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LINEARLY ORDERED FAMILIES OF
BAIRE 1 FUNCTIONS

Abstract

We consider the set of Baire 1 functions endowed with the pointwise
partial ordering and investigate the structure of the linearly ordered
subsets.

1 Introduction

Any set F of real valued functions defined on an arbitrary set X is partially
ordered by the pointwise ordering; that is, f ≤ g iff f(x) ≤ g(x) for all x ∈ X.
In other words put f < g iff f(x) ≤ g(x) for all x ∈ X and f(x) 6= g(x)
for at least one x ∈ X. Our aim will be to investigate the possible order
types of the linearly ordered (or simply ‘ordered’ from now on) subsets of this
partially ordered set, which is the same as to characterize the ordered sets that
are similar to an ordered subset of F . Here two ordered sets are said to be
similar iff there exists an order preserving bijection between them, and such
a bijection from an ordered set onto an ordered subset of F is often referred
to as a ‘representation’ of the ordered set. We sometimes say that the set
is represented ‘on X’. An ordered set similar to a representable one is also
representable, so we can talk about ‘representable order types’ as well.

Since the functions in an ordered set are somehow ‘above each other’, one
could think that this ordered set must be similar to a subset of the real line.
As we shall see this is far from being true.

The problem of finding long sequences in F ; that is, representing big ordi-
nals has been studied for a long time. It was Miklós Laczkovich who posed the
question how one can characterize the representable ordered sets, particularly
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in the case when X = R and F is the set of Baire 1 functions. What makes
this problem interesting is that the corresponding questions about continuous
(that is Baire 0) and Baire α functions (α > 1) are completely solved. In
the continuous case an ordered set is representable iff it is similar to a sub-
set of R (an easy exercise), and for α > 1 the question has turned out to be
independent of ZFC, that is the usual axioms of set theory [Ko].

The known facts about the case α = 1 are the followings. The first is a clas-
sical theorem of Kuratowski asserting that there is no increasing or decreasing
sequence of length ω1 of real Baire 1 functions [Ku, §24. III.2’]; that is, ω1 is
not representable. (In the sequel representable will always mean representable
by real Baire 1 functions.) The other is Péter Komjáth’s Theorem stating
that no Souslin line is representable [Ko]. (A Souslin line is a non-separable
ordered set that does not contain an uncountable family of pairwise disjoint
open intervals; that is, ccc but not separable. The existence of Souslin lines is
independent of ZFC [Je, Theorems 48,50].)

The main goal of this paper is to present a few constructions of repre-
sentable ordered sets which show that Kuratowski’s Theorem is ‘not too far’
from being a characterization. In Section 2 we prove that certain operations
result in representable order types, and then in Sections 3 and 4 we show that
everything is representable that can be built up by certain steps, like forming
countable products or replacing points by ordered sets.

We would also like to point out that if we restrict ourselves to the case of
characteristic functions, we arrive at the problem of families of sets linearly
ordered by inclusion. Indeed, χA < χB iff A & B. The case of real Baire 1
functions corresponds to the problem of representing ordered sets by ambigu-
ous subsets of the real line. (A set is called ambiguous iff it is both Fσ and
Gδ.) It is not hard to check that almost everything proved in this paper is
valid for this case as well. Moreover, a kind of characterization of ordered sets
that are representable by ambiguous sets is given in the last section.

For a topological space X the set of order types representable by real valued
Baire 1 functions is denoted by R(X). The set of order types representable
by ambiguous subsets is denoted by R0(X).

Acknowledgment I am greatly indebted to my advisor Professor Miklós
Laczkovich for his extensive help and advice and for everything I have learned
from him.

2 Preliminaries

We shall frequently use the following simple lemma.
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Lemma 2.1.

(i) Let X and Y be metric spaces, f : X → R Baire 1 and g : Y → X
continuous. Then f ◦ g : Y → R is Baire 1.

(ii) Let X be a metric space and Xn ⊂ X (n ∈ N) Fσ sets such that X =⋃∞
n=1Xn. If f : X → R is relatively Baire 1 on each Xn (n ∈ N), then

f is Baire 1.

