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ON SOME PROPERTIES OF THE CLASS A?

Abstract

In this paper we investigate problems connected with some general-
ization of spaces A? and QD considered in [3].

In paper [2] the authors investigate problems connected with the linear space
of Darboux derivatives. In their work they introduced some subsets of the set
of all Darboux derivatives which possess interesting properties from a topo-
logical point of view. For example these subsets played an important role in
consideration connected with stationary sets and some generalization of the
notion of a retract with respect to the topological space formed by Darboux
derivatives ([3]). In [4] some generalizations of classes of functions considered
in [3] was introduced. Now we apply the following definitions (the notion of
the class QD is more general than in [4]).

By R (Q, N, I) we denote the set of real numbers (rational numbers, natural
numbers, segment [0,1]). The cardinality of R is denoted by c.

For any x, y ∈ [0, 1] (x 6= y), denote by I(x,y) the closed interval [x, y] if
x < y, and the closed interval [y, x] otherwise. For a function f : I → I and
for x, y ∈ I let

Afxy = I(f(x),f(y)) \ f(I(x,y)) and Af =
⋃
x,y∈I

Afxy.

Let J be a family of all σ-ideals J of subsets of I such that:

• each A ∈ J is boundary in I;
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• {x} ∈ J for each x ∈ I.

For fixed σ-ideal J0 ∈ J let A?J′
denote the family of all nowhere constant

functions f : I→ I such that Af ∈ J0. Then let

A? =
⋃
J′∈J

A?J′
.

For a fixed σ-ideal J0 ∈ J let QJ0
D denote the family of all nowhere constant

functions f : I→ I such that Afxy ∈ J0 for every x, y ∈ I. Then let

QD =
⋃
J∈J

QJD .

A function f : X → Y (where X, Y are topological spaces) is called a
Darboux function if f(C) is a connected set for each connected set C ⊂ X.
The set of all nowhere constant Darboux functions f : I → I will be denoted
by D̂.

It is obvious that D̂ ⊂ A? ⊂ QD and D̂ 6= A?, but it was an open question
if the classes QD and A? are equal. It turns out that an answer is positive
(Theorem 1).

In the second part of our work we consider the class of real functions defined
on the space A?. Our results are connected with a class of functions DP ; i.e.,
a class of functions f : A? → R such that f(L) is a connected set for each
arc1 L ⊂ A?. We prove that there exists a subset Φ of the space A? such
that if f is a function of the class DP and f �Φ or f �A?\⊕ is quasicontinuous
(cliquish), f is also (but the corresponding assertion for continuity is false).
We also show that the set DP is porous at each point of some subset of the
space of all functions f : A? → R. To formulate these all facts more precisely
let us apply the following notion and definitions.

We say that x ∈ cla(A) if x ∈ A or there exists an arc L such that L\{x} ⊂
A.

A function f : X → R (where X is a topological space) is cliquish at a
point x ∈ X if for each ε > 0 and each neighborhood U of x there exists a
nonempty open set G ⊂ U such that |f(y) − f(z)| < ε for each y, z ∈ G. A
function f : X → R is said to be cliquish if it is cliquish at each point x ∈ X
([1]).

A function f : X → Y (where X,Y are topological spaces) is quasicontinu-
ous at a point x ∈ X if for each neighborhood U of x and for each neighborhood

1A subset L ⊂ X (where X is a topological space) is called an arc if there exists a
homeomorphism h : I → L. The elements h(0) and h(1) will be called the endpoints of L.
The arc with endpoints x and y is denoted by L(x, y).
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V of f(x) there exists a nonempty open set G ⊂ U such that f(G) ⊂ V . A
function f : X → Y is said to be quasicontinuous if it is quasicontinuous at
each point x ∈ X.

