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Jozef Bobok∗, KM FSv. ČVUT, Thákurova 7, 166 29 Praha 6, Czech
Republic. e-mail: erastus@mbox.cesnet.cz
Milan Kuchta, Mathematical Institute, Slovak Academy of Sciences,
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IRRATIONAL TWIST SYSTEMS FOR
INTERVAL MAPS

Abstract

Let I be a compact real interval and f : I → I continuous. We
describe a special infinite minimal subsystem - we call it irrational twist
system - of dynamical system (I, f). We show that any twist system has
an extremely regular behavior and it can be considered as an interval
analogy of the irrational circle rotation.

1 Introduction

Consider a continuous function which maps a closed interval of the real line
into itself. A fixed point divides this interval into two parts and we can measure
these two parts using an ergodic invariant measure. Or more precisely, by an
eccentricity (rotation number) of that measure which is the ratio not less
than one where the numerator and denominator are the measures of the parts.
One can ask the following question. If that ratio is maximal, what can we say
about the dynamics on the support of corresponding ’maximal’ measure? As it
is often in mathematics it turned out that to solve this question it is necessary
to distinguish rational and irrational cases. The rational one leads to special
cycles and measures on periodic orbits [2], [9], [10]; the second one gives some
view to the world of minimal sets and ergodic measures supported by them.
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In the theory of discrete dynamical systems the question of coexistence of
different types of invariant sets arises. The aim of this paper is to describe
infinite minimal sets (We call them irrational twist systems.) of an ex-
tremely regular behavior that can be considered as an interval analogy of the
irrational circle rotation. They are defined - roughly speaking - as follows.
If some continuous map acts minimally on a Cantor set with an ergodic invari-
ant measure of an eccentricity β, then they together create a twist β-system
if that map can be extended to the interval map such that all its invariant
measures have eccentricities at most β.

Our main results characterize the twist β-system of prescribed irrational
eccentricity (Section 2, Theorem A) and describe some situation when dynam-
ical systems given by interval map have such a system as a subsystem (Section
2, Theorem B). Now it is already known that each interval map with positive
topological entropy realized an irrational twist β-system for every irrational
eccentricity β from some interval [8].

The paper is organized as follows. In Section 2 we give some basic notation
and definitions. After introducing necessary notion we state the main results
here. Section 3 is devoted to the lemmas used throughout the paper. In
Section 4 we prove our main results - Theorems A and B.

Remark 1.1. Similar results to those obtained in this paper were announced
(without proofs) in [3]. As we know from our private communication they
have been obtained by different methods.

Acknowledement. The authors express their sincere thanks to the referee
for his valuable comments.

2 Notation and Definitions

By R, Q, N we denote the sets of real, rational and positive integer numbers
respectively. Let T be the set of all compact subsets of R, where each T ∈ T
is equipped with the Euclidean metric. For T ∈ T let C(T ) denote the set
of all continuous functions which map T into itself. We consider the space
C(T ) =

⋃
{C(T ) : T ∈ T } and for g ∈ C(T ) we define gn inductively by

g0 = id and (for n ≥ 1) gn = g ◦ gn−1. As usually, gn is called the n-th iterate
of g. A map f ∈ C(I) is said to be an interval map if I ∈ T is an interval.

Let g ∈ C(T ). For x ∈ T the orbit of x under g is orb(g, x) = {gn(x)}∞n=0.
The ω-limit set ω(g, x) of x ∈ T consists of all the limit points of orb(g, x).
A point x is said to be periodic (of period n) if gn(x) = x and gi(x) 6= x for
0 < i < n. The set of all periodic points is denoted by Per(g). A fixed point
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is a periodic point with period 1 and Fix(g) is the set of all fixed points of g.
If g ∈ C(T ), then we say that (T, g) is a (dynamical) system.

For a system (T, g), a map g̃ ∈ C(conv T ) is said to be (T, g)-monotone
if g̃|T = g and g̃|J is monotone (not necessarily strictly) for any interval
J ⊂ conv T such that J ∩ T = ∅. We will use the notation C(T, g) for the set
of all (T, g)-monotone maps. In particular, the (T, g)-monotone map which is
affine on each component of conv T \ T will be denoted gT .

An interval map f ∈ C(I) is piecewise monotone if there are k ∈ N and
points min I = c0 < c1 < · · · < ck < ck+1 = max I such that f is monotone on
each [ci, ci+1], i = 0, . . . , k. The minimal such k will be called the modality
of f .

