analogy to the real
case, a function Φ : K → R is called convex, if∧

x,y∈K

∧
0≤α,β∈R
α+β=1

Φ (αx+ βy) ≤ αΦ (x) + βΦ (y) .

Suppose now that K ⊆ X is closed. The mapping Φ : K → R is said to be
upper semi-continuous, if∧

x∈K

∧
{xn}⊂K
xn→x

lim sup
n

Φ (xn) ≤ Φ (x) ,

and it is called lower semi-continuous, if∧
x∈K

∧
{xn}⊂K
xn→x

Φ (x) ≤ lim inf
n

Φ (xn) .
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Theorem. Let K ⊆ X be a convex, closed, separable subset of a Banach space
X with a nonempty interior Ko 6= ∅, such that ξ ∈ K a.s., and let Φ : K → R
be an upper or lower semi-continuous convex functional. If Φ(ξ) ∈ L1(F ; R),
where ξ ∈ L1(F ;X), then

Φ
(
EAξ

)
≤ EAΦ(ξ) a.s. (3)

Proof. Since ξ is a separable random element, we can restrict further ar-
guments to a closed separable linear subspace X0 ⊆ X. However, to simplify
the notation we shall write X instead of X0 and assume that X is separable.
Consider the product space X×R equipped with the usual Tychonov topology
and put

D = {(x, t) : Φ(x) < t, x ∈ K} , and D = {(x, t) : Φ(x) ≤ t, x ∈ K} .

Obviously, X × R is a Banach space with norm ‖(x, t)‖ = ‖x‖ + |t|, and the
sets D and D are convex in the product X×R. In fact, since K is convex and
Φ is a convex functional, for (x, t) , (y, s) ∈ D ( D resp.) and 0 ≤ α, β ∈ R,
α+ β = 1, we have αx+ βy ∈ K, and in addition

Φ(αx+ βy) ≤ αΦ(x) + βΦ(y) < (≤)αt+ βs;

i.e., α(x, t) + β(y, s) = (αx + βy, αt + βs) ∈ D (D resp.). Moreover, if Φ
is upper semi-continuous, then D is open in the Tychonov topology of the
product K × R. To see this, suppose (xn, tn) ∈ D′ = (K × R) \D; i.e., xn ∈
K, Φ(xn) ≥ tn, and (xn, tn) → (x, t) in X × R. Then ‖xn − x‖ → 0 and
|t− tn| → 0. Thus x ∈ K for K is closed. According to upper semi-continuity
of Φ,

Φ(x) ≥ lim sup
n

Φ(xn) ≥ lim
n
tn = t;

so that (x, t) ∈ D′, which means that D′ is closed in K × R and a fortiori D
is open. By analogy, under lower semi-continuity of Φ it can be easily shown
that D is closed in K × R, and so in X × R as well.

Without loss of generality in the sequel we may and do assume that O =
(θ, 0) ∈ D, where θ denotes the zero vector in X. For if θ /∈ Ko, but Ko 3
x0 6= θ, then putting Φ0(x) = Φ(x + x0) we see that Φ0 : K − x0 → R
is upper (resp. lower) semi-continuous convex functional on K − x0, θ ∈
(K − x0)o = Ko − x0 and ξ − x0 ∈ K − x0 a.s. Moreover, the inequality
Φ0

(
EA(ξ − x0)

)
≤ EAΦ0(ξ − x0) a.s. implies that

Φ
(
EA(ξ − x0) + x0

)
= Φ0

(
EA(ξ − x0)

)
≤ EAΦ0(ξ − x0)

= EAΦ ((ξ − x0) + x0) a.s.
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Next, if Φ(θ) ≥ 0, instead of Φ we consider Ψ(x) = Φ(x) − C with a
suitably chosen constant C, 0 ≤ Φ(θ) < C < ∞. The mapping Ψ : X → R
is then obviously upper (resp. lower) semi-continuous convex functional, and
whenever we prove the inequality Ψ

(
EAξ

)
≤ EAΨ(ξ) a.s., then (3) will follow

automatically. Thus, from now on let O ∈ D.
Clearly, D = G ∩ (K × R) , where G is an open set in X × R such that

O ∈ G. Since θ ∈ Ko and Φ(θ) < 0, we have O = (θ, 0) ∈ G ∩ (Ko × R) ⊂ D,
which means that the interior Do of D treated as a subset of X × R is non-
empty.