If (X, d) is a metric space, x0 ∈ X, r > 0, A ⊂ X let
B(x0, r) = {y ∈ X : d(x0, y) < r},
B(x0, r) = {y ∈ X : d(x0, y) ≤ r},
S(x0, r) = {y ∈ X : d(x0, y) = r},
dA(x) = inf{d(x, a) : a ∈ A}.
Let M ⊂ X, x ∈ X, R > 0. Then γ(x,R,M) denotes the supremum of the

set of all r > 0 for which there exists z ∈ X such that B(z, r) ⊂ B(x,R) \M .
The set M is porous at x if lim supR→0+

γ(x,R,M)
R > 0.

By ρ we denote the metric of uniform convergence (i.e., ρ(f, g) = sup{|f(x)−
g(x)| : x ∈ I}).

We begin our consideration with two lemmas.

Lemma 1. Let x, y, z ∈ I be such that x < y < z. Then Afxz ⊂ Afxy ∪Afyz.

Let

×<I = {(x, y) ∈ I× I : x < y

Iq = {(x, y) ∈ I×< I : x < q < y} for q ∈ (0, 1) ∩Q.

Then I×< I =
⋃
q∈I∩Q Iq.

Lemma 2. If f(0) = 0, 0 < x < y and f(y) ≤ f(x), then Af0x ⊃ A
f
0y.

Theorem 1. A? = QD.

Proof. ObviouslyA? ⊂ QD.We shall prove an inverse inclusion. Let f ∈ QD.
Then there exists a σ-ideal J0 ∈ J such that Afxy ∈ J0 for every x, y ∈ I. We
have to prove that Af ∈ J0. Since

Af =
⋃
x,y∈I

Afxy =
⋃

q∈Q∩(0,1)

⋃
(x,y)∈Iq

Afxy,

it suffices to show that for every q ∈ Q ∩ (0, 1) we have
⋃

(x,y)∈Iq A
f
xy ∈ J0. So

let q ∈ Q ∩ (0, 1) be fixed. Note that (by Lemma 1)⋃
(x,y)∈Iq

Afxy ⊂
⋃

(x,y)∈Iq

(Afxq ∪Afqy) =
⋃

0≤x<q

Afxq ∪
⋃

1≥y>q

Afqy.

So it is sufficient to prove that
⋃

0<x≤1A
f
0x ∈ J0. To simplify notation assume

that f(0) = 0. Let {Bn}n∈N be a base in I. Fix n ∈ N. Then we choose
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{xn,k}k∈N ∈ Bn such that f(xn,k) k→∞−→ supx∈Bn f(x). Let

C = {x ∈ I : f(x) > 0 ∧ ∃y∈[0,x)f(y) ≥ f(x)},
D = {x ∈ I : f(x) > 0} \ C,
E = {x ∈ I : f(x) = 0}.

Then ⋃
x∈I

Af0x =
⋃
x∈C

Af0x ∪
⋃
x∈D

Af0x ∪
⋃
x∈E

Af0x.

From the assumption that f(0) = 0 we deduce that
⋃
x∈E A

f
0x = ∅. So it

is sufficient to show that
⋃
x∈C A

f
0x ∈ J0 and

⋃
x∈D A

f
0x ∈ J0.

If x ∈ C, there exists y ∈ [0, x) such that f(y) ≥ f(x) > 0 and there
exist n, k ∈ N such that 0 < xn,k < x and f(xn,k) ≥ f(x). So, by Lemma 2,
Af0x ⊂ Af0xn,k . Hence

⋃
x∈C A

f
0x ⊂

⋃
n,k∈N A

f
0xn,k

∈ J0. Now let {ti}i∈N be a
dense set in D containing all points which are left isolated in D. Note that

⋃
x∈D

Af0x ⊂
∞⋃
i=1

Af0ti . (1)

Indeed, let z ∈
⋃
x∈D A

f
0x. Then there exists x ∈ D such that z ∈ Af0x. If

there exists i0 ∈ N such that x = ti0 , z ∈
⋃
i∈N A

f
0ti
. So let us assume that

x /∈ {ti : i ∈ N}. Hence x is a left accumulation point of D and hence also
of {ti : i ∈ N}. It is also easy to show that f �D is strictly increasing and
continuous from the left. Therefore it is not difficult to conclude that there
exists i0 ∈ N such that f(ti0) > z. Then z ∈ [0, f(ti0)] \ f([0, ti0 ]) = Af0ti0

,

which finishes the proof of (1). From (1) we conclude that
⋃
x∈D A

f
0x ∈ J0,

which finishes the proof of the theorem.