A system (T, g) is said to be minimal, resp. transitive if for each x ∈ T ,
resp. for some x ∈ T the ω-limit set ω(g, x) is equal to T . Such a point will
be called transitive. A cycle is a minimal system (T, g) such that T is finite.
A function f ∈ C(T ) has a cycle (T, g) if f | T = g. In this case we will often
write (T, f) instead of (T, g).

Let µ be a normalized Borel measure on T ∈ T . From now if we say
“measure”, then we in fact mean “normalized Borel measure” and if we mea-
sure some set, then we assume that it is Borel measurable. We will say
that g ∈ C(T ) preserves the measure µ (or that µ is preserved by g) if
µ(g−1(S)) = µ(S) for any S ⊂ T . Let M(g) be the set of measures pre-
served by g. We have the following simple inequality.

If µ ∈M(g), then µ(g(S)) ≥ µ(S) for any S ⊂ T .

In particular if µ({p}) > 0, then p must be a periodic point and µ({x}) =
µ({p}) for any x ∈ orb(g, p). In this case we speak about the atomic measure
µ on a periodic orbit orb(g, p).

We say that S ⊂ T is g-invariant if g(S) ⊂ S. The measure µ ∈ M(g) is
called ergodic if for any g-invariant set S ⊂ T either µ(S) = 0 or µ(S) = 1.
We denote the set of all g-invariant ergodic measures byMe(g). The support
of a measure µ, denoted by suppµ, is the smallest closed set S ⊂ T such
that µ(S) = 1. If µ ∈ M(g), then f(suppµ) = suppµ and if µ is ergodic,
then either suppµ = orb(g, p) for some p ∈ Per(g) or suppµ is a perfect set.
Moreover we have following ergodic decomposition.

Theorem 2.1. ([13]) Let g ∈ C(T ) and µ ∈ M(g). Then there is a measure
m on Me(g) such that µ(S) =

∫
Me(g)

λ(S) dm for any measurable set S.

Definition 2.1. Let (T, g) be a system, c ∈ conv T and µ be a measure on T .
Let β = µ([minT, c])/µ([c,maxT ]) (β = ∞ if µ([c,maxT ]) = 0). We define
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E(µ, c) = max{β, 1/β}, E(µ) = sup{E(µ, c) : c ∈ Fix(gT )} and

E(T, g) = sup{E(µ) : µ ∈Me(g)}.

The value E(T, g) will be called the eccentricity of (T, g).

Remark 2.1. (i) By virtue of Theorem 2.1 we can verify that for a system
(T, g)

E(T, g) = sup{E(µ) : µ ∈M(g)}.

(ii) If I ∈ T is an interval and f ∈ C(I), then we often write E(f) instead
of E(I, f). (iii) As it was shown in [10] if for g ∈ C(T ) the number of fixed
points of gT is greater than one, then E(gT ) =∞. In this paper our interest is
focused on maps with finite eccentricities. So in the sequel we will not consider
any map gT with more fixed points.

Definition 2.2. A system (T, g) is said to be a unisystem if gT is piecewise
monotone and # Fix(gT ) = 1. The set of all unisystems will be denoted by U .

Remark 2.2. (i) Let (T, g) ∈ U . In what follows we always use the letter c
to denote a unique fixed point of gT . (ii) Our definition of eccentricity gives
E(gT ) ≥ E(T, g). It is well known that for some unisystems (T, g) we have
E(gT ) > E(T, g) [10].

Lemma 2.1. ([4]) Let f ∈ C(I) be a piecewise monotone interval map and
# Fix(f) = 1. The following hold:

(i) E(f) <∞.

(ii) There is a measure µ ∈Me(f) such that E(µ) = E(f).

(iii) In particular, if (T, g) ∈ U , then E(gT ) < ∞ and there is a measure
µ ∈Me(gT ) such that E(µ) = E(gT ). In general, suppµ * T .

The key definition follows. It ’works’ with eccentricities of ergodic mea-
sures.

Definition 2.3. Let β ∈ (1,∞). A system (T, g) ∈ U is said to be a twist
β-system if T = suppµ for some µ ∈Me(g) with E(µ) = β, E(gT ) = β and

∀ ν ∈Me(gT ) : E(ν) = β =⇒ supp ν ⊂ T. (∗)

Remark 2.3. (i) If (T, g) is a twist β-system, then from Theorem 2.1 follows
that ∀ ν ∈ M(gT ) : E(ν) = β =⇒ supp ν ⊂ T. (ii) In [10] we have studied a
particular case of twist systems (we called them X-minimal). Namely, we sup-
posed there that the set T is finite; then (T, g) is a cycle and E(gT ) ∈ Q. It can
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be shown that a twist system (T, g) with a rational eccentricity need not satisfy
#T <∞. In this paper we will deal mainly with irrational eccentricities. (iii)
We have seen in Lemma 2.1 that for (T, g) ∈ U with E(gT ) = β ∈ [1,∞) there
is some µ ∈Me(gT ) such that E(µ) = β. In the sequel we will always assume
that E(µ) = µ([minT, c])/µ([c,maxT ]). Otherwise we would use instead of
gT the map h ◦ gT ◦h−1 with h(x) = −x+ minT + maxT , x ∈ [minT,maxT ].