Let us first consider the following question, which shall be a useful tool in
the sequel. Which Polish spaces are equivalent to the real line in the sense
that the same ordered sets can be represented on them? We shall ignore the
countable metric spaces as it is easy to see that if an order type is representable
on such a space, then it is similar to a subset of the real line. Denote the Cantor
set by C.

Theorem 2.2. R(X) = R(C) = R(R) for any σ-compact uncountable metric
space X.

Proof. It is obviously enough to prove the first equality. Let X be compact
for the time being. Then a classical theorem asserts that there exists a contin-
uous surjection F : C → X [Ku, §41, VI.3a]. If {fα : α ∈ Γ} is an ordered set
of Baire 1 functions defined on X, one can easily verify that {fα ◦ F : α ∈ Γ}
is also ordered and similar to the former ordered set as a consequence of the
surjectivity of F and consists of Baire 1 functions defined on C by Lemma 2.1.

In the general case X = ∪∞n=1Xn where Xn ⊂ X is compact and again let
{fα : α ∈ Γ} be an ordered set of Baire 1 functions on X. We shall show that
this set is representable on the interval [0, 1] and therefore on C as well, since
[0, 1] is a compact metric space and we can apply what we have proved in the
previous case.

For each n ∈ N fix a set Hn ⊂ ( 1
n ,

1
n+1 ) homeomorphic to the Cantor

set and also a homeomorphism gn : Hn → C. Furthermore we can choose
continuous surjections Fn : C → Xn (n ∈ N) since Xn is a compact metric
space. Now we represent the set in the following way. For each α ∈ Γ let

gα =

{
fα ◦ Fn ◦ gn on Hn (n ∈ N)
0 on [0, 1] \ ∪∞n=1Hn.

Indeed, the map gα 7→ fα (α ∈ Γ) turns out to be a similarity as Fn ◦ gn is
surjective and moreover in view of Lemma 2.1 it is straightforward to verify
that gα is a Baire 1 function on [0, 1] for each α ∈ Γ.

In order to check the opposite direction let {fα : α ∈ Γ} be an ordered set
of Baire 1 functions on the Cantor set. According to a classical theorem every



52 M. Elekes

uncountable compact metric space contains a subspace homeomorphic to C
[Ku, §36, V.1], which easily generalizes to the case of uncountable σ-compact
metric spaces since if X = ∪∞n=1Xn, Xn compact, then at least one Xn is
uncountable. We can therefore fix a homeomorphism h : C → Y ⊂ X and for
α ∈ Γ let

gα =

{
fα ◦ h−1 on Y

0 on X \ Y .

One can easily prove in the above manner that this is an ordered set of Baire
1 functions similar to the above one.

The above theorem implies the surprising fact that all the complicated
ordered sets represented in the following sections are also representable by
functions of connected graphs.

Corollary 2.3. A representable ordered set is also representable by Darboux
Baire 1 functions and consequently by Baire 1 functions of connected graphs.

Proof. It is well-known that the graph of a Baire 1 function is connected iff
it is Darboux [Br, II.1.1]. By the previous theorem we can assume that the
set is represented on the Cantor set. It is not hard to extend the representing
functions by a common continuous function to the complement of the Cantor
set which makes the representing functions Darboux and Baire 1 by Lemma
2.1.

Next we show that there are at most two distinct possible sets R(X) for
all uncountable Polish spaces X.

Theorem 2.4. R(X) = R(R \Q) for any non-σ-compact Polish space X.

Proof. We apply the argument of Theorem 2.2. In one direction we use that
every Polish space is the continuous image of the irrationals [Ku, §36, II.1],
while in the other direction we apply Hurewicz’s Theorem [Ke, Theorem 7.10]
asserting that every non-σ-compact Polish space contains a homeomorphic
copy of the irrationals as a closed subspace.

This leaves the question open whether all uncountable Polish spaces are
equivalent or not.

Question 2.5. Does R(C) = R(R \Q) hold?

