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ON THE EXISTENCE OF
NONMEASURABLE SUBGROUPS OF

COMMUTATIVE GROUPS

Abstract

For a given commutative group G equipped with a nonzero σ-finite
diffused measure µ, the question of the existence of a subgroup of G,
nonmeasurable with respect to µ, is discussed.

Let G be a commutative group of cardinality of the continuum and let
µ be a nonzero σ-finite diffused measure on G. In this paper, we consider
the problem of the existence of a subgroup of G which is nonmeasurable with
respect to µ.

We shall demonstrate, under the Continuum Hypothesis, that such a sub-
group always exists. Moreover, Theorem 1 below contains a much stronger
result stating that a nonmeasurable subgroup of G can be found in some fixed
countable family of subgroups of G.

We start with a well-known Banach-Kuratowski matrix (see [1]). Let us
recall that if the Continuum Hypothesis holds, then, for every set E of cardi-
nality of the continuum, there exists a double family

(Em,n)m<ω,n<ω

of subsets of E, such that:

a) Em,n ⊂ Em,n+1 for all natural numbers m and n;

b) ∪{Em,n : n < ω} = E for any natural number m;
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c) for each function f : ω → ω, the set

E0,f(0) ∩ E1,f(1) ∩ · · · ∩ Em,f(m) ∩ . . .

is at most countable.
The above-mentioned family (Em,n)m<ω,n<ω is usually called a Banach-

Kuratowski matrix over E. It was shown in [1] that, for every nonzero σ-finite
diffused measure µ on E, at least one set Em,n is nonmeasurable with respect
to µ. Applying this classical result, we can establish the following statement.

Theorem 1. Assume that the Continuum Hypothesis is true, and let G be
a commutative group of cardinality of the continuum. Then there exists a
countable family (Gi)i∈I of subgroups of G, such that, for any nonzero σ-finite
diffused measure µ on G, at least one of the groups Gi (i ∈ I) is nonmeasurable
with respect to µ.

Proof. According to the well-known theorem of the theory of commutative
groups (see, e.g., [5]), the given group G can be represented in the form

G = ∪{Γk : k < ω},

where (Γk)k<ω is an increasing countable family of subgroups of G and each
group Γk is a direct sum of cyclic groups. In addition to this, we may suppose
without loss of generality that all groups Γk are of cardinality of the continuum.
For every natural number k, we may write Γk =

∑
j∈J [ek,j ] where J is some set

of cardinality of the continuum and [ek,j ] denotes the cyclic group generated
by ek,j . We also write

Ek = {ek,j : j ∈ J} for k < ω.

Further, for any natural number k, let (Ek,m,n)m<ω,n<ω be a Banach-Kuratowski
matrix over Ek and let Γk,m,n be the group generated by Ek,m,n. Then it is
not hard to check that the family of groups (Γk,m,n)m<ω,n<ω is a Banach-
Kuratowski matrix for the group Γk. Now, we put

(Gi)i∈I = {Γk : k < ω} ∪ {Γk,m,n : k < ω,m < ω, n < ω},

and we assert that the countable family (Gi)i∈I of subgroups of G is the
required one. Indeed, let µ be an arbitrary nonzero σ-finite diffused measure
on G. Since every nonzero σ-finite measure is equivalent to a probability
measure, we may assume without loss of generality that our µ is a probability
measure. We have to show that at least one Gi is nonmeasurable with respect
to µ. Suppose to the contrary that all Gi (i ∈ I) are µ-measurable. Then,
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taking into account the relation G = ∪{Γk : k < ω}, we infer that there exists
a natural number r for which µ(Γr) > 0. In other words, µ is a nonzero finite
diffused measure on the set Γr and all subsets Γr,m,n (m < ω, n < ω) of this
set turn out to be µ-measurable. But this is impossible since, as mentioned
above, the family (Γr,m,n,)m<ω,n<ω forms a Banach-Kuratowski matrix over
Γr. The contradiction obtained ends the proof of Theorem 1.