Definition 2.4. Let (T, g) ∈ U , β ∈ (1,∞). For x ∈ T \ {c} a function
Kx : orb(g, x)→ R is a β-code of orb(g, x) if for each i ∈ N ∪ {0}

Kx(gi+1(x)) = Kx(gi(x)) +
1

1 + β
if gi(x) < c

Kx(gi+1(x)) = Kx(gi(x))− β

1 + β
if gi(x) > c.

(1)

We say that the β-code of orb(g, x) is monotone, resp. strictly monotone
if for any y, z ∈ orb(g, x) the relation y ∈ conv{z, c} implies Kx(y) ≥ Kx(z),
resp. Kx(y) > Kx(z). A continuous function K : T → R is said to be a
β-coding of (T, g) if for each x ∈ T \ {c} the function K| orb(g, x) = Kx is a
β-code of orb(g, x).

Remark 2.4. We note that any β-code of c is not defined. By definition,
the β-code Kx of orb(g, x), resp. the β-coding K of (T, g) is determined (if it
exists) uniquely up to an additive constant.

Our main results are the following.

Theorem A. Let (T, g) ∈ U , β ∈ (1,∞) irrational. The following statements
are equivalent:

(i) (T, g) is a twist β-system.

(ii) T = suppµ for some µ ∈ Me(g) with E(µ) = β and there is a map
g̃ ∈ C(T, g) such that E(g̃) = β.

(iii) There is a transitive point x ∈ T such that the β-code Kx of orb(g, x) is
monotone.

(iv) (T, g) is minimal and there is the β-coding K : T → R such that for each
x ∈ T , the β-code Kx = K| orb(g, x) of orb(g, x) is strictly monotone.

(v) T = suppµ for some µ ∈ Me(g) with E(µ) = β, E(g̃) = β for any
g̃ ∈ C(T, g) and ∀ ν ∈M(g̃) : E(ν) = β =⇒ supp ν = T.
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Remark 2.5. By Theorem A, the statements (i) and (iii) are equivalent for β
irrational. Unfortunately, it is not the case for β rational. In order to hold on
the compatibility with the definition of X-minimal cycle from [10] we prefer
to include the condition (∗) defining a twist β-system for β ∈ (1,∞).

Theorem B. Let f ∈ C(T ) be an interval map such that E(f) ∈ (1,∞) is
irrational. If there is a measure µ ∈Me(f) for which E(µ) = E(f) and fsuppµ

is piecewise monotone, then (suppµ, f) is a twist E(f)-system.

3 Lemmas

This section is devoted to developing preliminary results for proving Theorems
A and B in Section 4. Statements 3.1–3.3 deal with the code of some transitive
point and show useful consequences of its monotonicity. The main result of
this section is Lemma 3.6 that explains what happens when the code is not
monotone.

Lemma 3.1. Let (T, g) ∈ U , β ∈ (1,∞). Suppose that for a transitive point
x ∈ T a β-code Kx : orb(g, x)→ R is monotone. Then Kx : orb(g, x)→ R is
continuous and bounded.

Proof. By our assumptions if T is finite, then (T, g) is a cycle and any β-code
Kx of x ∈ T is continuous if and only if it exists. Thus the conclusion is valid
in this case. Let us suppose that T is infinite and denote S = orb(g, x). First
we will prove the continuity. Assume to the contrary that there is a right limit
point u ∈ S of S, u < c and L > 0 such that

lim
v→u+,v∈S

Kx(v) = Kx(u) + L. (2)

Obviously the limit in (2) exists because of the monotonicity of Kx. Choose
δ > 0 arbitrarily. There is a k ∈ N such that gk(u) ∈ U+

δ (u) and Kx(gk(u)) ≥
Kx(u) + L (see (2). Moreover, for some sufficiently small ε > 0

(a) gk(Uε(u)) ⊂ U+
δ (u) and

(b) for any y ∈ Uε(u) ∩ S and i ∈ {0, . . . , k} we have c /∈ [gi(y), gi(u)].

