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COMPARING FAMILIES OF THIN SETS

Abstract

Recently the first author investigated a generalization of families
of trigonometric thin sets replacing the sine function by a continuous
function. In this paper we shall partially solve the problem of the re-
lationship between such families obtained from different functions. In
several cases we present conditions for equality of such a family with
corresponding trigonometric family. Moreover we show that every basis
of any of the families of B0–sets, N0–sets or A–sets has cardinality at
least that of the continuum.

1 Families of Thin Sets

In [BZ] the first author introduced and studied a natural generalization of
trigonometric thin sets replacing sine function by a sequence f = {fk}∞k=0

of continuous functions defined on the unit circle T with non-negative reals
values. We shall deal with the special case when the sequence {fk}∞k=0 is
generated by a continuous function f ; i.e., when fk(x) = f(kx).

We work with the topological group the unit circle T. We may identify T
with the interval 〈−1/2, 1/2〉 identifying −1/2 and 1/2 with the operation of
addition mod 1. If f : T −→ R is a real-valued function, we denote the zero
set of f by

Z(f) = {x ∈ T; f(x) = 0}.
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tower.
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Throughout the paper, f, g : T −→ 〈0,+∞) are continuous functions with
f(0) = g(0) = 0, and f(x) > 0, g(y) > 0 for some x, y ∈ T; i.e.,

0 ∈ Z(f) 6= T, 0 ∈ Z(g) 6= T.

We can assume that the functions f, g are periodically extended to the whole
set R with the period 1. Since T is compact, the functions f, g are uniformly
continuous and therefore there exists a non-increasing sequence {δk}∞k=0 of
positive reals (fixed for the remainder of the paper) converging to 0, δ0 ≤ 1/2
such that

(∀x, y)
(
|x− y| < δk →

(
|f(x)− f(y)| < 2−k ∧ |g(x)− g(y)| < 2−k

))
. (1)

Let us recall that a sequence {fn}∞n=0 of real-valued functions is said to

converge quasinormally1 to a function f on the set X, written fn
QN−→ f on X,

if there exists a sequence (a control) of positive reals {εn}∞n=0 converging to
zero such that

(∀x ∈ X)(∃n0)(∀n ≥ n0) (|fn(x)− f(x)| < εn).

Let us remark that much as in the case of uniform convergence, if {ηk}∞k=0 is

a sequence of positive reals converging to 0 and fn
QN−→ f on X, then one can

find an increasing sequence of natural numbers {nk}∞k=0 such that fnk

QN−→ f
with the control {ηk}∞k=0. We shall use this fact without any comment.

To avoid subindices and subsubindices, we shall sometimes denote the n-th
element an of the sequence {an}∞n=0 by a(n). We shall similarly do so for other
sequences.

We recall the definitions of thin sets introduced in [BZ]. A subset A of T
is called an f -Dirichlet set (briefly Df -set), a pseudo f -Dirichlet set (briefly
pDf -set), an Af -set if there exists an increasing sequence of natural numbers
{nk}∞k=0 such that the sequence {f(nkx)}∞k=0 converges uniformly, quasinor-
mally, pointwise to 0 on the set A, respectively. A subset A of T is called an
N0f -set (a B0f -set) if there exists an increasing sequence of natural numbers
{nk}∞k=0 (and a positive real d) such that the series

∑∞
k=0 f(nkx) converges

(
∑∞
k=0 f(nkx) ≤ d) for every x ∈ A. A subset A of T is called an Nf -set (a

Bf -set) if there exists a sequence {an}∞n=0 of non-negative reals (and a posi-
tive real d) such that

∑∞
n=0 an = ∞ and the series

∑∞
n=0 anf(nx) converges

(
∑∞
n=0 anf(nx) ≤ d) for every x ∈ A. Finally, a subset A of T is called a weak

f -Dirichlet set (briefly wDf -set) if there exists an analytic set B, A ⊆ B ⊆ T

1In [CL], the authors call this type of convergence equal convergence.
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such that for every positive Borel measure µ on T there exists an increasing
sequence of natural numbers {nk}∞k=0 such that

lim
k→∞

∫
B

f(nkx) dµ(x) = 0.

The corresponding families will be denoted by Df , pDf , Af , N0f , B0f , Nf , Bf ,
and wDf , respectively. If f(x) = ‖x‖ (‖x‖ is the distance of the real x to the
nearest integer2) or equivalently f(x) = | sin(πx)|, then we obtain the classical
trigonometric families D, pD, A, N0, B0, N , B, and wD.

Recall (see [BL]) that a family F ⊆ P(T) is said to be a family of thin
sets, if the family F contains every singleton {x}, x ∈ T, with every set A ∈ F
the family F contains also every subset B ⊆ A, and F does not contain any
non-trivial open interval. Moreover if for any A, B ∈ F also A ∪B ∈ F , then
F is called an ideal. It is well known (see [Ma]) that none of the trigonometric
families is an ideal. A family G ⊆ F is called a basis of F if for any A ∈ F
there is a set B ∈ G such that A ⊆ B. A Borel basis is a basis consisting of
Borel sets.

