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ON THE BESICOVITCH PROPERTY FOR
PARABOLIC BALLS

Abstract

Let p ≥ 1 and a1, . . . , an be positive given numbers. We prove that, the

family of all solids of Rn of the type
Pn

i=1

“
|xi|
rai

”p

< 1, r > 0 satisfies

the Besicovitch covering lemma if and only if p ≥ max ai
min ai

.

1 Introduction

Let U = {Uα : α ∈ R+} be an increasing family of bounded and open neigh-
borhoods of the origin in Rn. Given a Borel measure µ on Rn, a centered
maximal Hardy-Littlewood operator associated to µ and U can be defined by

Mµ,Uf(x) = sup
α∈R+

1
µ(x+ Uα)

∫
x+Uα

|f(y)|dµ(y), (1)

for every Borel measurable function f . The boundedness of this operator on
Lebesgue spaces with measure µ is a basic result for any further real analysis
associated to the setting defined by U and µ. It is well known that these
boundedness properties are intimately related to the covering properties of the
family U : they are usually proved using Wiener or Besicovitch type covering
lemmas. Wiener type covering lemmas hold true with very mild conditions on
U , but for general non-doubling measures Besicovitch type covering lemmas
are the basic useful tool.
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Let us introduce the Besicovitch property for a general family U . We
shall say that the family U satisfies the Besicovitch property (BP) if there
exists a constant C, depending only on U and n, such that for each family
{xi + Uαi : i ∈ I} of translated members of U , such that {xi : i ∈ I} is a
bounded set, there is a subset J of I such that

(CP) {xi : i ∈ I} ⊂
⋃
j∈J (xj + Uαj ) (Covering Property);

and

(OP)
∑
j∈J χ{xj+Uαj }(x) ≤ C (Overlapping Property).

In this note we shall deal with the special case of balls associated to dis-
tances or quasi–distances given by non isotropic dilations on Rn. Let A be
a diagonal real matrix with positive eigenvalues a1 ≤ a2 ≤ · · · ≤ an. Let
τλ(x) = eA log λx = (λa1x1, · · · , λanxn), λ > 0. Let p ≥ 1. For x 6= 0, the
continuous function

φ(ρ) =

{
n∑
i=1

(
|xi|
ρai

)p} 1
p

(2)

is strictly decreasing with limρ→0+ φ(ρ) = +∞ and limρ→+∞ φ(ρ) = 0. Then,
given x ∈ Rn − {0}, the equation ||τ 1

ρ
(x)||p = φ (ρ) = 1 has only one solution

which we call ρp(x).One can check that the function ρp defines a quasi-distance
(which means ρp(x, y) ≤ Kp(ρp(x, z)+ρp(z, y)) (See [4])) on Rn with constant
Kp. The ρp-balls are the solids of Rn given by

Br =
{

(x1, . . . , xn) ∈ Rn :
(
|x1|
ra1

)p
+ . . .+

(
|xn|
ran

)p
< 1
}

(3)

These parabolic balls associated to a non-doubling Gaussian measure ap-
pear for example in the real analysis setting associated with the generalized
Ornstein-Uhlenbeck operators coming from the equation ∆u − 2Ax.∇u = 0,
where A is a matrix in Rn ×Rn (see [2]).

The main result in this note is that the BP for the family of ρp-balls
depends on the condition number of the matrix A given by the ratio an/a1.

Theorem 1.1. Let p ≥ 1. Let U be the family of all Br, r > 0 given by (3).
Then, U satisfies BP if and only if an

a1
≤ p ≤ +∞.

2 The only if part of the Theorem.

Given a1, . . . an, and p ≥ 1 we will say that E is an (a1, . . . , an; p)-ellipsoid of
radius r > 0 if, for some coordinate system, its equation becomes
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n∑
i=1

(
|xi|
rai

)p
= 1,

Certainly, E is the boundary of a ρp-ball.

Proposition 2.1. Let 0 < a1 ≤ a2 ≤ · · · ≤ an. Let Q = (y1, . . . , yn) be a
point in Rn. Let δ ∈ (0, 1) be given. Let P = (y1 + δ, . . . , yn−1 + δ, yn + y)
with y > 0 and δp

∑n−1
i=1 y

−pai/an < 1. Then, there exits r > 0 such that the
(a1, . . . an; p)-ellipsoid of radius r with axes parallel to the coordinate system
and with one vertex at P passes through Q, r(δ)→ +∞ as δ → 0 and if P ′ is
the opposite vertex to P , d(P,Q) ≤ d(P ′, Q).