Hence it is clear that for each y satisfying (b), Kx(gk(y)) ≥ Kx(y) + L. Fi-
nally because u is a right limit point of S, there is an m ∈ N such that
gm(u) ∈ U+

ε (u). From (2),(a),(b) we obtain Kx(gm(u)) ≥ Kx(u) + L and
Kx(gm+k(u)) ≥ Kx(u) + 2L. But gm+k(u) ∈ U+

δ (u). Since δ was arbitrary,
we have a contradiction to (2).
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The other cases when either u < c is a left limit point of S or u > c
is a limit point of S are similar. Thus, the β-code Kx of S = orb(g, x) is
continuous. Let us prove that Kx is bounded from above. Divide the orbit S
into the parts SL < c, SR > c and the left part SL into the sets SLL, SLR such
that g(SLL) < c, g(SLR) > c. Notice that by monotonicity of Kx we get

g(SR) ⊂ SL. (3)

Our system (T, g) is from U ; i.e., gT is piecewise monotone. In particular, gT
is monotone on some left neighborhood of c. Since the orbit S is given by a
transitive point x ∈ T and # Fix(gT ) = 1, we immediately obtain

supSLL = y < c, y < gT (y), (y, gT (y)) ∩ S 6= ∅. (4)

Moreover, we can see that gT (y) ≤ supSLR. In fact gT (y) = supSLR holds. To
verify the last equality notice that by (3) for each u ∈ SLR we have (β ∈ (1,∞))

Kx(g2(u)) = Kx(u) +
1

1 + β
− β

1 + β
< Kx(u).

Hence g2(u) < u. It means the set(
S ∩ [minT, gT (y)]

)
∪ (SR ∩ g(S ∩ [minT, gT (y)])

is g-invariant. Hence gT (y) = supSLR. Summarizing, from (4) for some
v ∈ (y, gT (y)) ∩ S we obtain

sup
u∈SR

Kx(u) =
1

1 + β
+ sup
u∈SL

Kx(u) =
2

1 + β
+ sup
u∈SLL

Kx(u) <
2

1 + β
+Kx(v).

It means the β-code Kx of S = orb(g, x) is bounded from above.
Finally let us show that Kx is bounded from below. Let z = minT .

Because gT has the unique fixed point, we have that gT (z) > z and there
is u ∈ S such that u < gT (z). Now there is an ε > 0 such that for any
y ∈ Uε(z) we have f(y) > u. Hence if y ∈ S ∩ Uε(z), from the definition of
Kx and its monotonicity we have that Kx(f(y)) = Kx(y) + 1

1+β ≥ Kx(u) and
clearly Kx(y) ≥ Kx(u) − 1

1+β . Since infu∈SL
Kx(u) + β

1+β = infu∈SR
Kx(u),

the β-code Kx of S = orb(g, x) is bounded from below.

The following fact is an easy consequence of the above lemma.

Corollary 3.1. Under the assumptions of Lemma 3.1 we have T ∩Fix(gT ) =
∅.
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Proof. We use the notation from the proof of the previous lemma. Put
A = supu∈S Kx(u), B = infu∈S Kx(u) and choose a positive integer n such
that A+ n( 1

1+β −
β

1+β ) < B. Suppose c ∈ T . Since gT is piecewise monotone,
S ∩ {c} = ∅ and c ∈ S we can find u ∈ S such that for each i ∈ {0, 1, . . . , n}
we have g2i(u) < c and g2i−1(u) > c for i ∈ {1, . . . , n}. Then

Kx(g2n(u)) = Kx(u) +
n

1 + β
− nβ

1 + β
< A+ n(

1
1 + β

− β

1 + β
) < B

- a contradiction to our choice of B. Thus T ∩ Fix(gT ) = ∅.

Lemma 3.2. Let (T, g) ∈ U , β ∈ (1,∞) irrational. Suppose that for a transi-
tive point x ∈ T a β-code Kx : orb(g, x) → R is monotone. Then T does not
contain any periodic point of gT .

Proof. Supposing to the contrary that P ⊂ T for some cycle (P, g) of gT ,
we have E(P, g) ∈ Q and so E(P, g) > β, resp. E(P, g) < β. Then using a
sufficiently long block of orb(g, x) that is close to P it can be shown as in the
proof of Corollary 3.1 that the β-code Kx from that corollary is not bounded
by the value A, resp. B - a contradiction.