The following lemmas can be found in [4] (see also [3]).

Lemma 3. A? ⊂ cla(A? \ D̂).

Lemma 4. A? ⊂ cla(D̂).

Theorem 2. Let f : A? → R and let f ∈ DP . Then the following conditions
are equivalent:

(i) the function f is quasi-continuous (cliquish),
(ii) the function f �D̂ is quasi-continuous (cliquish),
(iii) the function f �A?\D̂ is quasi- continuous (cliquish).
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Proof. (for quasi-continuity). Implications (i) =⇒ (ii) and (i) =⇒ (iii)
follows from the fact that sets D̂ and A? \ D̂ are dense in A?. Now we shall
prove the implication (ii) =⇒ (i). (The proof of the implication (iii) =⇒ (i) is
analogous.)

Let ξ ∈ A?, let ε > 0 and let δ > 0. We will show that there exists
η ∈ D̂ ∩ B(ξ, δ) such that f(η) ∈ (f(ξ) − ε

2 , f(ξ) + ε
2 ). Indeed, if ξ ∈ D̂, it

suffices to put η = ξ. So assume that ξ /∈ D̂. By Lemma 4 there exists an
arc L = L(ξ, a) such that L \ {ξ} ⊂ D̂. We can assume that L ⊂ B(ξ, δ).
Since (by assumption) f(L) is a connected set, there exists η ∈ L such that
f(η) ⊂ (f(ξ)− ε

2 , f(ξ) + ε
2 ). Then f �D̂ is quasi-continuous at η. Hence there

exists a nonempty open set V ⊂ B(ξ, δ) such that

f(V ∩ D̂) ⊂ (f(ξ)− ε

2
, f(ξ) +

ε

2
). (2)

Consider φ ∈ V \ D̂. Then φ is an endpoint of an arc L? = L(φ, b) such that
L? \ {φ} ⊂ V ∩ D̂ (Lemma 4). By assumption f(L?) is a connected set; so
(from (2)) f(φ) ∈ [f(ξ)− ε

2 , f(ξ) + ε
2 ]. Hence f(V \ D̂) ⊂ [f(ξ)− ε

2 , f(ξ) + ε
2 ].

From this and (2), it follows that f(V ) ⊂ (f(ξ) − ε, f(ξ) + ε), which finishes
the proof of the quasi-continuity of f at ξ.
Proof. (for cliquish). Implications (i) =⇒ (ii) and (i) =⇒ (iii) follow from
the fact that sets D̂ and A? \ D̂ are dense in A?. Now we shall prove the
implication (ii) =⇒ (i). (The proof of the implication (iii) =⇒ (i) is analogous.)
Let ξ ∈ A?, let ε > 0 and let δ > 0. Then from Lemma 4 we can infer that
there exists η ∈ D̂ ∩ B(ξ, δ). Then f �D̂ is cliquish at η. Hence there exists a
nonempty open set V ⊂ B(ξ, δ) such that

|f(φ)− f(ψ)| < ε

3
for each φ, ψ ∈ V ∩ D̂. (3)

Now let η, τ ∈ V . There are three possible cases.
10 η, τ ∈ V ∩ D̂.

Then |f(η)− f(τ)| < ε
3 < ε from (3).

20 η ∈ V ∩ D̂, τ ∈ V \ D̂.
Then by Lemma 4 there exists an arc L∗ = L(τ, τ1) such that L∗ \ {τ} ⊂

V ∩ D̂. Hence from (3) we infer that

f(a) ∈ (f(η)− ε

3
, f(η) +

ε

3
) for each a ∈ L∗ \ {τ}.

