Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, email: hrosen@gp.as.ua.edu

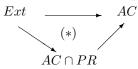
POROSITY OF THE EXTENDABLE CONNECTIVITY FUNCTION SPACE

Abstract

Let I = [0, 1], and let Ext(I) or Ext denote the subspace of all extendable connectivity functions $f: I \to \mathbb{R}$ with the metric of uniform convergence on $I^{\mathbb{R}}$. We show that Ext is porous in the almost continuous function space AC by showing that the space $AC \cap PR$ of all almost continuous functions with perfect roads is porous in AC. We also show that for n > 1, the subspace $Ext(\mathbb{R}^n)$ of all extendable connectivity functions $f: \mathbb{R}^n \to \mathbb{R}$ is a boundary set in the Darboux function space $D(\mathbb{R}^n)$.

1 Introduction and Definitions

Whether fourteen Darboux-like real function spaces are porous or boundary sets in one another was examined in [8] and [9] to determine whether they are "thin". What the situation is for the following commutative diagram (*), in which \longrightarrow means proper inclusion, was left as an open problem in [9].



Here we show Ext is porous in AC by first showing $AC \cap PR$ is porous in AC. Its proof depends on a recent result of Piotr Szuca [10].

Darboux-like function spaces are of interest for various reasons. Eleven of the fourteen, e.g., Ext and D [2], have the same intersection with the space

Key Words: porous set, boundary set, spaces of extendable connectivity functions, almost continuous functions with perfect roads, Darboux functions.

Mathematical Reviews subject classification: 26A15, 54C35, 54C30.

Received by the editors January 22, 2001

⁴⁵⁷

 B_1 of all Baire class 1 functions from \mathbb{R} into \mathbb{R} . Consequently, any derivative $g': \mathbb{R} \to \mathbb{R}$ must belong to Ext. A member $f: \mathbb{R} \to \mathbb{R}$ of the Darboux-like space *Conn*, consisting of all functions from \mathbb{R} into \mathbb{R} with connected graphs, must have a fixed point whenever the graph of f does not lie entirely above or entirely below the diagonal of $\mathbb{R} \times \mathbb{R}$.

Definitions. Let *E* denote *I*, \mathbb{R} , or \mathbb{R}^n . We abbreviate the classes to which the defined function $f: E \to \mathbb{R}$ belongs:

- **1.** $D(E) f : E \to \mathbb{R}$ is a *Darboux* function if f(J) is connected for each connected set $J \subset E$.
- **2.** Conn(E) f is a *connectivity* function if the graph of $f \upharpoonright J$ is a connected subset of $J \times \mathbb{R}$ for each connected subset J of E.
- **3.** AC(E) f is almost continuous if each open subset of $E \times \mathbb{R}$ containing the graph of f also contains the graph of a continuous function $g: E \to \mathbb{R}$.
- **4.** Ext(E) f is *extendable* if there is a connectivity function $F : E \times I \to \mathbb{R}$ such that F(x, 0) = f(x) for every $x \in E$.
- **5.** $PR f : I \to \mathbb{R}$ has a *perfect road* if for each $x \in I$ there exists a perfect subset P of I having x as a two-sided limit point (one-sided limit point if x is an endpoint) such that $f \upharpoonright P$ is continuous at x.

When E = I, we write, for example, Ext instead of Ext(E). Each function space has on it the metric d of uniform convergence defined by

$$d(f,g) = \min\{1, \sup\{|f(x) - g(x)| : x \in E\}\}.$$

Suppose E = I and $K \subset I \times \mathbb{R}$. For every $x \in I$, let

$$K_x = \left\{ y \in \mathbb{R} : (x, y) \in K \right\}.$$

For $a \in \mathbb{R}$ and $A \subset \mathbb{R}$, |a - A| denotes the distance between a and A. A closed set $K \subset I \times \mathbb{R}$ is a blocking set if $g \cap K \neq \emptyset$ for every continuous function $g: I \to \mathbb{R}$ but $h \cap K = \emptyset$ for some function $h: I \to \mathbb{R}$. A function $f: I \to \mathbb{R}$ is almost continuous if and only if $f \cap K \neq \emptyset$ for every blocking set K. On the other hand, if $h: I \to \mathbb{R}$ is not almost continuous, then there exists a minimal blocking set K in $I \times \mathbb{R}$ that misses the graph of h, and the x-projection of Kis a non-degenerate connected set and K is a perfect set [7], [6], [5].