Example. Denote by R the real line and consider an arbitrary nonzero σ-
finite diffused measure ν on R. If the Continuum Hypothesis holds, then,
in view of the result presented above, there always exists a subgroup of the
additive group R, nonmeasurable with respect to ν. Moreover, by applying
an argument similar to the proof of Theorem 1, it can be shown, under CH,
that there always exists a vector subspace of R (over the rationals) which is
nonmeasurable with respect to ν (cf. Remark 3 below).

In connection with Theorem 1, let us notice that some analogue of this
theorem can be established by using Martin’s Axiom instead of the Continuum
Hypothesis. (Recall that Martin’s Axiom is much weaker than CH and does
not essentially restrict the size of the continuum.)

In our further considerations, we shall present an analogue of Theorem 1
for a commutative group G whose cardinality is equal to the first uncountable
cardinal ω1. Note that, in this case, the argument is more complicated and
leads to a result in ZFC theory. Here the main role is played by a transfinite
matrix of Ulam (see [6]).

We need several lemmas.

Lemma 1. Let E be a set, S be a σ-algebra of subsets of E and let I be a σ-
ideal of subsets of E, such that I ⊂ S and the pair (S, I) satisfies the countable
chain condition. Further, let {Zα : α < ω1} be an uncountable family of sets
belonging to S, let m > 0 be a fixed natural number and suppose that, for any
m-element subset D of ω1, the relation ∩{Zα : α ∈ D} ∈ I is fulfilled. Then
there exists an uncountable subset A of ω1 such that Zα ∈ I for each ordinal
α from A.

The proof of this lemma is not hard. It can be carried out by induction on
m (for details, see [3]). The case m = 2 is, in fact, equivalent to the countable
chain condition which says that any disjoint family of sets from S \ I is at
most countable. Also, using the induction on m, we are able to establish that
the required set A is actually co-countable in ω1 (and hence uncountable). In
the sequel, only the uncountability of A will be essentially utilized.

Let Y be a set of cardinality ω1. Consider a double family (Yn,ξ)n<ω,ξ<ω1

of subsets of Y . We shall say that this family is an admissible transfinite
matrix for Y if it possesses the following two properties:
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(1) for each ordinal number ξ < ω1, the partial family (Yn,ξ)n<ω is increasing
by inclusion and ∪{Yn,ξ : n < ω} = Y ;

(2) for each natural number n, there exists a natural number m = m(n) such
that, for any set D ⊂ ω1 with card(D) = m, we have

card(∩{Yn,ξ : ξ ∈ D}) ≤ ω.

Lemma 2. For any set Y with card(Y ) = ω1, there exists an admissible
transfinite matrix.

Proof. The argument is essentially based on the existence of an Ulam matrix
over Y . Indeed, let (Xn,ξ)n<ω,ξ<ω1 be an arbitrary Ulam matrix for Y . Then
we have:

(a) for each ordinal number ξ < ω1, the set Y \ ∪{Xn,ξ : n < ω} is at
most countable;

(b) for each natural number n, the partial family {Xn,ξ : ξ < ω1} is
disjoint.

Define
{xn,ξ : n < ω} = Y \ ∪{Xn,ξ : n < ω};
Yn,ξ = ∪{Xk,ξ : k ≤ n} ∪ {xk,ξ : k ≤ n}

for all n < ω and ξ < ω1. Then it is not hard to verify that the family
(Yn,ξ)n<ω,ξ<ω1 is an admissible matrix of subsets of Y . (Namely, for any
natural number n, we may put m(n) = n+ 2.)

Lemma 3. Let Y be a set of cardinality ω1 and let (Yα)α<ω1 be a family of
subsets of Y . Then there exists a countably generated σ-algebra S of subsets
of Y , such that {Yα : α < ω1} ⊂ S.

This lemma is well known and its proof is not difficult. It suffices to apply
the so-called Sierpiński partition of the product set ω1 × ω1 (for details, see
e.g. [4]).