Corollary 3.2. ([1]) It is known that for a transitive system (T, g) ∈ U exactly
one of the following three possibilities is satisfied:

(i) T is finite and then a cycle.

(ii) T is a Cantor set.

(iii) T is a union of finitely many closed intervals with disjoint interiors.
First and third possibilities correspond to the presence of periodic points
in T .

Thus, under the assumptions of Lemma 3.2 the set T is a Cantor set.

Lemma 3.3. Let (T, g) ∈ U , β ∈ (1,∞) irrational. Suppose that for a tran-
sitive point x ∈ T a β-code Kx : orb(g, x) → R is monotone. Then there is a
β-coding K : T → R.

Proof. Since β is irrational, the set T is infinite. Put S = orb(g, x). In
what follows we show that the function K : T → R defined as K(u) =
limv→u,v∈S Kx(v), u ∈ T is a β-coding. Obviously it is sufficient to show
that K is continuous. Divide the set T into the parts TL < c and TR > c and
take u ∈ TL (case u ∈ TR is similar). We already know from Lemma 3.1 that
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K is continuous if u ∈ S∪{minTL,maxTL}. Choose u ∈ (minTL,maxTL)\S
and put

Lt(u) = inf{Kx(v) : v ∈ S ∩ TL and v > u}

and analogously Lb(u) the left limit of Kx at the point u. Since by Corollary
3.1 the set T does not contain a fixed point c of gT , we have

0 ≤ L = Lt(u)− Lb(u) = Lt(gn(u))− Lb(gn(u)) for each n ∈ N.

Moreover, by Lemma 3.2 the orbit of u is infinite and Lemma 3.1 says that
the function Kx is monotone and bounded. Without loss of generality we
may assume that for an increasing sequence {n(j)}j≥0 of positive integers
{uj = gn(j)(u)}j≥0 ⊂ TL and u0 < u1 < · · · < uj < · · · . Then for each j ≥ 0
we get Lb(uj) + L = Lt(uj) ≤ Lb(uj+1). Hence also for each j ≥ 0

Lb(u0) + (j + 1)L ≤ Lt(uj) ≤ K(maxTL).

Therefore L = 0; i.e., the function K is continuous at the point u.

When proving the key Lemma 3.6 we will need the notion of a semicycle.

Definition 3.1. Let f ∈ C(T ) have a unique fixed point c ∈ Fix(f). A
sequence Q = 〈qi〉ai=0 will be called an f-semicycle if

f(qi−1) = qi for 1 ≤ i ≤ a , q0 6= qa and q0 ∈ conv{qa, c}.

Let β = #{i > 0; qi < c}/#{i > 0; qi > c}. The eccentricity of the f -semicycle
Q will be E(Q) = max{β, 1/β}.

Lemma 3.4. ([10]) Let f have a unique fixed point and Q be an f -semicycle.
Then f has a cycle (P, f) such that P ∩Q = ∅ and E(P, f) = E(Q).

The following result will be useful in proving Lemma 3.6 and Theorem B.

Lemma 3.5. ([9] Let f ∈ C(T ) be an interval map. Suppose that f(S) ⊂ S
for a closed S ⊂ R. Then for any p ∈ Per(fS) there is p∗ ∈ Per(f) such that
fS | orb(fS , p) ◦ h = h ◦ f | orb(f, p∗) where h : orb(f, p∗) → orb(fS , p) is an
order preserving bijection.

A crucial role of a monotone code is shown by the following result.

Lemma 3.6. Let (T, g) ∈ U , β ∈ (1,∞). Suppose that for some measure
µ ∈Me(g) with T = suppµ, E(µ) = β and a generic point x ∈ G(µ) a β-code
Kx : orb(g, x)→ R is not monotone. If f ∈ C(I) is an interval map satisfying
f |T = g, then f has a cycle (P, f) such that E(P, f) > β.
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Remark 3.1. In this lemma we assume again that

E(µ) = µ([minT, c])/µ([c,maxT ]).

Otherwise we would use the map h◦gT ◦h−1 where h(x) = −x+minT+maxT ,
x ∈ [minT,maxT ].

Proof. It was proved in [10] for T finite. Thus let us suppose that T is
infinite and put f = gT . We know that then the measure µ is nonatomic.
Take x ∈ G(µ). Since x is generic and suppµ = T , it is also a transitive
point. Moreover, for each open set U ⊂ T (in the relative topology) such that
µ(bdU) = 0 [11]

lim
n

#{i ≤ n : gi(x) ∈ U}
n

= µ(U). (5)

Let S = orb(g, x). If Kx : S → R is not monotone, then one of the following
two possibilities has to be satisfied:

(a) There are two points u, v ∈ S such that u ∈ conv{v, c}, Kx(v) > Kx(u)
and v = gk(u) for some k ∈ N.