According to our assumption f(L∗) is connected; so f(τ) ∈ [f(η)− ε
3 , f(η)+ ε

3 ].
Therefore |f(τ)− f(η)| ≤ ε

3 < ε.

30 η, τ ∈ V \ D̂.
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Then by Lemma 4there exist arcs L1 = L(η, η1) and L2 = L(τ, τ1) such
that L1\{η} ⊂ V ∩D̂ and L2\{τ} ⊂ V ∩D̂. Hence from (3) we infer that f(a) ∈
(f(η1)− ε

3 , f(η1)+ ε
3 ) for each a ∈ L1\{η} and f(b) ∈ (f(η1)− ε

3 , f(η1)+ ε
3 ) for

each b ∈ L2\{τ}. According to our assumption f(L1) and f(L2) are connected
sets, so

f(η) ∈
[
f(η1)− ε

3
, f(η1) +

ε

3

]
and f(τ) ∈

[
f(η1)− ε

3
, f(η1) +

ε

3

]
.

Hence |f(η)− f(τ)| ≤ |f(η)− f(η1)|+ |f(η1)− f(τ)| ≤ ε
3 + ε

3 < ε. So we have
shown that |f(η)− f(τ)| < ε for each η, τ ∈ V, which finishes the proof of the
fact that f is cliquish at ξ.

Remark 1. The last theorem fails for continuity. For example let ξ0 ∈ D̂ be
fixed and define f : A? → R by

f(ξ) =

{
sin 1

ρ(ξ,ξ0) for ξ ∈ A? \ {ξ0}
0 for ξ = ξ0.

Then f ∈ DP , f �A?\D̂ is a continuous function, but f is not continuous at ξ.

Remark 2. The analogous theorem fails for Darboux functions f : R → R.
We will show that there exists no set A ⊂ R such that for each Darboux
function f : R→ R:

(i) if f �A is quasi-continuous, then f is quasi-continuous;

(ii) if f �R\A is quasi-continuous, then f is quasi-continuous.

Proof. Suppose that there exists a set A ⊂ R such that for each Darboux
function f : R→ R conditions (i) and (ii) hold. First note that R \A is dense
in R. Indeed, suppose that there exists a nonempty open interval P ⊂ A.
Let f : R → R be a function such that f(x) = 0 for x /∈ P and f(P ′) = R
for each nonempty open interval P ′ ⊂ P . Then f is the Darboux function,
f �R\A= 0 is quasi-continuous, but f is not quasi-continuous, which contradicts
the condition (ii).

In the analogous way we can prove that A is dense in R. Moreover note
that there exists a nonempty interval (a, b) such that A is c-dense in (a, b) or
R \ A is c-dense in (a, b). Suppose, for instance, that the set A is c-dense in
some interval (a0, b0); i.e., the set A ∩ (a0, b0) is c-dense in itself. Hence

A ∩ (a0, b0) =
⋃
α<c

Aα,
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where Aα, α < c, are dense in A∩ (a0, b0) and these sets are pairwise disjoint.
Let ξ : {Aα : α < c} → R be a bijection. We define a function f : R→ R by

f(x) =

{
0 if x /∈ A ∩ (a0, b0)
ξ(Aα) if x ∈ Aα, α < c.

First note that f is a Darboux function. Indeed, let P ⊂ R be a non-degenerate
interval. If P ⊂ R \ (A ∩ (a0, b0)), then f(P ) = {0} is connected. So assume
that P ∩ A ∩ (a0, b0) 6= ∅. Then Int(P ) ∩ Aα 6= ∅ for each α < c. Hence
f(P ) ⊃ ξ({Aα : α < c}) = R is a connected set.

The function f �R\A≡ 0 is quasi-continuous, but f is not quasi-continuous
at any point of the interval (a0, b0).

If A ⊂ X (where X is a topological space) let CA denote a set of all
functions f : X → R which are continuous at some point of the set A.

Theorem 3. Let F be a space of functions f : A? → R such that f �D̂∈ DP
(with the metric of uniform convergence). Then the set DP ⊂ F is porous at
each point η ∈ CD̂ ∩ F .

