Sebastian Lindner, Faculty of Mathematics, University of Łódź, Banacha 22, PL-90-238 Łódź, Poland. e-mail: lindner@imul.uni.lodz.pl

GENERALIZATION OF THE BANACH INDICATRIX THEOREM

Abstract

In this paper we introduce a measure on an interval connected with variation of given function f. Next we use this measure to calculate variation of a composition.

Let $f:[0,1] \rightarrow[0,1]$ be a given continuous function. For every closed interval $[a, b] \subset[0,1]$ let $v^{*}([a, b])=\bigvee_{a}^{b} f$. (We allow $[a, b]$ to be a degenerate interval, ; i.e., $a=b$. In this case $v^{*}([a, b])=0$.) Now for every set $A \subset[0,1]$ let

$$
v_{z}(A)=\inf _{\left\{I_{n}\right\}}\left\{\sum_{n \in \mathbb{N}} v^{*}\left(I_{n}\right): A \subset \bigcup_{n \in \mathbb{N}} I_{n}\right\}
$$

where $\left\{I_{n}\right\}$ denotes an arbitrary family of closed intervals covering A.
Proposition 1. The function $v_{z}: 2^{[0,1]} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ is an outer measure in sense of Carathéodory.

The proof is easy and hence is omitted.
Proposition 2. Every closed interval $[a, b] \subset[0,1]$ satisfies Carathodory's condition.

Proof. Let $[a, b] \subset[0,1]$ and let $W \subset[a, b], Z \subset[0,1] \backslash[a, b]$. Let $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ be a family of closed intervals covering $W \cup Z$. For every $n \in \mathbb{N}$, let $J_{n}=I_{n} \cap[a, b]$; $K_{n}=I_{n} \cap[0, a] ; L_{n}=I_{n} \cap[b, 1]$. Then the family $\left\{J_{n}\right\}$ covers set W, and the family $\left\{K_{n}\right\} \cup\left\{L_{n}\right\}$ covers set Z, moreover,

$$
\sum_{n \in \mathbb{N}} v^{*}\left(I_{n}\right)=\sum_{n \in \mathbb{N}} v^{*}\left(J_{n}\right)+\sum_{n \in \mathbb{N}} v^{*}\left(K_{n}\right)+\sum_{n \in \mathbb{N}} v^{*}\left(L_{n}\right) .
$$

Key Words: Banach indicatrix, variation
Mathematical Reviews subject classification: 26A45
Received by the editors June 8, 2001

So

$$
v_{z}(W \cup Z) \geq v_{z}(W)+v_{z}(Z)
$$

Corollary 1. By virtue of the Carathodory's theorem, the function v_{z} cut to the σ-algebra of sets satisfying condition of Carathodory is a measure.

Let's denote this measure by v, and this σ-algebra by S. Of course both S and v depend on function f. However by virtue of Proposition $2, S$ always contains the Borel sets.

Proposition 3. For every interval $[a, b] \subset[0,1], v([a, b])=\bigvee_{a}^{b} f$.
Proof. The single-element family consisting of the interval $[a, b]$ covers this interval. So clearly $v([a, b]) \leq \bigvee_{a}^{b} f$. Now let $\left(I_{n}\right)_{n \in \mathbb{N}}$ be a family of closed intervals covering $[a, b]$. We show that $\sum_{n \in \mathbb{N}} \bigvee_{I_{n}} f \geq \bigvee_{a}^{b} f$. Let N_{k} be the indicatrix of function f cut to the interval I_{k}. Then $\bigvee_{I_{k}} f=\int_{[0,1]} N_{k} d \mu$. We show, that $\sum_{k \in \mathbb{N}} N_{k} \geq N$, where N stands for the indicatrix of function f cut to the interval $[a, b]$. Let $y \in[0,1]$ and let $q \in \mathbb{N}$ be a given number less than or equal to $N(y)$. Then there exists at least q different roots $x_{1}, x_{2}, \ldots x_{q}$ of the equation $f(x)=y$. For every $i \leq q$, there exists at least one number n such that $x_{i} \in\left(I_{n}\right)$. Let $n_{0} \in \mathbb{N}$ be a number such that the set $\bigcup_{i=1}^{n_{0}} I_{i}$ contains every point $x_{1}, x_{2}, \ldots x_{q}$. Then $\sum_{k \in \mathbb{N}} N_{k}(y) \geq \sum_{i=1}^{n_{0}} N_{i}(y) \geq q$ so it follows that $\sum_{k \in \mathbb{N}} N_{k}(y) \geq N(y)$.