(b) There are two points u, v ∈ S such that u ∈ conv{v, c}, Kx(v) > Kx(u)
and u = gk(v) for some k ∈ N.

(a) In this case we will show that gT has a cycle with some eccentricity greater
than β. Really, 〈g0(u), g1(u), . . . , gk(u)〉 is a semicycle with the eccentricity m

n ,
m,n coprime. Since we know that Kx(gk(u)) = Kx(g0(u)) +m1

1
1+β −n1

β
1+β ,

where m1, n1 ∈ N and m1
n1

= m
n , from Kx(gk(u)) > Kx(g0(u)) we obtain

m
n > β. By Lemma 3.4 the map gT has a cycle (P, gT ) such that E(P, gT ) = m

n .
Thus, the conclusion holds in this case.

(b) Supposing that (a) does not hold. We will show that (b) is impossible
for any two points from S.

Since gT is continuous, we can find an ε > 0 such that the sets Uε(gi(v)),
Uε(c), i ∈ {0, . . . , k} are pairwise disjoint. Moreover there is a δ > 0 and Uδ(v)
such that µ(bdUδ(v)) = 0 and for any z ∈ Uδ(v) and i ∈ {0, 1, . . . , k} we have

gi(z) ∈ Uε(gi(v)). (6)

Therefore for any y, ỹ ∈ Uδ(v) ∩ S the β-codes satisfy

Kx(gk(y))−Kx(y) = Kx(gk(ỹ))−Kx(ỹ). (7)

Let M = {ai}∞i=0 such that ai < ai+1 and gj(v) ∈ Uδ(v) if and only if j ∈M .
Since v ∈ G(µ) (as the image of x), the set M is well defined. Notice that from
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(6) we have ai − ai−1 > k. Because case (a) is not possible, we can see that
Kx(gai(v)) ≤ Kx(gai−1+k(v)). Using (7) we get Kx(gai+k(v))−Kx(gai(v)) =
Kx(gk(v)) − Kx(v). Hence Kx(gai+k(v)) − Kx(gai−1+k(v)) ≤ Kx(gk(v)) −
Kx(v) < 0 for i ∈ N and inductively

Kx(gai+k(v))−Kx(ga0+k(v)) ≤ i(Kx(gk(v))−Kx(v)) < 0. (8)

We can write ai = mi + ni where mi = #{j ≤ ai : gj+k(v) < c}. Then we
have

Kx(gai+k(v)) = Kx(gk(v)) +mi
1

1 + β
− ni

β

1 + β
. (9)

Further because v is a generic point, by (5) and the equalities µ(bdUδ(v)) =
µ({c}) = 0 we have the limits

lim
i→∞

mi

mi + ni
= µ([minT, c]) =

β

1 + β

lim
i→∞

ni
mi + ni

= µ([c,maxT ]) =
1

1 + β

lim
i→∞

i

mi + ni
= µ(Uδ(v)) > 0.

(10)

Putting (8), (9) and (10) together we get

0 =
β

(1 + β)2
− β

(1 + β)2
≤ µ(Uδ(v))(Kx(u)−Kx(v)) < 0

- a contradiction. This excludes the case (b).
We have shown that under the condition of this theorem the possibility (a)

has to be satisfied. Thus, the conclusion for f = gT follows.
If f ∈ C(I) is an interval map satisfying f |T = g, then the conclusion is an

immediate consequence of Lemma 3.5 and the fact that it is true for gT .

4 Proof of Theorems A and B

The following definition and lemma apply to any dynamical system (X, f),
where X is a compact metric space and f : X → X is continuous. The
definition of ω-limit set and minimality is analogous as for systems with X ⊂ R
- compare with Section 2.

Definition 4.1. (cf. [1] [Proposition 5, p. 93]) A point x ∈ X is called
strongly recurrent if x ∈ ω(f, x) and the system (ω(f, x), f) is minimal.
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The following lemma is a special consequence of stronger statement from
[12].

Lemma 4.1. ([12] [Proposition 8.6]) Let (X, ρ) be a compact metric space
and f : X → X be continuous. Then for each y ∈ X there is a strongly
recurrent z ∈ X such that lim inf

i→∞
ρ(f i(y), f i(z)) = 0.

Theorem A. Let (T, g) ∈ U , β ∈ (1,∞) irrational. The following statements
are equivalent:

(i) (T, g) is a twist β-system.