In [BZ] (Corollary 13) the following result has been proved.

Theorem 1. Every family Df , pDf , B0f , N0f , Bf , Nf , Af , wDf is a family
of thin sets with a Borel basis and the following inclusions hold true (an arrow
‘→’ means the inclusion ‘⊆’)

Df B0f Bf

pDf N0f Nf

Af wDf

- -

- -

6 6 6

6

-

6

Moreover every Af–set is σ–porous and therefore meager and of measure zero.

The following theorem follows almost immediately from the definitions.

Theorem 2. Assume that there are positive reals K > 0, η > 0 such that

(∀x ∈ T) (f(x) < η → g(x) < K · f(x)).

Then Ff ⊆ Fg if F is any of the symbols D, pD, N0, B0, N , B, A, wD.
2Let us remark that ‖x‖ = |x| for x ∈ 〈−1/2, 1/2〉. Moreover, ‖x + y‖ ≤ ‖x‖ + ‖y‖, for

any x, y ∈ R.
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Proof. The proof is rather standard. We sketch it only for the two cases
F = B and wD. We set d = max{g(x);x ∈ T}. Suppose that

A = {x ∈ T;
∞∑
n=0

anf(nx) ≤ c} ∈ Bf ,

where
∑∞
n=0 an = ∞ and an ≥ 0 for each n ∈ N. Let x ∈ A. We set

L = {n ∈ N; f(nx) ≥ η}. Then η ·
∑
n∈L an ≤ c. Thus

∞∑
n=0

ang(nx) =
∑
n∈L

ang(nx) +
∑
n∈N\L

ang(nx) ≤ d · c
η

+K · c.

Hence

A ⊆ {x ∈ T;
∞∑
n=0

ang(nx) ≤
(
d

η
+K

)
· c} ∈ Bg.

Now we assume that A ∈ wDf is analytic, µ is a Borel measure on T and
limk→∞

∫
A
f(nkx) dµ(x) = 0. For given ε > 0 and k ∈ N we set

ε1 =
εη

Kη + d
, Bk = {x ∈ T; f(nkx) < η}.

Let k0 be such that
∫
A
f(nkx) dµ(x) < ε1 for k ≥ k0. Then µ(A \Bk) < ε1/η

and∫
A

g(nkx) dµ(x) =
∫
A\Bk

g(nkx) dµ(x) +
∫
Bk

g(nkx) dµ(x) < d
ε1
η

+Kε1 = ε.

Thus A ∈ wDg.

Corollary 3. If M > 0 is a positive real, then Ff = FM ·f if F is any of the
symbols D, pD, N0, B0, N , B, A, wD.

Using a more complicated argument we can prove a stronger result.

Theorem 4.

a) If Z(f) is a g-Dirichlet set, then Df ⊆ Dg.

b) If Z(f) is a pseudo g-Dirichlet set, then pDf ⊆ pDg.

Proof. Assume that the set Z(f) is a g-Dirichlet (pseudo g-Dirichlet) set,
the sequence {nk}∞k=0 being such that g(nkx) ≤ 2−k for every x ∈ Z(f) and
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for every (for almost every) k. Let A ∈ Df (A ∈ pDf ), {mk}∞k=0 being such

that f(mkx) ⇒ 0 (f(mkx)
QN−→ 0) on A with the control 2−k. We set

ηk = min{f(x); (∀z ∈ Z(f)) |x− z| ≥ δk/nk}.

Since the set Z(f) is closed, Z(f) 6= T and limk→∞ δk/nk = 0, we can assume
that ηk is defined and positive for every k. Moreover, limk→∞ ηk = 0. For
every k let lk be such that 2−l(k) < ηk.

If x ∈ A, then f(ml(k)x) ≤ 2−l(k)−1 < ηk for every k (for almost every k)
and |ml(k)x − z| < δl/nk for some z ∈ Z. Then |nkml(k)x − nkz| < δk
and |g(nkml(k)x) − g(nkz)| < 2−k for every k (for almost every k). Thus
g(nkml(k)x) < 2−k+1 for every k (for almost every k). So g(nkml(k)x) ⇒ 0

(g(nkml(k))x
QN−→ 0) on A with the control {2−k+1}∞k=0.

The main aim of the paper is to investigate when those inclusions are
proper and when the equalities hold true. We shall present first results in this
direction. The main technical result of the paper, Theorem 5, is then applied
to the problem of cardinalities of bases of some families.