It is known that each continuous linear functional in X1× ...×Xn is of the
form (x∗1, ..., x

∗
n)(x1, ..., xn) = x∗1(x1)+ ...+x∗n(xn), where x∗i ∈ X∗i , 1 ≤ i ≤ n;

furthermore ‖(x∗1, ..., x∗n)‖ = ‖x∗1‖ ∨ ...∨ ‖x∗n‖ (see e.g. Alexiewicz (1969), Th.
10.3, Ch. III, p. 152). Suppose now that Φ is upper semi-continuous and
observe that (x,Φ(x)) /∈ D for every x ∈ K. Therefore, on the basis of Th.
8.10, Ch. III, p. 141 in Alexiewicz (cf. also Kantorovich and Akilov (1984),
Th. 5, Ch. III, § 2, p. 107) we have∧

x∈K

∨
z∗x∈X

∗

αx∈R

z∗x(y) + αxt ≤ 1 ≤ z∗x(x) + αxΦ(x) (4)

for all (y, t) ∈ D. In particular, (4) is valid for each x ∈ Ko. If x ∈ K \Ko 6= ∅,
we select (z∗x, αx) in a special way. Namely, recall that

(x, t) ∈ clD ⇔
∨

{(xn,tn)}⊂D

xn → x ∧ tn → t ,

where clD stands for the closure of D in X × R. Moreover,

lim sup
xn→x

Φ (xn) ≤ lim
n→∞

tn = t

for an arbitrary sequence of points (xn, tn) ∈ D, n ≥ 1 such that xn → x and
tn → t. Thus, denoting Ex = {{xn} ⊂ K : xn → x} we have in fact

sup
{xn}∈Ex

[
lim sup
xn→x

Φ (xn)
]

= κx ≤ t ,

where t = inf
{
g ∈ R :

∨
{(xn,tn)}⊂D {xn} ∈ Ex , lim tn = g exists

}
.

Otherwise, if t < κx ≤ Φ (x) <∞, then (x, t) /∈ clD. Hence, on account of
Th. 8.11 and Corollary 8.12, Ch. III, § 8, pp. 142-143 of Alexiewicz (see also
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Kantorovich and Akilov, Ch. III, § 2, Th. 6, p. 107 or Yosida (1978), Ch. IV,
§ 6, Th. 3′, p. 109) we obtain∧

x∈K\Ko

∨
0<Cx<∞

∨
z∗x∈X

∗

αx∈R

z∗x(y) + αxt ≤ 1 < z∗x(x) + αx
(
Φ(x)− Cx

)
, (5)

because (x,Φ (x)− Cx) /∈ clD for sufficiently large Cx > Φ (x)−κx. Using (4)
and (5) we shall characterize the set D.

Let (y, s) ∈ D, so that y ∈ K and Φ(y) ≤ s. Then Φ(y) < s+1/n for n ≥ 1,
and thus (y, s+ 1/n) ∈ D. Hence z∗x(y) + αx (s+ 1/n) ≤ 1 ≤ z∗x(x) + αxΦ(x)
for each n ≥ 1 and x ∈ K. Consequently, for x ∈ K

z∗x(y) + αxs ≤ 1 ≤ z∗x(x) + αxΦ(x).

On the other hand, if (y, s) ∈ (K×R)\D, then s < Φ(y), and so s = Φ(y)− ε
for some ε > 0. We shall demonstrate the inequality z∗y(y) + αys > 1.

Notice first that αx < 0 for each x ∈ K. Indeed, from (4) it follows that

z∗x(x) + αxt ≤ 1 ≤ z∗x(x) + αxΦ(x),

whenever t > Φ(x), x ∈ Ko. Hence αx ≤ 0. Furthermore, the equality αx = 0
implies that z∗x (x) = 1. But if x ∈ Ko, then x+ rx ∈ Ko for some r > 0, and
so for appropriately chosen tr > Φ (x+ rx) , in view of (4) we have

1 + r = z∗x(x+ rx) + 0 · tr ≤ 1,

which leads to a contradiction. If x ∈ K \ Ko, then taking t > Φ (x); i.e.,
(x, t) ∈ D, we get z∗x(x) + αxt ≤ 1 < z∗x(x) + αx (Φ(x)− Cx) , and this is
possible only when αx < 0 as well. Therefore,

z∗y(y) + αys = z∗y(y) + αyΦ(y)− αyε > z∗y(y) + αyΦ(y) ≥ 1.

In other words, we have obtained the following relation

(y, t) ∈ D ⇔
∧
x∈K

(z∗x(y) + αxt ≤ 1) ∧ (y ∈ K).