Lemma 4. Let Y be a set of cardinality ω1 and let (Yn,ξ)n<ω,ξ<ω1 be an
admissible transfinite matrix for Y . Then, for every nonzero σ-finite diffused
measure µ on Y , at least one set Yn,ξ is nonmeasurable with respect to µ.

Note that Lemma 4 follows easily from Lemma 1 (cf. also [3]).

Lemma 5. Let Γ be a commutative group representable in the form of a
direct sum Γ =

∑
ζ<ω1

[eζ ], where (eζ)ζ<ω1 is an injective family of elements
of Γ, and let (En,ξ)n<ω,ξ<ω1 be an admissible transfinite matrix over the set
E = {eζ : ζ < ω1}. For each subset F of E, denote by [F ] the group generated
by F . Then the family of groups ([En,ξ])n<ω,ξ<ω1 is an admissible transfinite
matrix over Γ.
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The proof of Lemma 5 is reduced to a direct verification.
Now, we can formulate and prove the following statement.

Theorem 2. Let G be any commutative group of cardinality ω1. Then there
exists a countable family (Gi)i∈I of subgroups of G, such that, for every
nonzero σ-finite diffused measure µ on G, at least one group Gi is nonmea-
surable with respect to µ.

Proof. As we know, our group G can be represented in the form

G = ∪{Γk : k < ω}

where (Γk)k<ω is an increasing family of subgroups of G and each Γk is a
direct sum of cyclic groups. We may assume without loss of generality that
all Γk are of cardinality ω1. So we may write Γk =

∑
ζ<ω1

[ek,ζ ]. For k < ω
put Ek = {ek,ζ : ζ < ω1} and let (Ek,n,ξ)n<ω,ξ<ω1 be an admissible transfinite
matrix over Ek. (This matrix exists according to Lemma 2.) Further, applying
Lemma 3, we see that there exists a countable family Sk of subsets of Ek, such
that

{Ek,n,ξ : n < ω, ξ < ω1} ⊂ σ(Sk)

where σ(Sk) denotes the σ-algebra of sets, generated by Sk. Clearly, we may
suppose that Sk is an algebra of sets. Consequently, the σ-algebra σ(Sk)
coincides with the monotone class generated by Sk (see, e.g., [2]).

Now, we put

(Gi)i∈I = {Γk : k < ω} ∪ {[Z] : Z ∈ ∪k<ωSk},

and we assert that the family of groups (Gi)i∈I is the required one. To see
this, take any nonzero σ-finite diffused measure µ on G and suppose to the
contrary that all groups Gi (i ∈ I) are µ-measurable. Then, for some r < ω,
we must have µ(Γr) > 0. Consider the countable family of groups

Pr = {[Z] : Z ∈ Sr}.

An easy transfinite induction shows that all groups [Er,n,ξ] for n < ω, ξ < ω1

belong to the monotone class generated by Pr. But, according to our assump-
tion, all sets from Pr are µ-measurable. Therefore, all groups [Er,n,ξ] must
be µ-measurable, too, which contradicts Lemmas 4 and 5. The contradiction
obtained finishes the proof of Theorem 2.

Remark 1. Obviously, Theorem 1 follows from Theorem 2.

Remark 2. For noncommutative groups of cardinality ω1, Theorem 2 fails to
hold (cf. [4], p. 87).
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Remark 3. It is easy to see that direct analogues of Theorems 1 and 2
are valid for vector spaces (e.g. over the field Q of all rationals) instead
of commutative groups. In particular, if V is a vector space over Q with
card(V ) = ω1, then there exists a countable family (Vi)i∈I of vector subspaces
of V , such that, for any nonzero σ-finite diffused measure µ on V , at least one
Vi is nonmeasurable with respect to µ.

It would be interesting to extend Theorems 1 and 2 (respectively, their
above-mentioned analogues) to a wider class of uncountable commutative
groups G (respectively, to a wider class of uncountable vector spaces V ).
Namely, the following question seems to be of some interest.

Let G be a commutative group whose cardinality is not real-valued mea-
surable, and let µ be a nonzero σ-finite diffused measure on G. Does there
exist a subgroup of G nonmeasurable with respect to µ?
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