The paper is organized as follows. The main result is Theorem 5, which is
a generalization of the key lemma by J. Arbault [Ar] and which plays crucial
role in proving several results. In section 3 we shall compare the families Ff
with corresponding trigonometric families F . Then, in section 4, we partially
solve the question of properness of the inclusions for B0, N0 and A families.
Using some infinite combinatorics we estimate the cardinality of bases and
towers of families B0f , N0f and A from below, solving so a problem, which
was open even in the trigonometric case (section 5). Finally, in section 6 we
shall apply results of sections 3, 4 and 5 and formulate main open problems.

2 Arbault Lemma

J. Arbault [Ar] has shown that the set

{x ∈ T;
∞∑
k=0

(sin(22k

πx))2 <∞}

is not an N0-set. Modifying his proof we can show several important results.
Let {pk}∞k be an increasing sequence of integers greater than 1 such that
3/pk < δk for every k ∈ N. We let qk = p0 · · · · · pk. Starting from the Cantor
expansion of a real x ∈ 〈0, 1〉 with natural numbers yk = 0, 1, . . . , pk−1, k ≥ 0

x =
∞∑
k=0

yk
p0 · · · · · pk

=
∞∑
k=0

yk
qk



614 Zuzana Bukovská and Lev Bukovský

one can easily construct integers xk, k ∈ N such that

x =
∞∑
k=0

xk
p0 · · · · · pk

, |xk| ≤
pk
2

for k > 0, x0 = 0, . . . , p0.

One can easily see that

qnx =
xn+1

pn+1
+ θn mod 1, |θn| ≤ 1/pn+1 (2)

and therefore
|xn+1| − 1
pn+1

≤ ‖qnx‖ ≤
|xn+1|+ 1
pn+1

.

More generally, if m ≥ n+ 1 and xi = 0 for n+ 2 ≤ i ≤ m, then

qnx =
xn+1

pn+1
+ θn mod 1, |θn| ≤

qn
qm
≤ 1
pm

. (3)

Let us remark that J. Arbault [Ar] worked with pk = 22k

.
If {nk}∞k=0 is an increasing sequence of natural numbers, we put

A({nk}∞k=0) = {x ∈ T; lim
k→∞

‖nkx‖ = 0}.

If {ki}∞i=0 is an increasing sequence, then A({nk}∞k=0) ⊆ A({nki
}∞i=0). In other

words, if limk→∞ ‖nkx‖ = 0 for every x ∈ A, then that is also true for any
subsequence of the sequence {nk}∞k=0. Similarly for other considered proper-
ties. Therefore, for the sake of brevity, in the next a (chosen) subsequence of
a given sequence will be often denoted by the same letters and indices.

We begin with a result that is the promised strengthening of the key lemma
by J. Arbault [Ar].

Theorem 5. Let {mk}∞k=0 be any increasing sequence of natural numbers such
that

B0 = {x ∈ T;
∞∑
k=0

f(qkx) ≤ 4} ⊆ A({mk}∞k=0). (4)

Then there are sequences {lk}∞k=0, {sk}∞k=0 of non-negative integers and an in-
teger r 6= 0 such that the sequence {(skpl(k)+1 +r)ql(k)}∞k=0 is a subsequence of
the sequence {mk}∞k=0. Moreover, by passing to a subsequence of the sequence
{mk}∞k=0, we may assume that

(a) lk + l0 ≤ lk+1 for every k, l0 > 1,
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(b) mk · pl(k)+1 ≤ pl(k+1) · ql(k) for every k,

(c) (1 + r)pl(k) ≤ pl(k+1)+1 for every k.

Proof. If k ≥ l, then qk/ql is an integer and f(qk/ql) = 0. For k < l we have
qk/ql ≤ 1/pl < δl. Thus

∞∑
k=0

f(qk/ql) =
l−1∑
k=0

f(qk/ql) ≤ l
1
2l
≤ 4.

Therefore 1/ql ∈ B0 for every l and by (4), ql divides mk for all but finitely
many k ∈ N. Omitting finitely many members of the sequence {mk}∞k=0 we
can assume that every mk is divisible by some ql. Let lk be the greatest l such
that ql divides mk; i.e., mk is divisible by ql(k) and ql(k)+1 = ql(k) ·pl(k)+1 does
not divide mk. Thus, there are integers sk, rk such that

mk = (skpl(k)+1 + rk)ql(k), 0 6= |rk| ≤
pl(k)+1

2
.

Evidently the sequence {lk}∞k=0 is unbounded and we can pass to such a sub-
sequence of {mk}∞k=0 and accordingly to a sequence of {lk}∞k=0 that even con-
ditions (a) and (b) are satisfied.

Toward a contradiction, assume that the sequence {|rk|}∞k=0 is unbounded.

Then (again by passing to subsequences) we can assume that
1
|4rk|

≤ 1
pk+1

.