Remark. In order to give an affirmative answer it would be enough to prove
that every ordered set of Baire 1 functions on the irrationals can be represented
by Baire 1 functions on the reals. Indeed, on the one hand every uncountable
Polish space contains a subset which is homeomorphic to the Cantor set [Ku,
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§36, V.1], and on the other hand every Polish space is the continuous image
of R \Q. Hence the above argument works.

Moreover, it can be shown that a Baire 1 function defined on the irrationals
can be extended to the reals as a Baire 1 function, but so far we have been
unable to do this in an order preserving way.

3 Operations on Representable Ordered Sets

Now we investigate whether the class of representable sets is closed under
certain operations. We shall make use of these operations when constructing
complicated representable ordered sets.

Definition 3.1. For an arbitrary ordered set X we call X × {0, 1} with the
lexicographical ordering the duplication of X.

Question 3.2. Is it true that the duplication of a representable set is also
representable?

In most cases this question can be replaced by the following statement.

Statement 3.3. Let X be an ordered set such that the duplication of X is
representable. Then so is the ordered set obtained by replacing every x ∈ X by
a representable set Yx; that is, {(x, y) : x ∈ X, y ∈ Yx} with the lexicographical
ordering.

Proof. First we replace the points of the real line by uncountable closed
sets in the following way. Let P : [0, 1] → [0, 1]2 be a Peano curve; that
is, a continuous surjection, and let P1 be its first coordinate function. Then
P1 : [0, 1] → [0, 1] is also a continuous surjection; moreover the preimage
P−1

1 ({c}) is an uncountable closed set for all c ∈ [0, 1]. By Theorem 2.2 we
may assume that the duplication of X is represented on [0, 1] by the pairs of
functions fx < gx (x ∈ X). If we consider the functions fx ◦ P1 and gx ◦ P1

we obtain a similar ordered set of Baire 1 functions, but in the latter set any
two distinct elements differ on an uncountable closed sets, for if fx and gx
attained different values at cx, then fx ◦ P1 and gx ◦ P1 differ on P−1

1 ({cx}).
Since this is a compact metric space, we may assume that Yx is represented
on it. By composing with a increasing homeomorphism between R and the
interval (fx(cx), gx(cx)) we may also assume that the functions representing
Yx only attain values between fx(cx) and gx(cx).

Now we claim that the following representation will do. For x ∈ X and
y ∈ Yx let

h(x,y) =

{
fx ◦ P1 on [0, 1] \ P−1

1 ({cx})
the function representing y on P−1

1 ({cx}).
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These functions are easily seen to be Baire 1; so what remains to show is that
the representation is order preserving. In the first case x1 < x2; so fx1 < gx2 .
Hence

h(x1,y1) < gx1 ◦ P1 < fx2 ◦ P1 < h(x2,y2).

Finally, in the second case x1 = x2 = x and y1 < y2. Obviously h(x,y1)

and h(x,y2) differ on P−1
1 ({cx}) only where they are defined according to the

ordering of Yx. Thus h(x,y1) < h(x,y2).

Statement 3.4. Let X be an ordered set such that the duplication of X is
representable. Then Xω endowed with the lexicographical ordering is also rep-
resentable.

Proof. As in the previous proof we can represent the duplication of X such
that for every x ∈ X the representing functions fx, gx : R→ [0, 1] are different
constant functions on a suitable Cantor set Cx. Let dx denote the difference
of these two values. In the next step, for every fixed x1 ∈ X represent the
duplication of X on Cx1 in the same manner as above; that is, for each x2 ∈ X
let fx1,x2 , gx1,x2 : R→ [0,min( 1

2 , dx1)] be zero outside Cx1 such that they are
different constants on a suitable Cantor set Cx1,x2 ⊂ Cx1 . Let dx1,x2 denote
the difference of the two values. Then we proceed inductively and make sure
that 0 ≤ fx1,...,xn+1 , gx1,...,xn+1 ≤ min( 1

2n , dx1,...,xn
). It is not hard to see that

(x1, x2, . . . ) 7→
∞∑
n=1

fx1,...,xn

is the required representation, as the uniform limit of Baire 1 functions is Baire
1 itself [Ku, §31, VIII.2].