Proof. Let η ∈ CD̂ ∩ F . Then there exists a point g0 ∈ D̂ of continuity of
the function η. Let R > 0. Then there exists δ > 0 such that

η(B(g0, δ)) ⊂ (η(g0)− R

8
, η(g0) +

R

8
).

By Lemma 3 there exists an arc L0 = L(g0, t0) such that L0 \ {g0} ⊂ A? \ D̂.
We may assume that L0 ⊂ B(g0,

δ
2 ). For each α ≥ 0 let Tα = {t ∈ A? :

ρL0(t) = α}. Let α0 > 0 be such that Tα0 ⊂ B(g0,
δ
2 ). Define h : A? → R by

h(t) =



η(t) if t ∈ A? \B(g0, δ)
R
8 sin 1

α + η(g0) if t ∈ Tα, 0 < α ≤ α0

R
8 sin 1

α0
+ η(g0) if t ∈

⋃
α>α0

Tα ∩B(g0,
δ

2
)

R
8 sin 1

δ−r + η(g0) if t ∈ S(g0, r), r ∈ [ 3
4δ, δ)

R(sin 4
δ−sin 1

α0
)

2δ r + η(g0) +
R(3 sin 1

α0
−2 sin 4

δ )

8 if t ∈ S(g0, r), r ∈ [ δ2 ,
3
4δ]

η(g0)− R
8 if t = g0

η(g0) + R
8 if t ∈ L0 \ {g0}.

First we shall show that
h ∈ F . (4)
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Let L ⊂ D̂ be an arc. Then there are 6 possible cases with some subcases.
10 L ⊂ A? \B(g0, δ).

Then h(L) = η(L) is a connected set, because η ∈ F .
20 L ⊂ B(g0,

δ
2 ).

If L ⊂ Tα for some α ∈ [0,+∞) or L ⊂
⋃
α>α0

Tα ∩ B(g0,
δ
2 ), then h(L)

is a singleton; thus a connected set. Hence assume that these cases fail. Let
α1 = inf{α ∈ [0,+∞) : L ∩ Tα 6= ∅} and α2 = sup{α ∈ [0,+∞) : L ∩ Tα 6= ∅}.
Then 0 ≤ α1 < α2 < +∞. Moreover, since an arc L is connected, we can
conclude that L ∩ Tα 6= ∅ for each α ∈ (α1, α2). Hence

h(L) = h(L ∩
⋃

α∈〈α1,α2〉

Tα) = ξ(〈α1, α2〉),

where ξ : [0,+∞)→ R is defined by

ξ(x) =


η(g0)− R

8 for x = 0
R
8 sin 1

x + η(g0) for x ∈ (0, α0]
R
8 sin 1

α0
+ η(g0) for x ∈ [α0,+∞)

and 〈α1, α2〉 is an interval with endpoints α1 and α2 such that α1 ∈ 〈α1, α2〉 ⇐⇒
L ∩ Tα1 6= ∅ and α2 ∈ 〈α1, α2〉 ⇐⇒ L ∩ Tα2 6= ∅. Hence h(L) is a connected
set, because ξ is a Darboux function.
30 L ⊂ B(g0, δ) \B(g0,

δ
2 ).

If L ⊂ S(g0, r) for some r ∈ [ δ2 , δ), then h(L) is a singleton; hence a
connected set. So assume that this case fails. Let r1 = inf{r ∈ [ δ2 , δ) :
L ∩ S(g0, r) 6= ∅} and r2 = sup{r ∈ [ δ2 , δ) : L ∩ S(g0, r) 6= ∅}. Then it
is not difficult to see that δ