We shall construct a real z ∈ B0 such that {‖mkz‖}∞k=0 does not converge
to 0 contradicting the inclusion (4). Let zl(k)+1 > 0 be the smallest natural
number for which

zl(k)+1|rk|/pl(k)+1 ≥ 1/4. (5)

Evidently zl(k)+1 ≤ 1/2pl(k)+1. Since (zk(l)+1−1)|rk|/pl(k)+1 < 1/4, we obtain

zl(k)+1

pl(k)+1
<

1
|4rk|

+
1

pl(k)+1
≤ 2
pk+1

.

We set zi = 0 for the other indices i and we show that the real z =
∑∞
i=0 zi/qi

provides the excepted contradiction.
By (2), for any k we obtain

‖ql(k)z‖ ≤
zl(k)+1 + 1
pl(k)+1

≤ 3
pk+1

< δk.

If i is not a value of the sequence {lk}∞k=0, then ‖qiz‖ ≤ 1/pi+1 < δi. So by
(1) we obtain

∑∞
i=0 f(qiz) ≤ 4 and therefore z ∈ B0.
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On the other hand by (2) we obtain mod 1

mkz = (skpl(k)+1 + rk)
(
zl(k)+1

pl(k)+1
+ θl(k)

)
= rk

zl(k)+1

pl(k)+1
+

mk

ql(k)
θl(k). (6)

Since zi = 0 for lk + 1 < i ≤ lk+1, by (3) we have θl(k) ≤ 1
pl(k+1)

and therefore
by (b) we obtain ∣∣∣∣ mk

ql(k)
θl(k)

∣∣∣∣ ≤ mk

ql(k)pl(k+1)
≤ 1
pl(k)+1

.

So the last term in (6) goes to zero and by inequality (5), for sufficiently large
k we have ‖mkz‖ > 1/8. Consequently, limk→∞ ‖mkz‖ 6= 0; a contradiction.
Since the sequence rk, k = 0, 1, . . . is bounded, there exists an integer r such
that r = rk for infinitely many k. So we can choose a subsequence satisfying
the assertion of the theorem including the condition (c).

We shall need the following simple result.

Lemma 6. Let yk be real, k ∈ N, the sequence {lk}∞k=0 being increasing. Then
there exists a real z such that ‖ql(k)z − yk‖ ≤ 2

pl(k)+1
and ‖qiz‖ ≤ 1

pi+1
if i is

not a value of the sequence {lk}∞k=0.

Proof. Evidently, for every k there exists an integer |zl(k)+1| ≤ 1/2pl(k)+1

such that
∥∥∥ zl(k)+1

pl(k)+1
− yk

∥∥∥ ≤ 1
pl(k)+1

. Set zi = 0 if i is not a value of the sequence

{lk + 1}∞k=0. Then z =
∑∞
i=0

zi

qi
is the desired one.

3 The Families F and Ff

Using the continuity of the function f one can show that in some cases the
trigonometric families are the smallest one. Actually, from the definitions one
immediately obtains the following.

Theorem 7. D ⊆ Df , pD ⊆ pDf and A ⊆ Af .

According to Theorem 4 we obtain the next assertion.

Corollary 8. If Z(f) is a Dirichlet set (a pseudo Dirichlet set), then D = Df
(pD = pDf ).

The inverse inclusions need not hold true.

Theorem 9. There exists a continuous function f : T→ 〈0, 1〉, f(0) = 0 such
that D 6= Df , pD 6= pDf and A 6= Af .
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Proof. Let C ⊆ T be the Cantor middle-third set; i.e.,

C =

{
x ∈ T; (∃{xi}∞i=1, xi = 0, 2)x =

∞∑
i=1

xi
3i

}
.

It is well known that the Cantor set is not an A-set (see e.g. [Ba]). Let
f : T → 〈0, 1〉 be a continuous function such that Z(f) = C. Since 3kx ∈ C
for any x ∈ C and any k ∈ N, we get C ⊆ {x ∈ T; f(3kx) ⇒ 0}. Thus
C ∈ Df .

For A-sets we can prove an even better result than Theorem 7.

Theorem 10.

a) If the zero set Z(f) is a finite set of rationals, then Af ⊆ A.

b) If B0f ⊆ A, then the zero set Z(f) is a finite set of rationals.

Proof. Let Z(f) be a finite set of rationals. Then there exists a natural
number m such that mz is an integer for any z ∈ Z(f). Assume that

A = {x ∈ T; lim
k→∞

f(nkx) = 0} ∈ Af .

We claim that limk→∞ ‖mnkx‖ = 0 for any x ∈ A. Let x ∈ A and assume
that limk→∞ ‖mnkx‖ 6= 0. Let η > 0 be such that ‖mnkx‖ ≥ η for infinitely
many k’s. We can assume that η is such that

U = {y ∈ T; (∃z ∈ Z(f)) |y − z| < η/m} 6= T.

Let β = min{f(y); y ∈ T \ U}. Then f(nkx) ≥ β for infinitely many k’s; a
contradiction.