The proof of Proposition 2.1 is an easy consequence of the following lemma

Lemma 2.1. Let y > 0 and p ∈ [1, ana1
), and 0 < a1 ≤ a2 ≤ · · · ≤ an. Then,

for each δ > 0 small enough, (δp
∑n−1
i=1 y

−pai/an < 1) , the equation

δp
n−1∑
i=1

1
rpai

+
∣∣∣∣y − ranran

∣∣∣∣p = 1

has at least one solution r(δ) greater than or equal to y
1
an , such that r(δ) →

+∞ when δ → 0 .

Proof. With s = r−pa1 our problem is equivalent to find the solution of
f(s) = 1 with 0 < s < y−pa1/an , where f(s) = δp

∑n−1
i=1 s

ai/a1 +|san/a1py−1|p.
Notice that f(0) = 1 and f ′(0) = δp > 0 (If a1 = · · · = ak < ak+1 ≤ . . . , then
f ′(0) = kδp > 0. Since f(y−pa1/an) = δp

∑n−1
i=1 y

−pai/an < 1 we must have a
solution of f(s) = 1 with 0 < s < y−pa1/an . Now since r(δ) ≥ y1/an , we have

y = ran [1− (1− δp
n−1∑
i=1

1
rpai

)1/p]

' ran δp
n−1∑
i=1

1
rpai

,

from which, since y is constant, we get the desired result.
Let 0 < a1 ≤ · · · ≤ an and p ∈ [1, ana1

) be given. Let ρ = ρp be the quasi
distance given by the numbers a1, . . . , an and p. With the help of Proposition
2.1 we will construct a sequence of ρ-balls with unbounded overlapping such
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that if xi is the center of Bi, then xi /∈ Bj for j 6= i. So that every ball is
needed if we want to cover the centers.

Let Bo = B(0, 1). Let Q1 = 0. Choose y > 0 and δ1 > 0 so that
δp1
∑n−1
i=1 y

−pai/an < 1, and P1 = (δ1, . . . , δ1, y) belongs to the first 2n-quadrant
of Bo. From Proposition 2.1 if we choose δ1 small enough, we can pick an
(a1, . . . , an; p)−ellipsoid, and then its interior B1, in such a way that the
center Q2 of B1 does not belong to Bo, neither the center of Bo to B1.
Choose P2 = (δ1 + δ2, . . . , δ1 + δ2, z) so that δ2 < 1 is small enough and
δp2
∑n−1
i=1 z

−pai/an < 1. Now, because of Proposition 2.1 for δ2 small enough
we can find an (a1, . . . , an; p)-ellipsoid and then its interior B2, in such a way
that the center does not belong to Bo ∩ B1 and, clearly, the centers of Bo
and B1 do not belong to B2. Since Bo ∩B1 ∩B2 in a non–empty open set of
points with first n− 1 coordinates larger than the first of P2, the process can
be iterated to obtain the desired result.

Notice that one can easily construct an atomic measure µ on the Borel
sets of R2 in such a way that the centered maximal function defined with this
family of balls is not of weak type (1, 1) with respect to this measure.

3 The if part of the theorem.

In the sequel B(x, r) will denote the ρp-balls and S(x, r) the || . ||p-balls in Rn
(|| . ||p is the usual p norm on Rn); of course for any x, B(x, 1) = S(x, 1).

Theorem 3.1. Let A be a fixed n×n diagonal matrix with positive eigenvalues
a1 ≤ a2 ≤ · · · ≤ an and p ≥ an

a1
. Then the family of ρp−balls has the BP.

Proposition 3.2. Let x, z ∈ R, such that xz ≥ 0. Then for all λ ∈ [0, 1] and
for all 1 ≤ q ≤ p we have

|λ z − x|p ≤ λq |x− z|p + (1− λq)|x|p. (4)

Proof of Theorem 3.1.
Let {B(xα, rα) : α ∈ I} be a family of ρp balls whose centers are in a

bounded set. Let H = sup{rα : α ∈ I}. Suppose that H = +∞. Since
for some r > 0 we have {xα : α ∈ I} ⊂ B(0; r), choosing β ∈ I such that
rβ > ρp−diameter of {xα : α ∈ I}, we get {xα : α ∈ I} ⊂ B(xβ ; rβ).
Suppose now that H < +∞. Let E1 = E1

1 = {xα : α ∈ I and H
2 < rα ≤ H}.