2 ≤ r1 < r2 ≤ δ. Let 〈r1, r2〉 be an interval
with endpoints r1 and r2 such that r1 ∈ 〈r1, r2〉 ⇐⇒ L ∩ S(g0, r1) 6= ∅ and
r2 ∈ 〈r1, r2〉 ⇐⇒ L ∩ S(g0, r2) 6= ∅. Then 〈r1, r2〉 ⊂ [ δ2 , δ) and L ∩ S(g0, r) 6= ∅
for each r ∈ (r1, r2). Hence

h(L) = h(L ∩
⋃

r∈〈r1,r2〉

S(g0, r)) = τ(〈r1, r2〉),

where τ : [ δ2 , δ)→ R is defined by

τ(x) =


R(sin 4

δ − sin 1
α0

)
2δ

x+ η(g0) +
R(3 sin 1

α0
− 2 sin 4

δ )
8

for x ∈ [ δ2 ,
3δ
4 ]

R
8 sin 1

δ−x + η(g0) for x ∈ [ 3δ
4 , δ).

Hence h(L) is a connected set, because τ is the continuous function.
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40 L ⊂ B(g0, δ) and L ∩B(g0, δ) \B(g0,
δ
2 ) 6= ∅ and L ∩B(g0,

δ
2 ) 6= ∅.

Let r2 = sup{r ∈ [ δ2 , δ) : L ∩ S(g0, δ) 6= ∅}. Note that δ
2 ≤ r2 < δ. Then

L ∩ S(g0, r) 6= ∅ for each r ∈ [
δ

2
, r2). (5)

Consider the following two subcases:
4a) L ∩

⋃
0≤α≤α0

Tα 6= ∅.
Then let α1 = inf{α ∈ [0, α0] : L ∩ Tα 6= ∅}. Hence L ∩ Tα 6= ∅ for each

α ∈ (α1, α0]. By (5)

h(L) =h(L ∩
⋃

0≤α≤α0

Tα) ∪ h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
))

∪ h(L ∩B(g0, δ) \B(g0,
δ

2
))

=h(L ∩
⋃

α∈〈α1,α0]

Tα) ∪ h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
)) ∪ h(L ∩

⋃
r∈[ δ2 ,r2〉

S(g0, r))

=ξ(〈α1, α0]) ∪ h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
)) ∪ τ([

δ

2
, r2〉),

where ξ is defined as in the case 20, τ is defined as in the case 30 and
[ δ2 , r2〉 is an interval with endpoints δ

2 and r2 such that r2 ∈ [ δ2 , r2〉 ⇐⇒
L ∩ S(g0, r2) 6= ∅ and 〈α1, α0] is an interval with endpoints α1 and α2 such
that α1 ∈ 〈α1, α0]⇐⇒ L ∩ Tα1 6= ∅. So, from the fact that

h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
)) ⊂ {R

8
sin

1
α0

+ η(g0)} ⊂ ξ(〈α1, α0]),

we get that h(L) = ξ(〈α1, α0]) ∪ τ([ δ2 , r2〉), where sets ξ(〈α1, α0]), τ([ δ2 , r2〉)
are connected and are not disjoint (because ξ(α0) = R

8 sin 1
α0

+ η(g0) = τ( δ2 )).
Therefore h(L) is a connected set.
4b) L ∩

⋃
0≤α≤α0

Tα = ∅.
Then

h(L) =h(L ∩
⋃
α>α0

Tα(L0) ∩B(g0,
δ

2
)) ∪ h(L ∩B(g0, δ) \B(g0,

δ

2
))

={R
8

sin
1
α0

+ η(g0)} ∪ τ([
δ

2
, r2〉) = τ([

δ

2
, r2〉),

where τ and [ δ2 , r2〉 are defined as in the case 4a). So h(L) is a connected set.
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50 L ⊂ A? \B(g0,
δ
2 ) and L \B(g0, δ) 6= ∅ and L ∩B(g0, δ) 6= ∅.