In a metric space (X, d), B(x, r) denotes the open ball with center x and radius r > 0. Let $M \subset X$, $x \in X$, and r > 0, and let $\gamma(x, r, M)$ be the

supremum of the set of all s > 0 for which there exists $z \in X$ such that $B(z,s) \subset B(x,r) \setminus M$. Then M is porous at x in X if

$$p(x,M) = \limsup_{r \to 0^+} \frac{\gamma(x,r,M)}{r} > 0$$

M is porous in X if M is porous at every $x \in \overline{M}$. M is a boundary set in X if $\overline{X \setminus M} = X$. A set M which is porous in X must be a boundary set in X. Besides showing Ext is porous in AC, we show that for n > 1, $Ext(\mathbb{R}^n)$ is a boundary set in $D(\mathbb{R}^n)$. It would be nice to know whether $Ext(\mathbb{R}^n)$ is porous in $D(\mathbb{R}^n)$ for n > 1.

2 A Porous Set

Definition 6. $f: I \to \mathbb{R}$ is in *class* α if for every blocking set K and $\epsilon > 0$, either

- (1) the set $\{x \in I : |f(x) K_x| < \epsilon\}$ has cardinality c or
- (2) there exists $x \in I$ such that $[f(x) \epsilon, f(x) + \epsilon] \subset K_x$.

We need the following recent result of Szuca:

Proposition 1 (Szuca [10]). $AC \subset \alpha$.

Theorem 1. $AC \cap PR$ is porous in AC.

Proof. Suppose $f \in AC \cap PR$ and $0 < r \leq 1$. Note that $AC \cap PR$ is closed in AC because PR is closed in \mathbb{R}^{I} [1]. According to Proposition 1, for each blocking set K of $I \times \mathbb{R}$ and each r > 0, either

- (1) $\{x \in I : |f(x) K_x| < r/2\}$ has cardinality c or
- (2) there exists $x \in I$ such that $\left[f(x) \frac{r}{2}, f(x) + \frac{r}{2}\right] \subset K_x$.

Let $\{K_{\alpha} : \alpha \in A\}$ denote the collection of all blocking sets in $I \times \mathbb{R}$ and $\{P_{\alpha} : \alpha \in A\}$ denote the collection of all perfect subsets of I, where A is well ordered with first element 1 and with each α in A preceded by less than c-many elements of A. We show how to use transfinite induction to obtain a function $g: I \to \mathbb{R}$ by redefining f just on a set $\{x_{\alpha} : \alpha \in A\}$ and on a set $\{y_{\alpha}, z_{\alpha} : \alpha \in A\}$ of distinct points in such a way that if $\alpha \in A$, then $(x_{\alpha}, g(x_{\alpha})) \in K_{\alpha}, y_{\alpha}, z_{\alpha} \in P_{\alpha}, |f(x) - g(x)| < r/2$ for $x = x_{\alpha}, y_{\alpha}, z_{\alpha}$, but $|g(y_{\alpha}) - g(z_{\alpha})| \geq r/2$.

If (1) holds for the blocking set $K = K_1$, choose

$$x_1 \in \left\{ x \in I : |f(x) - (K_1)_x| < \frac{r}{2} \right\}$$

and pick $g(x_1) \in (K_1)_{x_1}$ with $|f(x_1) - g(x_1)| < \frac{r}{2}$. But if (2), but not (1), holds for K_1 , choose $x_1 \in I$ such that

$$\left[f(x_1) - \frac{r}{2}, f(x_1) + \frac{r}{2}\right] \subset (K_1)_{x_1}$$

and define $g(x_1) = f(x_1)$. Choose distinct points $y_1, z_1 \in P_1 \setminus \{x_1\}$ and define $g(y_1)$ and $g(z_1)$ so that |f(x) - g(x)| < r/2 for $x = y_1, z_1$ but so that $|g(y_1) - g(z_1)| \ge r/2$. Now suppose g has been defined on the set $\{x_\alpha : \alpha < \beta\}$ and on the set $\{y_\alpha, z_\alpha : \alpha < \beta\}$ of distinct points such that $g(x_\alpha) \in (K_\alpha)_{x_\alpha},$ $y_\alpha, z_\alpha \in P_\alpha, |f(x) - g(x)| < \frac{r}{2}$ for $x = x_\alpha, y_\alpha, z_\alpha$, but $|g(y_\alpha) - g(z_\alpha)| \ge \frac{r}{2}$. If (1) holds for the blocking set $K = K_\beta$, choose