We take x1 ∈ E1; B1
1 = B(x1; r1). Assume that E1

1 ;E1
2 ; ...;E1

k−1; B1
1 ;B1

2 ; ...;
B1
k−1 are defined, we take E1

k = E1 − ∪k−1
i=1B

1
i ; and choose xk ∈ E1

k and
B1
k = B(xk; rk). The process stops producing a finite sequence {B1

i }
m1

i=1 that



The Besicovitch Property for Parabolic Balls 265

cover E1. In fact, from our selection B(x1
i ;

H
22K )∩B(x1

j ;
H

22K ) = ∅ for i 6= j and
they are subsets of {x : ρp(x, {xα : α ∈ I}) < H} which is bounded. Note
that the number of balls m1 depends only on K, n, H and of the numbers
a1, . . . , an, (K is the constant in the quasi-triangular inequality).
Now, assume that E1; ...;El−1; Bji (j = 1, . . . , l−1; k = 1, . . . ,mj) are defined,
we take El = El1 = {xα : α ∈ I and H

2l
< rα ≤ H

2l−1 } − ∪l−1
j=1 ∪

mj
i=1 B

j
i ; and we

do the same that in the case l = 1; we obtain then a finite sequence of balls
covering El. Then, the sequence {Bji }j,i verify the CP property.

Let us now prove the OP. We claim that it is enough to prove
(i)

∑mj
i=1 χBji

(z) ≤ C1, for every j and

(ii)
∑+∞
j=1 χ∪mji=1B

j
ij

(z) ≤ C2.

Indeed, assuming (i) and (ii), we have

∞∑
j=1

mj∑
i=1

χBji
(z) ≤

∑
{j: ∃i z∈Bji }

∑
{i: z∈Bji }

χBji
(z) ≤ C1 C2.

(i) Let z be a point in M of the balls {Bji }
mj
i=1, Bji1 , . . . , B

j
iM

. As in the

case j = 1 we have
{
B(xjis ,

H
K2j+1 )

}M
s=1

disjoint and B(xjis ;
H

K2j+1 ) ⊂ B(z; H2j ).
Then, since the Lebesgue measure of a ρ-ball of radius r is equivalent to
rtraceA, we easily see that M is an absolute constant.

(ii) Let z be a point in M of the balls {Bjij := Bj}j . Since ρp is translation
invariant, we may suppose that z = 0. For simplicity of notation let us assume
that 0 ∈ ∩Mj=1Bj , with Bj preceding Bj+1 in the selection procedure. Since
xk /∈∪k−1

j=1Bj , we get τ 1
rk

(xk) /∈∪k−1
j=1 τ 1

rk

(Bj). In the case in which A is a con-
stant times the identity matrix, τt(z) are straight lines so that the inclusion
τ 1
rj

(Bj) ⊂ τ 1
rk

(Bj) for rk ≤ rj , is clear. For general A we will prove later that

τ 1
rj

(Bj) ∩Qj ⊂ τ 1
rk

(Bj) for j < k (5)

where Qj is the quadrant of Rn such that xj ∈ Qj .
First assume that (5) holds. Then clearly

τ 1
rk

(xk) /∈
k−1⋃
j=1

(
τ 1
rj

(Bj) ∩Qj
)
. (6)

Now, (6) allows us to finish the proof of the theorem, since we can find
ξj ∈ τ 1