Remark. Instead of using the same set X at each level, we can prove in
exactly the same way that if the duplication of Xn is representable for every
n ∈ N, then so is

∏∞
n=1Xn, and more generally we can also use different sets

at a level; that is, we can correspond a set Xx1,...,xn
to each x1, . . . , xn.

However, we do not know the answer to the question concerning longer
products. As a simple transfinite induction shows, the following two questions
are equivalent.

Question 3.5. Is it true, that if the duplication of X is representable, then
the duplication of Xω is also representable? Or equivalently, is it true, that if
the duplication of X is representable, then so is Xα for every α < ω1?

Corollary 3.6. Suppose that the duplications of representable orderings are
also representable. Then Xα is representable for every representable X and
α < ω1.
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Proof. We prove this by induction on α. If α = β + 1, then Xα is similar
to Xβ × X. But Xβ is representable by the induction hypothesis, so is its
duplication by our assumption. Therefore we can apply Statement 3.3 and we
are done.

If α is a limit ordinal,, then [0, α) can be written as the disjoint union
of [αn, αn+1) for a suitable sequence αn (n ∈ N). The interval [αn, αn+1) is
similar to an ordinal βn < α, so Xα is similar to

∏∞
n=1X

βn , and we are again
done by the previous remark.

Remark. As above, we can generalize this result as well to
∏
β<αX

β and
also to the case when at each level we correspond an arbitrary representable
set to each point.

Next we pose another question.

Question 3.7. Is it true that the completion (as an ordered set) of a repre-
sentable ordered set is also representable?

Definition 3.8. Let X and Xn (n ∈ N) be ordered sets. We say that X is a
blend of the sets Xn if there exist pairwise disjoint subsets Hn ⊂ X (n ∈ N)
such that X = ∪∞n=1Hn and Hn is similar to Xn.

Statement 3.9. Suppose that duplications and completions of representable
sets are also representable. Then so is a blend X of the representable sets Xn.

Proof. Let Hn be as in the definition. By the hypothesis the completion
of Hn × {0, 1} is representable for each n ∈ N and we may assume that it is
represented on the interval (n, n+ 1). Let x ∈ X; that is, x ∈ Hn for exactly
one n, and let

fx =


the function representing (x, 0) on (n, n+ 1)
the function representing
sup{(y, i) ∈ Hm × {0, 1} : y ≤ x} on (m,m+ 1) if m 6= n

0 elsewhere,

where ‘sup’ means supremum according to the ordering of the completion of
Hm × {0, 1}. fx is Baire 1 as the usual argument shows; so we only have
to check that this latter set of functions is similar to the original one. Let
x, y ∈ X, x < y and x ∈ Hk, y ∈ Hl for some k and l. If k = l, then fx < fy
is obvious while if k 6= l, then one can easily check that fx ≤ fy on (k, k + 1),
(l, l+1) and on the complement of their union. Moreover fx 6= fy on (k, k+1)
since fy is not less here than the function representing (x, 1).
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4 The First Construction

In the sequel we present a few constructions of representable sets which have
such a rich structure in some sense that we may hope to be able to produce
all the representable order types this way.

Definition 4.1. Let α be an ordinal number and I = [0, 1]. We denote by
Iα the set of transfinite sequences in I of length α with the lexicographical
ordering (i.e. Iα = {f : f : α→ I} and f < g iff f(γ) = g(γ) and f(β) < g(β)
for some β and every γ < β).

When α ≥ ω1, then due to Kuratowski’s Theorem [Ku, §24, III.2’], Iα is
not representable as it contains a subset of type ω1. However the following
holds.

Theorem 4.2. Iα is representable for all α < ω1.