$$x_{\beta} \in \left\{ x \in I : \left| f(x) - (K_{\beta})_x \right| < \frac{r}{2} \right\} \setminus \left\{ x_{\alpha}, y_{\alpha}, z_{\alpha} : \alpha < \beta \right\}$$

and pick $g(x_{\beta}) \in (K_{\beta})_{x_{\beta}}$ obeying $|f(x_{\beta}) - g(x_{\beta})| < \frac{r}{2}$. But if (2), but not (1), holds for K_{β} , choose $x_{\beta} \in I$ such that

$$\left[f(x_{\beta}) - \frac{r}{2}, f(x_{\beta}) + \frac{r}{2}\right] \subset (K_{\beta})_{x_{\beta}}$$

and define

$$g(x_{\beta}) = \begin{cases} f(x_{\beta}) & \text{if (3) } x_{\beta} \notin \{x_{\alpha}, y_{\alpha}, z_{\alpha}\} \text{ for all } \alpha < \beta \\ g(x_{\beta}) & \text{if (4) } x_{\beta} \in \{x_{\alpha}, y_{\alpha}, z_{\alpha}\} \text{ for some } \alpha < \beta. \end{cases}$$

If (3) holds, then $|f(x_{\beta}) - g(x_{\beta})| = 0 < \frac{r}{2}$ and $g(x_{\beta}) = f(x_{\beta}) \in (K_{\beta})_{x_{\beta}}$. Suppose (4) holds for some $\alpha < \beta$. If $x_{\beta} = x_{\alpha}$, then $g(x_{\beta}) \in (K_{\beta})_{x_{\beta}}$ because

$$\left|f(x_{\beta})-g(x_{\beta})\right| = \left|f(x_{\alpha})-g(x_{\alpha})\right| < \frac{r}{2} \quad \text{and} \quad \left[f(x_{\beta})-\frac{r}{2}, f(x_{\beta})+\frac{r}{2}\right] \subset (K_{\beta})_{x_{\beta}}$$

If $x_{\beta} = \text{either } y_{\alpha} \text{ or } z_{\alpha}, \text{ say } y_{\alpha}, \text{ then}$

$$\left|f(x_{\beta}) - g(x_{\beta})\right| = \left|f(y_{\alpha}) - g(y_{\alpha})\right| < \frac{r}{2}$$

and so $g(x_{\beta}) \in (K_{\beta})_{x_{\beta}}$. The case $x_{\beta} = z_{\alpha}$ is handled similarly. Choose distinct points $y_{\beta}, z_{\beta} \in P_{\beta} \setminus \{x_{\alpha}, y_{\alpha}, z_{\alpha} : \alpha < \beta\}$ and define $g(y_{\beta})$ and $g(z_{\beta})$ so that

$$\left|f(x) - g(x)\right| < \frac{r}{2} \text{ for } x = y_{\beta}, z_{\beta} \text{ and } \left|g(y_{\beta}) - g(z_{\beta})\right| \ge \frac{r}{2}$$

460

It follows from transfinite induction that $g: I \to \mathbb{R}$ can be obtained by redefining f on $\{x_{\alpha}, y_{\alpha}, z_{\alpha} : \alpha \in A\}$ in the above fashion.

Therefore $d(f,g) \leq r/2$, and $g \in AC \setminus PR$ because $g \cap K_{\alpha} \neq \emptyset$ for every $\alpha \in A$ and because g is discontinuous on every perfect set P_{α} . Suppose $h \in AC$ and d(h,g) < r/4. Then $h \notin PR$ because h is also discontinuous on each perfect set P_{α} . Therefore $B(g,r/4) \subset B(f,r) \setminus PR$. $AC \cap PR$ is porous at f in AC since $\gamma(f,r,AC \cap PR) \geq \frac{r}{4}$ and $p(f,AC \cap PR) \geq \frac{1}{4} > 0$. \Box

If A is a subspace of B and B is porous in C, then A is porous in C [9]. According to this, the next result is an immediate consequence of Theorem 1 and the commutative diagram (*).

Theorem 2. Ext is porous in AC.

3 A Boundary Set

This result is proved in [4]:

Proposition 2. If $f: I^n \to I$, n > 1, is a Darboux and onto function and $g: I \to Y$, where Y is a metric space, is any function such that $g \circ f: I^n \to Y$ is a connectivity function, then g is continuous except perhaps at 0 or 1.