Observe next that each pair (z∗x, αx) is a continuous linear functional on
X × R, thus the family {(y, t) ∈ K × R : z∗x(y) + αxt = (z∗x, αx)(y, t) > 1},
x ∈ K, forms an open covering of the set (K × R) \ D. Since X × R is a
separable metric space, by virtue of the well-known Lindelöf theorem there
can be found at most denumerable set Q ⊂ X∗ × R such that

(K × R) \D =
⋃

(z∗,α)∈Q

{(y, t) ∈ K × R : z∗(y) + αt > 1}.



548 August M. Zapa la

Hence it follows that

(y, t) ∈ D ⇔
∧

(z∗,α)∈Q

(z∗(y) + αt ≤ 1) ∧ (y ∈ K), (6)

in particular ∧
(z∗,α)∈Q

z∗(y) + αΦ(y) ≤ 1 for y ∈ K. (7)

If Φ is lower semi-continuous and D is closed, then (x,Φ(x)−λ) ∈ (K×R)\D
for an arbitrary x ∈ K and λ > 0. Thus, in view of Th. 3′, Ch. IV, § 6, p. 109
of Yosida (1978) (cf. also Kantorovich and Akilov, Ch. III, § 2, Th. 6, p. 107
or Alexiewicz, Ch. III, § 8, Th. 8.11 and Corollary 8.12, pp. 142-143),

∧
x∈K

∧
λ>0

∨
z∗x,λ∈X

∗

αx,λ∈R

z∗x,λ(y) + αx,λt ≤ 1 < z∗x,λ(x) + αx,λ(Φ(x)− λ) (8)

for all (y, t) ∈ D, in particular z∗x,λ(y) + αx,λΦ(y) ≤ 1 whenever x, y ∈ K and
λ > 0. Putting y = x in the last inequality we infer from (8) that αx,λ < 0 for
x ∈ K and λ > 0. Denote by Z the set of all the pairs (z∗x,λ, αx,λ) indexed by
x ∈ K and λ > 0, for which (8) holds. Suppose that (y, s) ∈ (K ×R) \D; i.e.,
y ∈ K and s < Φ(y). Then s = Φ(y)− ε for some ε > 0, and so taking λ ≤ ε
we see that for (z∗y,λ, αy,λ) ∈ Z,

1 < z∗y,λ(y) + αy,λ(Φ(y)− λ) ≤ z∗y,λ(y) + αy,λs.

Hence

(y, t) ∈ D ⇔
∧

(z∗x,λ,αx,λ)∈Z

(z∗x,λ(y) + αx,λt ≤ 1) ∧ (y ∈ K).

Applying again the Lindelöf theorem to the family of sets

{(y, t) ∈ K × R : z∗x,λ(y) + αx,λt > 1}, (z∗x,λ, αx,λ) ∈ Z,

we obtain (6) and (7) as well as previously.
Having established (7) we argue as follows. Substitute y = ξ(ω) in (7)

and next evaluate conditional expectations of both sides of the obtained thus
inequality with respect to the σ-field A. Then for all (z∗, α) ∈ Q we get
EAz∗(ξ) + αEAΦ(ξ) ≤ 1 a.s.. By (1) , z∗EAξ) + αEAΦ(ξ) ≤ 1 a.s., for all
(z∗, α) ∈ Q; so that on the basis of (6) and the Lemma, (EAξ, EAΦ(ξ)) ∈ D
with probability 1. By definition of D we have Φ(EAξ) ≤ EAΦ(ξ) a.s..
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Remark. It is an open question whether for an arbitrary (infinite dimen-
sional) normed linear space X there exists a convex semi-continuous functional
Φ : X → R which is not continuous. The possible candidate for such a convex
mapping may be x→ |x′(x)| , where x′ is any discontinuous linear functional
on X (see Alexiewicz, Ch. III, § 8, Prop. 8.17, p. 145). However, as will be
seen below, if ξ(ω) ∈ K for all ω ∈ Ω, where K is a proper closed convex subset
of X and Φ need not be defined when x /∈ K, then the relevant examples can
be given even for finite dimensional spaces.

Example 1. Let X = R. Then it is enough to take K = 〈0,∞) ⊂ R and
Φ(t) = t2 for t > 0, accomplished with Φ(0) = c > 0.