Proof. For α < ω the assertion follows from Statement 3.3 by induction.
Denote by H =

∏∞
n=0[0, 1] the Hilbert cube; that is, the topological product

of countably many copies of the closed unit interval. It is well-known that H is
a compact metric space so it is sufficient to represent Iα on H. We show that
this is possible even by characteristic functions; in other words there exists a
system of ambiguous subsets of H which is of order type Iα when ordered by
inclusion. First we define an ordering of type Iα on H. As α < ω1 there exists
a bijection ϕ : N → α; so we can assign to each element a = (a1, a2, . . .) ∈ H
a transfinite sequence x = (aϕ(n) : n ∈ N). Since this is a bijection between
H and Iα, it induces an ordering of type Iα on H which we shall denote by
<H . We claim that the sets of the form Hx = {y ∈ H : y <H x} constitute a
system of sets possessing all the properties we need. First of all Hx $ Hy iff
x <H y. Thus {Hx : x ∈ H} is of order type Iα. We still have to check that
Hx ⊂ H is ambiguous for all x ∈ H. First we show that it is Fσ. Indeed,

Hx =
⋃
β<α

( ⋂
γ<β

{
(y1, y2, . . .) ∈ H : yϕ−1(γ) = xϕ−1(γ)

}
∩
{
yϕ−1(β) < xϕ−1(β)

})
;

so it is sufficient to check that the members of the union are Fσ sets, but this
is obvious as they are intersections of certain closed sets and an open set.

Similarly {y ∈ H : x <H y} is also Fσ, and as {x} is Fσ, Hx is the
complement of an Fσ set hence Gδ.

In view of Kuratowski’s Theorem it is natural to ask whether every repre-
sentable set can be embedded into Iα for a suitable α < ω1. We show in two
steps that this is not true.
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Lemma 4.3. Iα+1 cannot be embedded into Iα for any α < ω1.

Proof. Suppose to the contrary that f : Iα+1 → Iα is an order-preserving
injection and let f = (f0, f1, . . . , fβ , . . .) where fβ : Iα+1 → I (β < α) are the
coordinate functions. As f0 : Iα+1 → I is monotone, and for distinct values of
c ∈ I the convex hulls of f0({x0, . . . , xβ , . . . , xα : x0 = c}) are non-overlapping
intervals in I, all but countably many of them are singletons. Therefore we
can fix a0 such that f0((a0, x1, . . . , xβ , . . . , xα)) is constant. Once we have
chosen aγ for each γ < β such that fγ((a0, . . . , aγ , xγ+1, . . . , xα)) is constant
then as before for distinct values of xβ we obtain essentially pairwise disjoint
image sets and thus we can fix aβ ∈ I such that fβ((a0, . . . , aβ , xβ+1, . . . , xα))
is constant. But then eventually we get

f ((a0, . . . , aβ , . . . , 0)) = f ((a0, . . . , aβ , . . . , 1)) ,

contradicting the injectivity of f .

Statement 4.4. There exists a representable set that is not embeddable into
Iα for any α < ω1.

Proof. The duplication of the real line is representable as it is similar to a
subset of I2; hence if we replace ℵ1 arbitrary points of R by the sets Iα (α <
ω1), we obtain a representable set. By the previous lemma and Statement 3.3
this set possesses the required property.

This negative result shows how to proceed to find new representable sets
by iteration.

Definition 4.5. Let H be an arbitrary set of ordered sets. We define an
increasing transfinite sequence Sα (α ∈ On) of sets as follows.

Let S0 = H ∪ {∅} and Sα be the set of ordered sets that can be obtained
by replacing the points of a set X ∈

⋃
β<α Sβ by sets Yx ∈

⋃
β<α Sβ (x ∈ X).

Finally, let S(H) denote the set of order types of
⋃
α∈On Sα.

Lemma 4.6. S(H) is a set indeed as there exists an ordinal α such that
Sβ = Sα for every β ≥ α.

Proof. Let κ be a infinite cardinal such that |H| ≤ κ for every H ∈ H. A
simple transfinite induction shows that |X| ≤ κ for all X ∈ Sα and α ∈ On.
We choose a cardinal µ of cofinality greater than κ (e.g. 2κ), and claim that
α = µ will do.

First we show that Sα =
⋃
β<α Sβ . Choose X ∈ Sα; that is, Y,Zy ∈⋃

β<α Sβ and fix β, βy < α (y ∈ Y ) such that Y ∈ Sβ and Zy ∈ Sβy
(y ∈ Y ).