Now assume that Z(f) is not a finite set of rationals. Then for any integer
m there exists a real z ∈ Z(f) such that mz is not an integer. We show
that the B0f -set B1 = {x ∈ T;

∑∞
k=0 f(qkx) ≤ 5} is not an A-set. Toward a

contradiction, assume there exists an increasing sequence {mk}∞k=0 of natural
numbers such that B1 ⊆ A({mk}∞k=0). By Theorem 5 we may suppose that
mk = (skpl(k)+1 + r)ql(k) for corresponding sk, lk and r.

Let y ∈ Z(f) be such that ry is not an integer. One can easily find reals
yk such that

∑∞
k=0 f(yk) ≤ 1 and limk→∞ yk = y. By Lemma 6 there exists

a real z such that ‖ql(k)z − yk‖ ≤
2

pl(k)+1
for any k and ‖qiz‖ ≤

1
pi+1

for any

i which is not a value of the sequence {lk}∞k=0. Then one can easily see that
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for any k we have f(ql(k)z) ≤ 2−l(k)−1 + f(yk) and for i which is not a value
of the sequence {l(k)}∞k=0 we obtain f(qiz) ≤ 2−i−1. Thus

∞∑
k=0

f(qkz) ≤ 4 +
∞∑
k=0

f(yk) ≤ 5

and therefore z ∈ B1.
As in the proof of Theorem 16 we can show that ‖mkz − ryk‖ < δk−1 and

therefore limk→∞ ‖mkz‖ = limk→∞ ‖ryk‖ = ‖ry‖ 6= 0.

Corollary 11. A = Af if and only if Z(f) is a finite set of rationals.

Generalizing the result by R. Salem [Sa] for p = 2, J. Arbault [Ar] showed
that N = Nf for f(x) = | sinπx|p, p > 0, or equivalently for f(x) = ‖x‖p. We
present a further strengthening of this result.

Lemma 12. Assume that f(x) = f(−x) for every x ∈ T, the function f
is convex in the interval 〈−1/2, 1/2〉 and Z(f) = {0}. Then Nf ⊆ N and
Bf ⊆ B.

Proof. The convex function f has a right derivative ϕ(x) = f ′+(x) in ev-
ery point 0 ≤ |x| < 1/2. The function ϕ is non-decreasing and therefore
measurable. Moreover f(x) =

∫ x
0
ϕ(t) dt for x ∈ 〈−1/2, 1/2〉. If f ′+(0) > 0,

then ‖x‖ ≤ f(x)/f ′+(0) for every |x| < 1/2. Thus, by Theorem 2 we obtain
Nf ⊆ N .

Now, assume that limx→0+ f(x)/x = 0. Then we define

ψ(t) = ψ(−t) = sup{z;ϕ(z) ≤ t} for t ∈ 〈0, β〉, β = sup{ϕ(x), x ∈ 〈0, 1/2〉}.

The conjugate function h is defined by h(x) =
∫ x
0
ψ(t) dt for |x| < β and

Young inequality (see e.g. [KR, Ro]3)

|xy| ≤ f(x) + h(y) for any x ∈ 〈−1/2, 1/2〉, y ∈ (−β, β) (7)

holds. Moreover, one can easily see that

lim
x→0+

h(x)
x

= 0. (8)

Let A = {x ∈ T;
∑∞
n=0 anf(nx) < ∞} be an Nf–set, where an ≥ 0 and∑∞

n=0 an = ∞. Using (8) one can easily find a sequence of reals yn ∈ (0, β)

3In [Ro], this inequality is called Felchel inequality.



Comparing Families of Thin Sets 619

such that
∑∞
n=0 anyn =∞ and

∑∞
n=0 anh(yn) <∞. By the inequality (7) we

obtain
∞∑
n=0

anyn‖nx‖ ≤
∞∑
k=0

anf(nx) +
∞∑
k=0

anh(yn) <∞

for any x ∈ A. Thus, A is an N–set.
Since the sum

∑∞
k=0 anh(yn) does not depend on x, we have actually also

proved the inclusion for B-sets.

Theorem 13. If f is convex in the interval 〈−1/2, 1/2〉 and Z(f) = {0}, then
Nf = N and Bf = B.

Proof. It is easy to see that f(x) ≤ 2f(1/2)‖x‖ for x ∈ T. Thus, by Theorem
2 we obtain N ⊆ Nf and B ⊆ Bf .

Theorem 14. If Z(f) = {0}, then Nf ⊆ N and Bf ⊆ B.

Proof. Let C ⊆ 〈−1/2, 1/2〉 × R be the closure of the convex hull of the set

{[x, y] ∈ 〈−1/2, 1/2〉 × R; y ≥ f(x) ∧ y ≥ f(−x)}.