rj

(Bj) ∩Qj for j = 1, . . . ,M such that for ε = (4n
1
p )−1 we have that

{S(ξj ,
ε

2
)}
M

j=1
are pairwise disjoint, and ||ξj ||p ≤ 5

4 .
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Indeed, since τ 1
rj

(Bj) = S(τ 1
rj

xj , 1), we can pick ξj with coordinates equal

to those of τ 1
rj

(xj) plus or minus ε such that S(ξj , ε/2) ⊂ τ 1
rj

(Bj) ∩ Qj and

||ξj − τ 1
rj

(xj)||p ≤
1
4

. Suppose that there exists w∈S(ξj ,
ε

2
) ∩ S(ξk,

ε

2
) with

j < k. Then, τ 1
rj

(xj) and τ 1
rk

(xk) belongs to the same quadrant, so that

τ 1
rk

(xk) ∈ Qj . On the other hand

||τ 1
rk

(xk)− τ 1
rj

(xj)||p ≤ ||τ 1
rk

(xk)− ξk||p + ||ξk − ξj ||p + ||τ 1
rj

(xj)− ξj ||p

≤ 3
4
,

which is a contradiction since τ 1
rk

(xk) /∈ τ 1
rj

(Bj) ∩Qj .
Let us prove (5). To show that z ∈ τ 1

rk

(Bj) whenever z ∈ τ 1
rj

(Bj) ∩Qj is

the same as proving that τ rk
rj

(z) ∈ τ 1
rj

(Bj) = B
(
τ 1
rj

(xj), 1
)

. As 1 ≤ an
as
≤ an
a1

,

and z ∈ Qj using Proposition 3.2 with λ =
(
rk
rj

)as
, q = an

as
, x =

(
1
rj

)as
x

(s)
j ,

z = z(s) with s = 1, . . . , n, where y(s) is the s − th coordinate of y, we have
for p ≥ an

a1
that

||τ rk
rj

(z)− τ 1
rj

(xj)||p
p

=
n∑
s=1

∣∣∣∣(rkrj
)as

z(s) −
(

1
rj

)as
x

(s)
j

∣∣∣∣p

≤
n∑
s=1

((
rk
rj

)an ∣∣∣∣∣x
(s)
j

rasj
− z(s)

∣∣∣∣∣
p

+
(

1−
(
rk
rj

)an ) ∣∣∣∣∣x
(s)
j

rasj

∣∣∣∣∣
p)

=
(
rk
rj

)an n∑
s=1

∣∣∣∣∣x
(s)
j

rasj
− z(s)

∣∣∣∣∣
p

+
(

1−
(
rk
rj

)an ) n∑
s=1

∣∣∣∣∣x
(s)
j

rasj

∣∣∣∣∣
p

;

now, since z ∈ τ 1
rj

(Bj) and 0 ∈ τ 1
rj

(Bj) the last term is bounded by one.

Proof of Proposition 3.2. The desired inequality for q = 1 follows from
the convexity of |x|p. To prove (4) for q = p let us note that dividing (4) by

|x|p and taking h =
|z|
|x|

=
z

x
≥ 0, (4) for q = p is equivalent to

|λh− 1|p ≤ λp |h− 1|p + (1− λp).

Taking v = λh, this is equivalent to

|v − 1|p ≤ |λ− v|p + (1− λp) for all v ≥ 0.
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Let f be the function f(v) = |v − 1|p − |λ − v|p − (1 − λp). Since λ ≤ 1,
we have that f(v) ≤ 0 for v ≥ 1. On the other hand, since f(0) = 0 and
f ′(v) = −p|1− v|p−1sign(1− v)− p|v−λ|p−1sign(v−λ) ≤ 0 for v ≤ 1 we have
the inequality for all v ≥ 0.

Now, let us prove (4) for a general q, 1 ≤ q ≤ p. Since (4) is true for q = 1
and q = p, then for all 0 ≤ α ≤ 1 we have that

|λz − x|p ≤ α (λ |x− z|p + (1− λ) |x|p)
+ (1− α) (λp |x− z|p + (1− λp) |x|p)

= ((1− α)λp + αλ) |x− z|p + ((1− λ)α+ (1− λp)(1− α)) |x|p.

Now, since for each 0 ≤ λ ≤ 1 there is an α such that (1 − α)λp + αλ = λq,
we get (4) for general q.

Let us observe that, since after an orthogonal transformation every diago-
nalizable matrix A with positive eigenvalues can be written in diagonal form,
if A has positive eigenvalues a1 ≤ a2 ≤ · · · ≤ an with an

a1
≤ 2, then the balls

associated to the distance induced by A with p = 2 have the BP.
Let us finally notice that when p = ∞ the balls become one parameter

families of rectangles that satisfy the BP for every size of the condition number
of A.

We would like to point out that the dyadic argument to reduce the infinite
to the finite case used as the starting point of the proof is due to A. P. Calderón
([1]) and that related results on the Heisenberg group can be found in [3].
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