The series $\sum_{i \in \mathbb{N}} N_{i}$ of non-negative functions converges to some function $N^{*}:[0,1] \rightarrow \overline{\mathbb{R}}$, and $N^{*} \geq N$. So

$$
\sum_{n \in \mathbb{N}} \bigvee_{n} f=\sum_{n \in \mathbb{N}} \int_{[0,1]} N_{n}=\int_{[0,1]} N^{*} \geq \int_{[0,1]} N=\bigvee_{a}^{b} f
$$

Theorem 1. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function, and let us define the measure v_{f} using f the same way as above. Let $g:[0,1] \rightarrow[0,1]$ be a continuous function, and $N_{g}:[0,1] \rightarrow \mathbb{N} \cup\{\infty\}$ stands for the indicatrix of function g. Then variation of composition $f \circ g$ can be expressed by following formula: $\bigvee_{0}^{1} f \circ g=\int_{0}^{1} N_{g} d v_{f}$.

Proof. Let the sequence $a_{k}^{n}=\frac{k}{2^{n}}$. divide the interval $[0,1]$ into 2^{n} equal parts. Let m_{k}^{n} and M_{k}^{n} stand for the minimum and maximum of the function g on interval $\left[a_{k}^{n}, a_{k+1}^{n}\right]$. Let $A_{k}^{n}=\bigvee_{m_{k}^{n}}^{M_{n}^{n}} f$ and let $A^{n}=\sum_{k=0}^{2^{n}-1} A_{k}^{n}$. At the
beginning we observe, that the sequence A^{n} is increasing. In order to do this let us consider an arbitrary interval $[a, b] \subset[0,1]$. Let m and M stand for the minimum and maximum of function g on this interval. Now let m_{1} and M_{1} stand for the minimum and maximum of the function g on $\left[a, \frac{a+b}{2}\right]$, and m_{2} and M_{2} on $\left[\frac{a+b}{2}, b\right]$, respectively. Since function g is continuous, it has Darboux property, so

$$
\left[m_{1}, M_{1}\right] \cup\left[m_{2}, M_{2}\right]=[m, M]
$$

and then $\bigvee_{m_{1}}^{M_{1}} f+\bigvee_{m_{2}}^{M_{2}} f \geq \bigvee_{m}^{M} f$. As a result $A_{2 k}^{n+1}+A_{2 k+1}^{n+1} \geq A_{k}^{n}$ and at last $A^{n+1} \geq A^{n}$.

Now observe, that for every $n \in \mathbb{N} A^{n} \leq \bigvee_{0}^{1} f \circ g$. In fact, we only have to show that $A_{k}^{n} \leq \bigvee_{a_{k}}^{a_{k+1}} f \circ g$. Let us consider an arbitrary interval $[a, b] \subset[0,1]$. Let m and M stand for the minimum and maximum of the function g on this interval. Let $A=\bigvee_{m}^{M} f$. We show, that $A \leq \bigvee_{a}^{b} f \circ g$. Let $P: m=y_{0}<$ $y_{1}<\ldots<y_{n}=M$ be a given division of interval $[m, M]$. Let $c, d \in[a, b]$, be numbers such that $g(c)=m$ and $g(d)=M$. For instance suppose that $c<d$. Since the function g has Darboux property, there exists $x_{1} \in(c, d)$ such that $g\left(x_{1}\right)=y_{1}$. Next, there exists $x_{2} \in\left(x_{1}, d\right)$ such that $g\left(x_{2}\right)=y_{2}$. And so on, to x_{n-1}. The sequence x_{n} is increasing, and commonly with c and d forms the division of the interval $[c, d]$. Therefore

$$
\sum_{i=0}^{n-1}\left|f\left(y_{i}\right)-f\left(y_{i+1}\right)\right|=\sum_{i=0}^{n-1}\left|f\left(g\left(x_{i}\right)\right)-f\left(g\left(x_{i+1}\right)\right)\right| \leq \bigvee_{c}^{d} f \circ g \leq \bigvee_{a}^{b} f \circ g
$$