Then the function h(x) = min{y ∈ 〈0,+∞); [x, y] ∈ C} is a convex continuous
function from T into 〈0,+∞) (see e.g. [Ro]) and such that for every x ∈ T we
have h(x) = h(−x) ≤ f(x). We show that Z(h) = {0}. Assume that for some
0 < ξ < 1/2 we have h(ξ) = 0. Set m = min{f(x); ξ/2 ≤ |x| ≤ 1/2}. Then
the prime line p going through points [ξ/2, 0] and [1/2,m] lies below the set
C, contradicting the fact that the point [ξ, 0] lying in the set C is below the
line p. By Lemma 12 we obtain Nf ⊆ Nh ⊆ N and Bf ⊆ Bh ⊆ B.

In [BZ], modifying a Marcinkiewicz construction [Ma], it is shown that
none of the families Df , pDf , Af , N0f , B0f , Nf , Bf , and wDf is an ideal
provided that f(x+ y) ≤ f(x) + f(y) for any x, y ∈ T. We show related result
under another assumptions.

Let us recall that the arithmetic sum of two sets is the set

A+B = {x+ y ∈ T;x ∈ A ∧ y ∈ B}.

It is well known that for any trigonometric family F , A+A ∈ F for any A ∈ F
(see e.g. [Ar, BKR, BL]).

Theorem 15. a) If Z(f) is a finite set of rationals, then none of the families
Df , pDf , B0f , N0f , and Af is an ideal.

b) If Z(f) = {0}, then none of the families Bf and Nf is an ideal.
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Proof. Let {mk}∞k=0 be an increasing sequence of natural numbers such that
2−mk < δk. Then f(x) < 2−k for |x| ≤ 2−mk . Denote nk =

∑k
i=0mi.

Let us remind that every real x ∈ T = (0, 1〉 has a unique binary expansion
x =

∑∞
i=1 xi2

−i, where xi = 0, 1 and there is an arbitrarily large i such that
xi = 1. We set

A = {x ∈ T; (∀k)(∀i) (n2k < i ≤ n2k+1 → xi = 0)},
B = {x ∈ T; (∀k)(∀i) (n2k+1 < i ≤ n2k → xi = 0)}.

One can easily see that

A ⊆
{
x ∈ T; (∀k) f(2n2k) < 2−2k−1

}
,

B ⊆
{
x ∈ T; (∀k) f(2n2k+1) < 2−2k−2

}
.

Thus A, B ∈ Df . Since A+B = T and A+B ⊆ (A∪B) + (A∪B) we obtain
that A ∪B /∈ A.

If Z(f) is a finite set of rationals, then by Theorem 10 we obtain A∪B /∈ Af .
If Z(f) = {0}, then by Theorem 14 we obtain A ∪B /∈ Nf .

4 N0f and N0g for Different f and g

Let us consider the following relationship between functions f and g:

(∀{xk}∞k=0)

( ∞∑
k=0

f(xk) <∞→
∞∑
k=0

g(xk) <∞

)
, (9)

Immediately from the definitions one obtains that (9) implies that N0f ⊆ N0g.
We show that the opposite implication often holds.

Theorem 16. Assume that B0f ⊆ N0g and Z(g) is a finite set of rationals. If
the function f satisfies the condition

(∀m > 0)(∀x, |x| < 1/2) f(x/m) ≤ f(x), (10)

then (9) holds.

Proof. Assume that (9) does not hold true; i.e., there are reals xk, |xk| < 1/2,
k ∈ N such that

∑∞
k=0 f(xk) < ∞ and

∑∞
k=0 g(xk) = ∞. We construct a set

B2 ∈ B0f such that B2 /∈ N0g. Set

B2 = {x ∈ T;
∞∑
k=0

f(qkx) ≤ 4 +
∞∑
k=0

f(xk)}.
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Now, to get a contradiction, suppose that B2 ∈ N0g. Then there exists an
increasing sequence {mk}∞k=0 such that

B2 ⊆ {x ∈ T;
∞∑
k=0

g(mkx) <∞}.

Since Z(g) is a finite set of rationals, by Theorem 10 we obtain that

B2 ⊆ A({mk}∞k=0).

Since B0 ⊆ B2, by Theorem 5 we can assume that the sequence {mk}∞k=0

has the form mk = (skpl(k)+1 + r)ql(k) satisfying conditions (a) – (c). Now
we set yk = xk/r. By (10) we obtain

∑∞
k=0 f(yk) ≤

∑∞
k=0 f(xk) < ∞. Let

the real z be that constructed in the proof of Lemma 6. Then for any k we
have ‖ql(k)z − yk‖ ≤ 2/pl(k)+1 ≤ 2/pk < δk and therefore by (1) we obtain
|f(ql(k)z)| ≤ 2−k + f(yk). If i is not a value of the sequence {l(k)}∞k=0, then
|f(qiz)| < 2−i. Thus

∞∑
k=0

f(qkz) ≤ 4 +
∞∑
k=0

f(yk) ≤ 4 +
∞∑
k=0

f(xk)

and hence z ∈ B2.
On the other side for any k we have mod 1

mkz − ryk =
mk

ql(k)
θl(k) + r

(
zl(k)+1

pl(k)+1
− yk

)
.