(ii) T = suppµ for some µ ∈ Me(g) with E(µ) = β and there is a map
g̃ ∈ C(T, g) such that E(g̃) = β.

(iii) There is a transitive point x ∈ T such that the β-code Kx of orb(g, x) is
monotone.

(iv) (T, g) is minimal and there is the β-coding K : T → R such that for each
x ∈ T , the β-code Kx = K| orb(g, x) of orb(g, x) is strictly monotone.

(v) T = suppµ for some µ ∈Me(g) with E(µ) = β and for any g̃ ∈ C(T, g)
it holds E(g̃) = β and ∀ ν ∈M(g̃) : E(ν) = β =⇒ supp ν = T.

Proof. The implication (i) =⇒ (ii) is clear.
(ii) =⇒ (iii).

Let µ ∈ Me(g) be a measure such that suppµ = T and E(µ) = β. Take
a generic point x ∈ G(µ). This point is also transitive. Since E(g̃) = β by
Lemma 3.6 the β-code Kx of orb(g, x) is monotone. So (ii) implies (iii).
(iii) =⇒ (iv) Using Lemma 3.3 we obtain that the required β-coding exists.
Notice that since β is irrational, for each x ∈ T the β-code Kx is monotone
if and only if it is strictly monotone. Thus, it remains to prove that (T, g) is
minimal. Obviously, for the β-coding K, z ∈ T and i ∈ N we have

K(gi(z)) ≡ K(z) +
i

1 + β
(mod 1). (11)

We know from Corollary 3.2 that T is a Cantor set. Let us denote G, resp.
F the set of all transitive points, resp. all endpoints of T -contiguous intervals
from T . Obviously, G is dense of type Gδ and F is countable. By the standard
category arguments we obtain that G \

⋃
i≥0 g

−i(F ) 6= ∅; i.e., we can consider
a transitive point y ∈ G for which orb(g, y)∩F = ∅. Now let us apply Lemma
4.1. By this lemma there is a strongly recurrent point z ∈ T such that

lim inf
i→∞

|f i(y)− f i(z))| = 0. (12)
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It is a consequence of (11) that if K(y) 6≡ K(z) (mod 1), then since K is
continuous and monotone, (12) cannot hold. Hence K(y) ≡ K(z) (mod 1)
and for the same reason K(gn(y)) = K(gn(z)) for some n ∈ N. By our
choice of y, gn(y) /∈ F ; i.e., gn(y) is a two-sided limit point of orb(g, y) and
K| orb(g, y) is strictly monotone. Thus gn(y) = gn(z); i.e., y is strongly
recurrent. Summarizing, the system (T = ω(g, y), g) is minimal.
(iv) =⇒ (v)

Obviously for x ∈ T we can write

1
n
K(gn(x)) =

1
n
K(x) +

1
1 + β

1
n

n−1∑
j=0

χL(gj(x))− β

1 + β

1
n

n−1∑
j=0

χR(gj(x)),

where χL, resp. χR is an indicator function of [minT, c], resp. [c,maxT ]. But
the β-coding of T is bounded. Hence

lim
n

1
n

n−1∑
j=0

χL(gj(x)) =
β

1 + β
and lim

n

1
n

n−1∑
j=0

χR(gj(x)) =
1

1 + β
. (13)

It is known [11] that (13) gives an existence of a measure µ ∈Me(g) such that
E(µ) = β and suppµ = T ((T, g) is minimal). In fact we know more: any
measure from Me(g) with support equal to T has its eccentricity equal to β.

Since (T, g) ∈ U , the map g̃ ∈ C(T, g) is piecewise monotone and # Fix(g̃) =
1. Hence by Lemma 2.1 there is a measure ν ∈Me(g̃) such that E(ν) = E(g̃).
Let us suppose that S = supp ν 6= T . Then since (T, g) is minimal we have
either S % T or S ∩ T = ∅.

(1) Let S % T . Suppose that γ = E(ν) = E(g̃) > β. We will use Lemma
3.6 for (S, h = g̃|S) ∈ U , γ ∈ (1,∞) and ν ∈Me(h). Take some generic point
x ∈ G(ν). If some γ-code Kx of orb(h, x) is not monotone, we know from
Lemma 3.6 that g̃ has a cycle with eccentricity greater than γ. But this is
impossible since E(g̃) = γ. So we obtain that the γ-code Kx of orb(h, x) is
monotone.