The set {β} ∪ {βy : y ∈ Y } is at most of power κ which is less than the
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cofinality of α. Thus we can find a β∗ < α such that β, βy < β∗ (y ∈ Y ). But
then X ∈ Sβ∗ ⊂

⋃
β<α Sβ .

Secondly, we check by transfinite induction that Sβ = Sα for all β ≥ α.
Suppose Sγ = Sα for α ≤ γ < β and let X ∈ Sβ ; that is, Y, Zy ∈

⋃
γ<β Sγ .

However, ⋃
γ<β

Sγ =
⋃
γ<β

Sα = Sα =
⋃
δ<α

Sδ

which implies X ∈ Sα by repeating the above argument.

Theorem 4.7. If H is a set of ordered sets such that the duplications of the
elements of H are representable, then the elements of S(H) are also repre-
sentable.

Proof. By transfinite induction on α we prove the seemingly stronger state-
ment that even the duplications of elements of S(H) are representable. For
α = 0 this is just a reformulation of our assumption. Suppose now that the
statement holds for all β < α and let X ∈ Sα; that is, Y, Zy ∈

⋃
β<α Sβ .

As Zy ∈
⋃
β<α Sβ , Zy × {0, 1} is representable by the induction hypothesis.

Moreover if we replace the points of Y by the sets Zy ×{0, 1} what we obtain
is exactly the duplication of X, which therefore turns out to be representable
as by the induction hypothesis Y ×{0, 1} is representable and so we can apply
Statement 3.3.

Definition 4.8. If H is a set of ordered sets, then let

Hω = {Y : Y ⊂ Xω, X ∈ H},

and let H∗ be the closure of H under the operations X 7→ Xα (α < ω1). (This
closure can be formed by a similar transfinite construction as S(H).)

Corollary 4.9. If H is a set of ordered sets such that the duplications of
the elements of H are representable, then the elements of S(H)ω are also
representable. This holds even for S(H)∗, assuming that the duplications of
representable sets are representable.

Remark. (a) We could define similar notions with products instead of pow-
ers, or even with the more complex constructions mentioned in the remark
following Statement 3.4, but in fact we would not get more, as in the case
in which we are interested, there are always at most continuum many sets
involved. Thus we can put them together (e.g. replace the points of R by
them) to form a huge set X that contains each of them, and so the power of
this set X contains subsets similar to all these above constructions.
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(b) If we begin our procedure of building large representable orderings, we
can start with some set of simple ordered sets, for example the ones repre-
sentable by constants or even continuous functions. In both cases we have
H = {R}. It is not hard to prove that we will not get too far this way as Iω

will not be in S(H). (The proof goes by transfinite induction. Note that any
non-trivial subinterval of Iω contains a copy of Iω and that building up a set
X by replacing each element y of a set Y by Xy is the same as partitioning X
into subintervals that are ordered similarly to Y such that each subinterval is
similar to the corresponding Xy.) Therefore we prefer starting with the set of
“unboundedly wide trees”, {Iα : α < ω1}.

(c) According to the previous theorems S({Iα : α < ω1}) contains order
types of representable duplication only, as the duplication of Iα is a subset of
Iα+1. However, S({Iα : α < ω1}) 6= R(R) as every element of the former set
contains a non-trivial subinterval that is similar to a subset of Iα for some α,
while if X is as in the proof of Statement 4.4, then Xω does not. Therefore
S({Iα : α < ω1})ω is a strictly larger class of representable orderings. This
holds for S({Iα : α < ω1})∗ as well, under the assumption about duplications.

It seems quite plausible that if we are allowed to replace points by arbitrar-
ily large sets of the form Iα (of course α < ω1), and allowed to form countable
products, then we can build up every set not containing a sequence of length
ω1. Moreover it can be shown that S({Iα : α < ω1})∗ is closed under duplica-
tion, completion and blends. (The definition of these notions for order types
instead of ordered sets is obvious.) Together with Kuratowski’s Theorem this
motivates the following question.

Question 4.10. Does either S({Iα : α < ω1})ω = R(R) or S({Iα : α <
ω1})∗ = R(R) hold?