Again, since zi = 0 for l(k)+1 < i ≤ l(k+1), by (3) we have |θl(k)| ≤ 1/pl(k+1)

and by (b) and (c) for sufficiently large k we obtain

‖mkz − ryk‖ ≤
1

pl(k)+1
+ r

1
pl(k)+1

≤ 1
pl(k−1)

< δk−1.

Thus |g(mkz) − g(ryk)| < 2−k+1 and therefore
∑∞
k=0 g(mkz) = ∞; a contra-

diction.

5 Bases and Towers

Let us recall that two infinite sets A1, A2 ⊆ N are called almost disjoint if
the intersection A1 ∩ A2 is a finite set. A family A of infinite subsets of N is
called a family of almost disjoint sets if any A1, A2 ∈M, A1 6= A2 are almost
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disjoint. It is well known that there exists a family M ⊆ P(N) of almost
disjoint sets such that |M| = c (see e.g. [vD]).

The cardinal number t (compare also [vD]) is the smallest cardinal number
for which there exists a sequence of infinite subsets of N

{Nξ; ξ < t} (11)

such that Nξ \ Nη is finite for any η < ξ < t and there exists no infinite set
N ⊆ N such that N \ Nξ is finite for any ξ < t. It is well known that t is a
regular cardinal ℵ0 < t ≤ c. Moreover we can assume that Nη \Nξ is infinite
for any η < ξ < t. The sequence (11) is usually called a tower.

If F is a family of thin sets, then a sequence {Yξ; ξ < α}, α being an
ordinal, of sets of the family F is called an α–tower of the family F , if

Yξ ⊆ Yη, Yξ 6= Yη for any ξ < η < α.

A tower {Yξ; ξ < α} of the family F is said to be maximal if there is no set
Y ∈ F such that Aξ ⊆ Y for all ξ < α. Let us remark that we deal with the
inclusion opposite that in the case of a tower of subsets of N.

According to the results of [BS] (compare also [Re]) there exists a t–tower
of the family N0f for suitable f . We show that there exists a maximal t–tower
of this family. For an infinite set E ⊆ N we let

B(E) = {x ∈ T;
∑
k∈E

f(qkx) ≤ 4}.

We begin with some auxiliary results.

Lemma 17. If E, F, E\F are infinite subsets of N, then B(F )\B(E) contains
a perfect subset.

Proof. Let G ⊆ E \ F be an infinite set. We construct a real x(G) such
that x(G) ∈ B(F ) \B(E). Since f is not identically equal to zero, there are
reals α, β, γ such that −1/2 < α < β < 1/2 and f(x) ≥ γ for any x ∈ 〈α, β〉.
We set xi to be an integer such that α < (xi − 1)/pi < (xi + 1)/pi < β if
i − 1 ∈ G and 2/pi < β − α and xi = 0 otherwise. Let x(G) =

∑∞
i=0

xi
qi
. For

every k ∈ G ⊆ E we have mod 1, qkx(G) = xk+1
pk+1

+ θk and |θk| ≤ 1/pk+1 and
therefore for sufficiently large k ∈ G we have α < ‖qkx(G)‖ < β. Hence∑

k∈E

f(qkx(G)) ≥
∑
k∈G

f(qkx(G)) =∞.

Thus, x(G) /∈ B(E). On the other side, if k ∈ F , then xk+1 = 0 and therefore
‖qkx(G)‖ ≤ 1/pk+1 and f(qkx(G)) < 1/2k+1. Thus x(G) ∈ B(F ).
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Since we can find 2ℵ0 infinite sets G ⊆ E \ F and reals x(G) that are
different for different G’s, the difference B(F ) \ B(E) has th power of the
continuum. Being a Borel set it contains a perfect subset.

Lemma 18. Assume that for every k ∈ N mk = (sl(k)pl(k)+1 + r)ql(k), r 6= 0
and (a) – (c) hold. Let L = {lk; k ∈ N; }. If the set L \ E is infinite, then

B(E) * A({mk}∞k=0).

Proof. If i = lk+1, lk /∈ E, take an integer xi < 1
2qi such that xi > 1

4pl(k)+1.
Otherwise set xi = 0. Let x =

∑∞
i=0 xi/qi. If i ∈ E, then xi+1 = 0 and

qix = θi. By (1) and (2) f(qix) < 1/2i and therefore x ∈ B(E).
If i− 1 ∈ L \ E, i = lk + 1, then we have mod 1

mkx = (sl(k)pl(k)+1 + r)ql(k)x = r
xl(k)+1

pl(k)+1
+

mk

ql(k)
θl(k).