Let r1 = inf{r ∈ [ δ2 , δ) : L ∩ S(g0, r) 6= ∅}. Then L ∩ S(g0, r) 6= ∅ for
each r ∈ (r1, δ). Let {Si}i∈I be the family of all nonempty components of
L \B(g0, δ). Then

Si ∩ S(g0, δ) 6= ∅ for each i ∈ I. (6)

Indeed, suppose that there exists i0 ∈ I such that Si0 ∩ S(g0, δ) = ∅. Let
H : [0, 1] → L be a homeomorphism. Then for each i ∈ I, H−1(Si) = [ai, bi]
for some ai, bi such that 0 ≤ ai ≤ bi ≤ 1. It is easy to see that ai0 6= 0 or
bi0 6= 1 (if not Si0 = L, which is impossible). Let, for instance, ai0 6= 0. Then

there exists {an}n∈N ⊂ [0, 1] such that an ↑ ai0
and an /∈ H−1(

⋃
i 6=i0

Si) for each n ∈ N. (7)

Indeed, suppose that there is 0 ≤ a? < ai0 such that (a?, ai0) ⊂ H−1(
⋃
i 6=i0 Si).

Let

I0 = {i 6= i0 : H−1(Si) ∩ (a?, ai0) 6= ∅}.

Then (a?, ai0) ⊂ H−1(
⋃
i∈I0 Si). Hence

H−1(
⋃
i∈I0

Si) = H−1(
⋃
i∈I0

Si) ∪ (a?, ai0)

is a connected set, because for each i ∈ I0 we have that H−1(Si)∩(a?, ai0) 6= ∅.
So

⋃
i∈I0 Si is also a connected set (in L). Since Si, i ∈ I0, are components

of some set, I0 = {j0} for some j0 ∈ I0. Then j0 6= i0. Hence (a?, ai0) ⊂
H−1(Sj0). Hence

H−1(Si0) ∩ cl(H−1(Sj0)) ⊃ [ai0 , bi0 ] ∩ [a?, ai0 ] 6= ∅.

Thus H−1(Si0) ∪H−1(Sj0) is a connected set as a sum of non-separated con-
nected sets. So Si0∪Sj0 is a connected set in L, which is impossible completing
the proof of (6).

Let {an}n∈N ⊂ [0, 1] be a sequence such that an ↑ ai0 and an /∈ H−1(
⋃
i 6=i0 Si)

for each n ∈ N. Hence H(an) ∈ L∩B(g0, δ) for each n ∈ N. Then H(ai0) ∈ L∩
B(g0, δ). On the other hand H(ai0) ∈ Si0 ⊂ L\B(g0, δ)\S(g0, δ) = L\B(g0, δ).
This contradiction finishes the proof of (7).
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So we have

h(L) = h(L ∩B(g0, δ)) ∪ h(L \B(g0, δ))

= h(L ∩
⋃

r∈〈r1,δ)

S(g0, δ)) ∪ η(L \B(g0, δ)) = τ(〈r1, δ)) ∪ η(
⋃
i∈I

Si)

= [η(g0)− R

8
, η(g0) +

R

8
] ∪

⋃
i∈I

η(Si),

(8)

where τ is defined as in the case 30 and 〈r1, δ) is an interval with endpoints
r1, δ such that r1 ∈ 〈r1, δ)⇐⇒ L∩S(g0, r1) 6= ∅. Moreover note that for each
i ∈ I

η(Si ∩ S(g0, δ)) ⊂ η(B(g0, δ)) ⊂ (η(g0)− R

8
, η(g0) +

R

8
);

so η(Si) ∩ [η(g0) − R
8 , η(g0) + R

8 ] 6= ∅ for each i ∈ I. From the fact that for
each i ∈ I, η(Si) is a connected set and from the equality (8) we can infer that
h(L) is a connected set.

60 L ∩B(g0,
δ
2 ) 6= ∅, L ∩B(g0, δ) \B(g0,

δ
2 ) 6= ∅ and L \B(g0, δ) 6= ∅.

Then obviously

L ∩ S(g0, r) 6= ∅ for each r ∈ [
δ

2
, δ). (9)

Let {Si}i∈I be the family of all nonempty components of L \ B(g0, δ). Then,
as in the case 50 we can prove that Si ∩ S(g0, δ) 6= ∅ for each i ∈ I. Let us
consider the following two cases

6a) L ∩
⋃

0≤α≤α0
Tα 6= ∅.