Since the division P was arbitrary, we obtain that $A=\bigvee_{m}^{M} f \leq \bigvee_{a}^{b} f \circ g$.
Now we show that $\lim _{n \rightarrow \infty} A^{n}=\bigvee_{0}^{1} f \circ g$. Let $\epsilon>0$. Let $P: 0=x_{0}<$ $x_{1}<\ldots<x_{k}=1$ be a given division of the interval $[0,1]$. The function $f \circ g$ is uniformly continuous on $[0,1]$. Let us take $\delta>0$ such that $|f(g(\alpha))-f(g(\beta))|<$ $\frac{\epsilon}{2 k}$ if $|\alpha-\beta|<\delta$. Let $n \in \mathbb{N}$ be such number, that $\frac{1}{2^{n}}<\delta$, and at the same time $\frac{1}{2^{n}}<\min _{i=1 \ldots k}\left(x_{i}-x_{i-1}\right)$. Let $a_{i}^{n}=\frac{i}{2^{n}}, i=1 \ldots 2^{n}-1$.

Let us consider $Q: \alpha_{0}<\alpha_{1}<\ldots<\alpha_{l}$ constructed with points x_{i} and a_{i}^{n}. Hence

$$
\sum_{i=0}^{k-1}\left|f\left(g\left(x_{i}\right)\right)-f\left(g\left(x_{i+1}\right)\right)\right| \leq \sum_{i=0}^{l-1}\left|f\left(g\left(\alpha_{i}\right)\right)-f\left(g\left(\alpha_{i+1}\right)\right)\right|
$$

The last sum contains $2 k-2$ components of type $\left|f\left(g\left(a_{i}^{n}\right)\right)-f\left(g\left(x_{j}\right)\right)\right|$ or
$\left|f\left(g\left(x_{j}\right)\right)-f\left(g\left(a_{i}^{n}\right)\right)\right|$. Each of them can be estimated by $\frac{\epsilon}{2 k}$. Consequently,

$$
\begin{aligned}
\sum_{i=0}^{l-1}\left|f\left(g\left(\alpha_{i}\right)\right)-f\left(g\left(\alpha_{i+1}\right)\right)\right| & <\sum_{i=0}^{2^{n}-1}\left|f\left(g\left(a_{i}^{n}\right)\right)-f\left(g\left(a_{i+1}^{n}\right)\right)\right|+\epsilon \\
& \leq \sum_{i=0}^{2^{n}-1} A_{i}^{n}+\epsilon=A^{n}+\epsilon
\end{aligned}
$$

It implies, that for every ϵ and every division P there exists n which satisfies the above inequality. Therefore $\lim _{n \rightarrow \infty} A^{n}=\bigvee_{0}^{1} f \circ g$.

Now we show, that $\lim _{n \rightarrow \infty} A^{n}=\int_{[0,1]} N_{g} d v_{f}$. Let us fix an $n \in \mathbb{N}$. For $k=0 \ldots 2^{n}-1$ let $N_{k}^{n}:[0,1] \rightarrow \infty$ be a characteristic function of interval $\left[m_{k}^{n}, M_{k}^{n}\right]$. Next let $N^{n}=\sum_{i=0}^{2^{n}-1} N_{k}^{n}$. Sequence N^{n} is increasing. We write $C=\left\{\frac{i}{2^{n}}: n \in \mathbb{N}, i=1, \ldots, 2^{n}\right\}$. For every y such that $y \notin g(C)$ we have $N^{n}(y) \rightarrow N_{g}(y)$. Since $g(C)$ is at most countable, we obtain, that the sequence N^{n} is converging to function $N_{g} v_{f}$-almost everywhere. By virtue of proposition 2 every function N_{k}^{n} is measurable with respect to v_{f}. Therefore N^{n} is measurable, and consequently N_{g} is measurable too. Moreover, by virtue of Proposition 3, $\int_{[0,1]} N_{k}^{n} d v=\bigvee_{m_{k}^{n}}^{M_{k}^{n}} f=A_{k}^{n}$. So $\int_{[0,1]} N^{n} d v=A^{n}$, and finally, by Lebesgue's Monotone Convergence Theorem $\int_{[0,1]} N_{g} d v_{f}=\lim _{n \rightarrow \infty} A^{n}$. Hence $\bigvee_{0}^{1} f \circ g=\int_{0}^{1} N_{g} d v_{f}$.

References

[1] I. P. Natanson, Theory of functions of a real variable, Ungar, New York, 1961.