Since the last term is small, we obtain ‖mkx‖ ≥ 1/8γ|r|. Thus lim
k→∞

mkx 6= 0

and therefore x /∈ A({mk}∞k=0.

Theorem 19. If F, E are infinite, almost disjoint subsets of N, then there is
no A–set containing both B(E) and B(F ).

Proof. Assume that the sequence {mk}∞k=0 is such that B(E) ⊆ A({mk}∞k=0).
Let E = {e0 < e1 < · · · < en < . . . }. We put

p̄0 =
∏

j≤e(0)

pj , p̄i+1 =
∏

e(i)<j≤e(i+1)

pj , q̄i =
∏
j≤i

p̄i.

Then q̄i =
∏
j≤e(i) pj = qe(i) and B(E) = {x ∈ T;

∑∞
k=0 f(q̄kx) ≤ 4}. By

Theorem 5 we can assume that mk = (s̄kp̄l(k)+1 +r)q̄l(k), r 6= 0 and conditions
(a) – (c) are satisfied. Then L = {e(lk); k ∈ N} ⊆ E. Thus L \ F is infinite.
By Lemma 18 we obtain B(F ) * A({mk}∞k=0); a contradiction.

Theorem 20. Assume that Z(f) is a finite set of rationals. Then every basis
of any of the families B0f , N0f , Af has cardinality at least c. Especially, any
basis of any of the trigonometric family B0, N0, A has cardinality at least c.

Proof. Take an almost disjoint familyM of subsets N of cardinality c. Then
by Theorem 19 the cardinality of any basis of any of the families B0f , N0f ,
Af = Amust be greater than the cardinality of the family {B(A);A ∈M}.

Let us remark that the families B0f , N0f , Af = A have Borel bases which
are of cardinality c.
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Theorem 21. Assume that Z(f) is a finite set of rationals. Let {Rξ; ξ < t}
be a tower of subsets of N. Then {B(Rξ); ξ < t} is a maximal tower of any
of the families B0f , N0f and A. Moreover, for any ξ < η < t there exists a
perfect subset of B(Rη) \B(Rξ).

Proof. By Lemma 17 for ξ < η < t there exists a perfect subset of the
set B(Rη) \ B(Rξ). Assume now that there exists an N0f set A such that
B(Rξ) ⊆ A for every ξ < t. Let A = {x ∈ T;

∑∞
k=0 f(mkx) < ∞}. Since

B(R0) ⊆ A, by Theorem 5 there exist sequences of natural numbers {sk}∞k=0,
{lk}∞k=0, an integer r 6= 0 and a subsequence of {mk}∞k=0 (denoted by same
letters) such that mk = (skpl(k)+1 + r)ql(k) for every k. Let L = {lk; k ∈ N}.
Then there exits a ξ < t such that L \ Rξ is infinite. Then by Lemma 18 we
have B(Rξ) * A({mk}∞k=0); a contradiction.

6 Some Examples and Some Open Problems

According to the results of sections 3 and 4, we can find functions f , g such
that B0f 6= B0g, N0f 6= N0g or Af 6= Ag. We present some examples.

Theorem 22. a) Let f(x) = ‖x‖c, g(x) = ‖x‖d for x ∈ T. If 0 < c < d, then

N0f ⊆ N0g, B0g * N0f , N0g * N0f .

b) For positive reals c, d we set

f(x) =

{
1/2d‖x‖c if 0 ≤ x ≤ 1/2,
1/2c‖x‖d if 1/2 ≤ x ≤ 1,

and

g(x) =

{
1/2c‖x‖d if 0 ≤ x ≤ 1/2,
1/2d‖x‖c if 1/2 ≤ x ≤ 1,

If c 6= d, then B0f * N0g, B0g * N0f , N0f * N0g and N0g * N0f .

The theorem immediately follows from Theorem 16. From Theorem 10 we
obtain the following assertion.

Theorem 23. Let f(x) = ‖x‖ · | sin(π/‖x‖)| for x 6= 0 and f(0) = 0. Then
B0f * A and Af * A.

In the proof of Theorem 9 we have constructed a continuous function f
such that D 6= Df and pD 6= pDf . However, we were not able to find such
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functions for distinguishing the families Bf , Nf and wDf . If Z(f) = {0}
and both f ′+(0), f ′−(0) are finite, then according to Theorems 2 and 14 the
equalities Bf = B and Nf = N hold. The simplest case for which we do not
know the answer is the case of the function f(x) =

√
‖x‖. Neither were we

able to solve the problem of the cardinality of bases for the other families.
Thus, we can formulate the main open problems:

a) Find continuous functions f , g such that Ff 6= Fg for F = B and/or N ,
wD.

b) Find a continuous function f such that Ff 6= F for F = B and/or N , wD.

c) Do the inclusions B ⊆ Bf , N ⊆ Nf hold when f(x) =
√
‖x‖?

d) Does any basis of the family D, pD, B, N , wD have cardinality at least c?
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