Example 2. A slightly more involved example may be constructed as follows.
Let X = R2 and K = {x ∈ X : ‖x‖ ≤ 1}, where ‖·‖ is the usual Euclidean
norm in the plane. Define Φ(x) = ‖x‖2 for ‖x‖ < 1 and Φ(x) = c > 1 on the
unit sphere S = {x ∈ X : ‖x‖ = 1}, except for a set {xi, i ∈ I} ⊂ S, which does
not have any accumulation points; moreover, for i ∈ I put Φ(xi) = ci > c. The
same effect on the boundary of K can be achieved in a more general way by
taking an arbitrary upper semi-continuous function ϕ : 〈0, 2π)→ R, such that
ϕ(t) ≥ 1 and lim supt↗2π ϕ(t) ≤ ϕ(0). Using the one-to-one correspondence
x ←→ exp{it}, where x ∈ S, t ∈ 〈0, 2π) , we define Φ(x) = ϕ(t) for x =
exp{it} ∈ S, t ∈ 〈0, 2π) . It can be easily verified that Φ is convex and upper
semi-continuous on K, but not continuous.

Example 3. A similar idea may be also adapted to the case of infinite di-
mensional spaces. Recall that a Banach space X is called strictly convex, if
for an arbitrary x, y ∈ S = {x ∈ X : ‖x‖ = 1} and 0 < α, β ∈ R, α + β = 1,
we have ‖αx+ βy‖ < 1. Let ψ : 〈0, 1〉 → R be a convex, continuous (bounded)
real function and let X be a strictly convex Banach space. Put

Φ(x) =

 ψ(‖x‖) for ‖x‖ < 1 ,
c > ψ(1) for ‖x‖ = 1 , x /∈ {xi, i ∈ I} ,
ci > c for x = xi , i ∈ I ,

where {xi, i ∈ I} ⊂ S = {x ∈ X : ‖x‖ = 1} does not have accumulation points.
Then Φ is an upper semi-continuous, convex and discontinuous functional on
the set K = {x ∈ X : ‖x‖ ≤ 1}. If X is an arbitrary (infinite dimensional)
Banach space, instead of the unit ball, we consider rather a compact convex
set K contained in the closed unit ball. The convex continuous functional
ψ(‖x‖), x ∈ K, attains its supremum c <∞ on K. Thus by the Krein-Milman
theorem (see e.g. Yosida, Ch. XII, § 1, Th. and Corollary, pp. 362-363) the
mapping Φ(x) = ψ(‖x‖) can be modified on the set {xi, i ∈ I} ⊂ K of all the
extremal points of K by putting Φ(xi) = ci > c, i ∈ I.
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The next result is already known (see Diestel and Uhl, Ch. V, § 1, Th. 4,
p. 123), but now it is a straightforward consequence of our theorem.

Corollary 1. If ξ ∈ Lp(F ;X), 1 < p ≤ ∞, then EAξ ∈ Lp(A;X), and∥∥EAξ∥∥
p
≤ ‖ξ‖p ; (9)

i.e., EA is a projection operator with norm 1 acting from Lp(F ;X) to Lp(A;X).

Proof. It can be easily verified that Φ(x) = ‖x‖p , x ∈ X, 1 < p < ∞, is
a convex continuous functional on X. Hence, based on the above theorem, we
have∥∥EAξ∥∥

p
= (E

∥∥EAξ∥∥p)1/p ≤ (E
{
EA(‖ξ‖p)

}
)1/p = (E ‖ξ‖p)1/p = ‖ξ‖p

whenever ξ ∈ Lp (F ;X) , 1 < p < ∞. For p = ∞, (9) follows from the well-
known equality lim

p→∞
‖·‖p = ‖·‖∞ (cf. Yosida, Ch. I, § 2, Th. 1, p. 34,

Kantorovich and Akilov, Ch. IV , § 3, p. 144, or Alexiewicz, Ch. IV , § 2, Th.
2.4, p. 219). The operator norm of EA is equal to 1 in view of the property
EAξ = ξ a.s. for ξ ∈ Lp (A;X) .

Corollary 2. Let K ⊂ X and Φ : K → R satisfy the assumptions of our
theorem. Moreover, let {Ft, t ∈ T ⊂ R} ⊂ F be an increasing family of σ-
fields and let {ξt,Ft} be a martingale such that ξt ∈ K a.s. for all t ∈ T .
Then {Φ(ξt),Ft} is a submartingale.

Proof. The proof is immediate, because for s < t we have

Φ(ξs) = Φ
(
EFsξt

)
≤ EFsΦ(ξt) a.s.

Using our theorem we can also derive an interesting result concerning Gaus-
sian measures in a Banach space X. Recall that a (Borel separable) random
element ξ in X is called Gaussian, if x∗(ξ) is a real Gaussian random variable
for each continuous linear functional x∗ ∈ X∗, and it is called Gaussian in
the sense of Bernstein, if for any two independent copies ξ1, ξ2 of ξ given on
a common probability space, the random elements ξ1 + ξ2 and ξ1 − ξ2 are
independent. In the described context these two definitions are equivalent.