We use the following version of it with \mathbb{R}^n and $f(\mathbb{R}^n)$ replacing I^n and I respectively, and its proof is practically the same.

Proposition 3. If $f : \mathbb{R}^n \to \mathbb{R}$, n > 1, is a Darboux non-constant function and $g : f(\mathbb{R}^n) \to Y$, where Y is a metric space, is any function such that $g \circ f : \mathbb{R}^n \to Y$ is a connectivity function, then g is continuous at every interior point of the interval $f(\mathbb{R}^n)$.

For n > 1, $Ext(\mathbb{R}^n) = Conn(\mathbb{R}^n) \subset D(\mathbb{R}^n)$. $Ext(\mathbb{R}^n) \subset Conn(\mathbb{R}^n)$ and $Conn(\mathbb{R}^n) \subset D(\mathbb{R}^n)$ are evident from the definitions, and $Conn(\mathbb{R}^n) \subset Ext(\mathbb{R}^n)$ is shown in [3].

Theorem 3. For n > 1, $Ext(\mathbb{R}^n)$ is a boundary set in $D(\mathbb{R}^n)$.

Proof. Suppose $0 < r \leq 1$ and $f : \mathbb{R}^n \to \mathbb{R}$ belongs to $Conn(\mathbb{R}^n)$. First suppose f is not a constant function. Let $i : f(\mathbb{R}^n) \to \mathbb{R}$ be the identity function on $f(\mathbb{R}^n)$, and take any Darboux function $g : f(\mathbb{R}^n) \to \mathbb{R}$ discontinuous at an interior point of $f(\mathbb{R}^n)$ such that d(i,g) < r/2. Then $d(f,g \circ f) = d(i,g) < r/2$. According to Proposition 3, $g \circ f \notin Conn(\mathbb{R}^n)$. The composition $g \circ f$ of two Darboux functions is Darboux, and so $g \circ f \in D(\mathbb{R}^n) \setminus Conn(\mathbb{R}^n)$. If f = k, a constant, then instead of to f, i, and g, we apply the previous argument to

 $f_0(x,y) = k + \frac{r}{2} \sin x$ where $(x,y) \in \mathbb{R} \times \mathbb{R}^{n-1}$, to the identity $i_0 : f_0(\mathbb{R}^n) \to \mathbb{R}$, and to any Darboux discontinuous $g_0 : f_0(\mathbb{R}^n) \to \mathbb{R}$ with $d(i_0,g_0) < r/2$; note that

$$d(f, g_0 \circ f_0) \le d(f, f_0) + d(f_0, g_0 \circ f_0) < \frac{r}{2} + \frac{r}{2} = r$$

and $g_0 \circ f_0 \in D(\mathbb{R}^n) \setminus Conn(\mathbb{R}^n)$. This shows $Ext(\mathbb{R}^n)$ is a boundary set in $D(\mathbb{R}^n)$.

References

- K. Banaszewski, Algebraic properties of ε-continuous functions, Real Analysis Exchange, 18 (1992/93), no. 1, 153–168.
- [2] J. B. Brown, P. Humke and M. Laczkovich, *Measurable Darboux func*tions, Proc. Amer. Math. Soc., **102** (1988), 603–610.
- [3] K. Ciesielski, T. Natkaniec and J. Wojciechowski, Extending connectivity functions on ℝⁿ, Topology Appl., **112** (2001), no. 2, 193–204.
- [4] R. G. Gibson, H. Rosen and F. Roush, Compositions and continuous restrictions of connectivity functions, Topology Proc., 13 (1988), 83–91.
- [5] J. M. Jastrzebski, J. M. Jedrzejewski and T. Natkaniec, On some subclasses of Darboux functions, Fund. Math., 138 (1991), 165–173.
- [6] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math., 31 (1974), 125–128.
- [7] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc., 33 (1972), 1981–184.
- [8] H. Rosen, Porosity in spaces of Darboux-like functions, Real Analysis Exchange, 26 (2000/01), 195–200.
- H. Rosen, Porous and boundary sets in Darboux-like function spaces, Real Analysis Exchange, 27 (2001–2002), 27–39..
- [10] P. Szuca, On some properties of sets blocking almost continuous functions, Real Analysis Exchange, 27 (2001–2002), 373–388.