5 The Second Construction

Now we turn to an other approach of the problem which results in a notion
very similar to S(H).

Statement 5.1. Let {fα : α ∈ Γ} be an ordered set of functions defined on
a second countable topological space and possessing the Baire property. If any
two functions differ on a set of second category, then the ordered set is similar
to a subset of the real line.

Proof. Recall that an ordered set is similar to a subset of R iff it is separable
and does not contain more than countably many pairs of consecutive elements.

First we prove separability. Let X be the second countable space and
suppose for the time being that X is a Baire space; that is, every non-empty
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open subset is of second category. Denote by B a countable base of the space
not containing the empty set. We construct a countable dense subset M of
{fα : α ∈ Γ} in the following way. If for U, V ∈ B and p, q ∈ Q there exists
h ∈ {fα : α ∈ Γ} such that p < h on a residual subset of U and h < q on a
residual subset of V , then we choose such an h. M is obviously countable and
to verify that it is dense let (f, g) be an open interval of the ordered set. If
this interval is empty, then we are done; so we may assume that there exists
an element h0 of the ordered set in the interval. Obviously

X(f < h0) =
⋃
p∈Q

X(f < p < h0)

and
X(h0 < g) =

⋃
q∈Q

X(h0 < q < g),

where the sets on the left hand side are by assumption of second category.
Hence for some p and q X(f < p < h0) and X(h0 < q < g) are of second
category as well. It is easy to see that a set of second category which also pos-
sesses the Baire property is residual in some non-empty open subset; moreover
this open set can be chosen to be an element of B. As f, g and h0 have the
Baire property X(f < p < h0) and X(h0 < q < g) have it as well, we can find
U, V ∈ B in which these sets are residual respectively. But this means that
for U, V ∈ B and p, q ∈ Q there exists an element of the ordered set; namely
h0, satisfying all the conditions of the definition of M ; so there must be such
an element h ∈ M as well. We show that h ∈ (f, g). X is a Baire space;
hence U is not of the first category. Therefore there exists x ∈ U for which
f(x) < p < h(x) and similarly y ∈ V for which h(y) < q < g(y). But this
implies f < h < g proving the separability.

Let now fi < gi (i ∈ I) be distinct consecutive elements in the ordered set.
As above, for every i ∈ I

X(fi < gi) =
⋃
p∈Q

X(fi < p < gi).

Hence for a suitable pi, X(fi < pi < gi) is of the second category and we
can thus fix Ui ∈ B in which this set is residual. We show that the map
i 7→ (pi, Ui) is injective which implies that I is countable. Indeed, if i 6= i′ and
(pi, Ui) = (pi′ , Ui′) = (p, U), then, as U is of the second category, we obtain
that for some x ∈ U fi(x) < p < gi(x) and fi′(x) < p < gi′(x) contradicting
the consecutiveness of the pairs.

Finally, if X is not a Baire space, then as a consequence of Banach’s Union
Theorem [Ku, §10, III] we can write it as X = G ∪ A where G is an open
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subset which is a Baire space as a subspace and A is of the first category. If
we consider the restrictions of the functions to G, we obtain a similar ordered
set. Indeed any two functions differ on a set of second category in X; hence
they can not coincide on G. In fact, by the same argument they differ in G
on a set of the second category and thus we can apply what we proved in the
previous case.

This statement enables us to simplify the structure of a represented set X
in the following way. Zorn’s Lemma implies that we can find a maximal subset
of X in which every two elements differ on a set of the second category. As
this subset must be separable, we can choose a countable dense subset M of
it. The maximal intervals of X \M are of a simpler structure than X since
any two elements of such an interval coincide on a residual set. Moreover it
follows from Kuratowski’s Theorem that all elements of the interval coincide
on a common residual set. We can thus go on and repeat this procedure inside
this residual set. This motivates the following.

Definition 5.2. Let H be an arbitrary set of ordered sets. We call elements
of H and the empty set sets of rank 0. For an ordinal α we say that an ordered
set X is of rank at most α if there exists a countable subset M ⊂ X such that
all maximal intervals I of X \M are of rank at most β for some β < α where
β may depend on I. The class of ordered sets of rank at most α is denoted by
Tα.