Corollary 3. If ξ is a Gaussian random element in X, then there exists a
constant 0 < c < ∞ such that for any fixed σ-field A0 ⊂ F the family of
random elements

{
exp{c

∥∥EAξ∥∥2 : A0 ⊆ A ⊆ F
}
⊂ L1(F ;X) is uniformly

integrable.
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Proof. Observe that t → t2 and s → exp {cs} are convex real functions.
Therefore if c > 0, then for x, y ∈ X,

exp
{
c ‖αx+ βy‖2

}
≤ exp

{
c (α ‖x‖+ β ‖y‖)2

}
≤ exp

{
c
(
α ‖x‖2 + β ‖y‖2

)}
≤ α exp

{
c ‖x‖2

}
+ β exp

{
c ‖y‖2

}
.

Consequently, Φ(x) = exp{c ‖x‖2} for c > 0 is a convex continuous functional
on X. Moreover, there exists a constant 0 < B <∞ such that exp

{
B ‖ξ‖2

}
is

integrable (see e.g. Fernique (1970), Kuo (1975), Ch. III, § 3, Th. 3.1, p.159,
Kwapień and Woyczyński (1992), Ch. III, § 7, pp. 54–55, or Zapa la (1987)).

Choose 0 < c < B and fix ε > 0 arbitrarily. Applying the above theorem
we get exp

{
c
∥∥EAξ∥∥2

}
≤ EA exp

{
c ‖ξ‖2

}
a.s. Hence, if P [A] < (ε/M)p

for A ∈ A0, where M =
(
E exp

{
cq ‖ξ‖2

})1/q

< ∞, cq ≤ B, p, q > 1,
1/p+ 1/q = 1, then by Hölder’s inequality∫
A

exp
{
c
∥∥EAξ∥∥2

}
dP ≤

∫
A

EA exp
{
c ‖ξ‖2

}
dP =

∫
A

1 · exp
{
c ‖ξ‖2

}
dP

≤ (P [A])1/p

(∫
Ω

exp
{
cq ‖ξ‖2

}
dP

)1/q

< ε,

and E exp
{
c
∥∥EAξ∥∥2

}
≤ E

{
EA exp{c ‖ξ‖2}

}
= E exp

{
c ‖ξ‖2

}
≤ M < ∞

uniformly with respect to σ-fields A, A0 ⊆ A ⊆ F . By Th.19, Ch. II, p. 22 in
Dellacherie and Meyer (1978), the family

{
exp{c

∥∥EAξ∥∥2 : A0 ⊆ A ⊆ F
}
⊂

L1(F ;X) is uniformly integrable.

Remark. 1. If {Ft, t ∈ T ⊂ R} ⊂ F is an increasing family of σ-fields and ξ
is a Gaussian random element in X, then according to Corollary 2 for a fixed
c > 0 sufficiently close to zero

{
exp{c

∥∥EFtξ∥∥2 : t ∈ T
}

is a submartingale,
thus its equi-integrability follows from a more general theorem concerning
stopped martingales (cf. Metivier and Pellaumail, Ch. 4, § 8.3, Prop. 2, p.
96-97).

2. The result applied above concerning exponential integrability of Gaus-
sian random vectors in Banach spaces was considerably improved by Talagrand
(1984) as follows: if Y is a random vector with a symmetric Gaussian distri-
bution in a (separable) Banach space X, then E exp

{
c0 ‖Y ‖2 − b ‖Y ‖

}
< ∞

for an arbitrary b > 0, where c0 =
(

2 sup‖x∗‖=1E [x∗ (Y )]2
)−1

(see Kwapień
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and Woyczyński, Ch. III, § 6, p. 89, cf. also Ch. II, § 6, Th. 2.6.1, pp. 52-
53). Moreover, instead of the norm in a Banach space one can consider any
pseudometric invariant under translations in a group (see Zapa la (1987)).
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[11] W. A. Woyczyński, Geometry and martingales in Banach spaces II.
Advances in Probability and Related Topics, No 4, p. 267–517. Marcel
Dekker, New York, Basel (1978).

[12] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, Heidelberg, New
York (1978).

[13] A. M. Zapa la, On exponential integrability of a transferable pseudometric
with respect to a Gaussian measure on a group, Bull. Pol. Acad. Sci. 35
(1987), 597–600.