Let α1 = inf{α ∈ [0, α0] : L ∩ Tα 6= ∅}. Then L ∩ Tα 6= ∅ for each
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α ∈ (α1, α0]. Hence by (9)

h(L) =h(L ∩B(g0,
δ

2
)) ∪ h(L ∩B(g0, δ) \B(g0,

δ

2
)) ∪ h(L \B(g0, δ))

=h(L ∩
⋃

0≤α≤α0

Tα) ∪ h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
))

∪ h(L ∩
⋃

r∈[ δ2 ,δ)

S(g0, r)) ∪ η(L \B(g0, δ))

=h(L ∩
⋃

α∈〈α1,α0]

Tα) ∪ h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
))

∪ τ([
δ

2
, δ)) ∪ η(

⋃
i∈I

Si)

=ξ(〈α1, α0]) ∪ h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
))

∪ [η(g0)− R

8
, η(g0) +

R

8
] ∪

⋃
i∈I

η(Si)

=ξ(〈α1, α0]) ∪ [η(g0)− R

8
, η(g0) +

R

8
] ∪

⋃
i∈I

η(Si),

(10)

where ξ and τ are defined as in previous cases and 〈α1, α0] denotes an interval
with endpoints α1, α0 such that α1 ∈ 〈α1, α0]⇐⇒ L ∩ Tα1 6= ∅. As in case 50

we can see that for each i ∈ I, η(Si) ∩ [η(g0)− R
8 , η(g0) + R

8 ] 6= ∅ and

ξ(〈α1, α0]) ∩ [η(g0)− R

8
, η(g0) +

R

8
] ⊃ {ξ(α0)} 6= ∅.

Moreover η(S1) is connected for each i ∈ I and ξ(〈α1, α0]) is connected. Hence
from the equality (10) we can infer that h(L) is a connected set.

6b) L ∩
⋃

0≤α≤α0
Tα = ∅.
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Then

h(L) =h(L ∩
⋃
α>α0

Tα ∩B(g0,
δ

2
)) ∪ h(L ∩B(g0, δ) \B(g0,

δ

2
)) ∪ h(L \B(g0, δ))

={R
8

sin
1
α0

+ η(g0)} ∪ h(L ∩
⋃

r∈[ δ2 ,δ)

S(g0, r)) ∪ η(
⋃
i∈I

Si)

={R
8

sin
1
α0

+ η(g0)} ∪ τ([
δ

2
, δ)) ∪

⋃
i∈I

η(Si)

=[η(g0)− R

8
, η(g0) +

R

8
] ∪

⋃
i∈I

η(Si)

and in analogous way as in the case 6a) we can prove that for each i ∈ I

[η(g0)− R

8
, η(g0) +

R

8
] ∩ η(Si) 6= ∅;

thus h(L) is a connected set. This completes the proof of (4).
It is easy to prove (using (3)) that ρ(h, η) < R

2 . From this inequality it is
easy to conclude that

B(h,
R

8
) ⊂ B(η,R). (11)

Now we show that
B(h,

R

8
) ∩ DP = ∅. (12)

Indeed, let µ ∈ B(h, R8 ). Then

µ(g0) ∈ (h(g0)− R

8
, h(g0) +

R

8
) = (η(g0)− R

4
, η(g0))

and for t ∈ L0 \ {g0}, µ(t) ∈ (h(t)− R
8 , h(t) + R

8 ) = (η(g0), η(g0) + R
4 )). Hence

µ(L0) is not a connected set; so µ /∈ DP and the proof of (12) is finished.
Hence from (11) and (12) we conclude that γ(η,R,DP) ≥ R

∀ and conse-

quently lim supR→0+
γ(η,R,DP)

R
≥ 1

8
; so the set DP is porous at the point η.

The proof of theorem is finished.
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[2] M. F. Lorefice, G. Riccobono, Linear spaces of Darboux derivatives, Real
Analysis Exchange 20 (1994-95), 776–785.
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