Finally, let T (H) be the set of order types of
⋃
α∈On Tα.

Lemma 5.3. If X is a set of rank at most α, then it is similar to a set
obtained by replacing the points of R by elements of

⋃
β<α Tβ.

Proof. Let M ⊂ X be the countable subset as in the definition. Recall that
every countable ordered set can be embedded in Q and fix a ϕ : M → Q order
preserving injective map.

A maximal interval I of X \M splits M into two parts M1 and M2 in a
natural way. Define

F (I) = sup{ϕ(x) : x ∈M1},

where we may assume the supremum to be finite as we may attach a first and
a last element to X which may also be elements of M . Now if I1, I2 and I3
are distinct maximal intervals following each other in this order, then we can
find an element x ∈ M between I1 and I2 and y ∈ M between I2 and I3.
Therefore F (I1) < F (I3) as ϕ(x) < ϕ(y). Similarly, F (I1) = F (I2) implies
that there is exactly one x ∈ M between I1 and I2. Consequently we can
map X to the real line via ϕ and F in an order preserving way such that the
preimage of a real number is one of the followings: the empty set, a single
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point, a maximal interval, a maximal interval plus an extra point to the left
or right or two intervals and a point in between. But these sets are obviously
elements of

⋃
β<α Tβ . Hence the lemma follows.

Corollary 5.4. If R ∈ H, then T (H) ⊂ S(H). Thus T (H) is a set indeed.

Corollary 5.5. If the duplication of every element of rank 0 is representable,
then so is every element of T (H).

Remark. T (H) = S(H) fails in general as the examples H = {R} or H =
{X : X ⊂ Iω} show, since in both cases T (H) is a subset of the order types
of {X : X ⊂ Iω}.

However, the following question is open.

Question 5.6. Does S({Iα : α < ω1}) = T ({Iα : α < ω1}) or S({Iα : α <
ω1})ω = T ({Iα : α < ω1})ω or S({Iα : α < ω1})∗ = T ({Iα : α < ω1})∗ hold?

6 Final Remarks

First we give a characterization of R0(R), which in fact does not show too
much about the structure of these orderings. This is motivated by the way
our constructions worked.

Theorem 6.1. An ordered set X is representable by ambiguous sets iff there
exists an ordering on a compact metric space such that certain initial segments
are ambiguous and ordered similarly to X by inclusion.

Proof. If we have such an ordering, then of course the initial segments will
do. Conversely, let {Hx : x ∈ X} be a representation by ambiguous sets. Let

a ≺ b iff ∃x ∈ X such that a ∈ Hx and b /∈ Hx.

One can easily see that this is a partial ordering on the compact metric space.
By Zorn’s Lemma every partial ordering can be extended to an ordering. Let
≺∗ denote such an extension. We only have to show that Hx is an initial
segment indeed of ≺∗ for each x ∈ X. So let a ∈ Hx, b ≺∗ a and show that
b ∈ Hx. If this were not true, then b /∈ Hx, a ∈ Hx and b ≺∗ a would hold,
which contradicts the definition of ≺∗.

Question 6.2. Does R(R) = R0(R) hold?

To summarize our results we may say that the class of representable ordered
sets seems to be quite close to the ones not containing sequences of length ω1.
Our last theorem asserts that one actually can not prove in ZFC that these
two classes coincide.



Linearly Ordered Families of Baire 1 Functions 63

Theorem 6.3. The statement that a set is representable iff it does not contain
a sequence of length ω1 is not provable in ZFC.

Proof. A Souslin line does not contain such a long increasing sequence other-
wise {(xα, xα+2) : α < ω1 is a limit ordinal} would be an uncountable system
of pairwise disjoint non-empty open intervals. The case of decreasing sequences
is similar. Therefore in view of Komjáth’s Theorem and the independence of
the existence of Souslin lines the theorem follows.

Finally we pose a fundamental question.

Question 6.4. Is it consistent with ZFC that an ordered set is representable
iff it does not contain a sequence of length ω1?
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