On the one hand Lemma 3.1 says that the γ-code Kx : orb(h, x) → R is
continuous and bounded. On the other hand, if γ > β, then using the code of
a sufficiently long block of orb(h, x) close to T it can be shown similarly as in
the proof of Corollary 3.1 that the γ-code Kx of orb(h, x) is not bounded from
below, a contradiction. It shows that γ = β; i.e., γ is irrational. Thus, we get
that all conditions of part (iii) of this theorem are satisfied by a system (S, h).
Since we have already proved (iii) =⇒ (iv), we can see that the system (S, h)
is minimal. Hence S = T and h = g. We have shown that (1) cannot hold.

(2) S ∩ T = ∅. We will show that γ = E(ν) < β in this case. Since g̃
is (T, g)-monotone and K is monotone it holds g̃([c,maxT ]) = [minT, c]. It
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implies for the measure ν that

γ = E(ν) = ν([minT, c])/ν([c,maxT ]). (14)

The sets S, T are closed and disjoint. Clearly the distance of S, T is positive.
Hence S is a subset of finitely many T -contiguous intervals. Denote them by
{Ji = (ai, bi)}li=1 and consider their codes K(Ji), where K(J = (a, b)) equals
to K(a) if J < c and K(b) for J > c. (If c ∈ J = (a, b), take two intervals,
(a, c] and [c, b).) Notice the following property given by the monotonicity of
the β-coding K: if g̃(Ji) ⊃ Jj , then

K(Jj) ≥ K(Ji) +
1

1 + β
for Ji < c and K(Jj) ≥ K(Ji)−

β

1 + β
for Ji > c.

(15)
Clearly the relation int g̃(Ji)∩Jj 6= ∅ implies g̃(Ji) ⊃ Jj . Hence one can verify
that for a generic point y ∈ S ∩ G(ν) there is a unique sequence {Lj}∞j=0 of
intervals from {Ji}li=1 such that yj = g̃j(y) ∈ Lj for each nonnegative integer j.
Obviously g̃(Lj) ⊃ Lj+1. Using (15), if we put K(Lj+1) = K(Lj)+ 1

1+β +ε(yj)
for Lj < c andK(Lj+1) = K(Lj)− β

1+β+ε(yj) for Lj > c, then {εj = ε(yj)}j≥0

is a sequence of finitely many nonnegative values and we can write for each
n ∈ N

K(Ln) = K(L0) +
n−1∑
j=0

(
1

1 + β
+ εj)χL(yj)−

n−1∑
j=0

(
β

1 + β
− εj)χR(yj). (16)

Here χL, resp. χR is an indicator function of [minT, c], resp. [c,maxT ].
The equality (16) divided by n can be rewritten in the form

1
n
K(Ln) =

1
n
K(L0) +

1
1 + β

1
n

n−1∑
j=0

χL(yj)−
β

1 + β

1
n

n−1∑
j=0

χR(yj) +
1
n

n−1∑
j=0

εj .

(17)
Clearly limn

1
n K(Ln) = limn

1
n K(L0) = 0. Now we use the fact that y is

generic. We have (see(14))

lim
n

1
n

n−1∑
j=0

χL(yj) =
γ

1 + γ
and lim

n

1
n

n−1∑
j=0

χR(yj) =
1

1 + γ
.

Putting the last limits together we get 0 ≤ limn
1
n

∑n−1
j=0 εj = β−γ

(1+β)(1+γ) . In

what follows we show that in fact 0 < limn
1
n

∑n−1
i=0 εj . We have seen that

it is equivalent to the inequality γ < β. We will use again the fact that y is
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generic. Obviously there exists n ∈ N such that K(Ln) = K(L0). We suppose
that β is irrational. Then (17) implies that for this n

0 6= 1
n

n−1∑
j=0

εj =
β

1 + β

1
n

n−1∑
j=0

χR(yj)−
1

1 + β

1
n

n−1∑
j=0

χL(yj);

i.e., some ε(yi) 6= 0 for i ∈ {0, . . . , n− 1}. We can find a neighborhood U(yi)
of yi satisfying g̃(U(yi)) ⊂ Li+1, ν(bdU(yi)) = 0 and ν(U(yi)) = δ > 0. It is
clear that if for some k ∈ N we have yk ∈ U(yi), then also ε(yk) = ε(yi). Since
by (5) limn

#{j≤n−1: yj∈U(yi)}
n = δ, we also have limn

1
n

∑n−1
j=0 εj ≥ δ · ε(yi) >

0, hence γ < β.
We have proved that E(ν) < β whenever ν ∈Me(g̃) and supp ν 6= T . Now

the conclusion is an easy consequence of Theorem 2.1. This finishes the proof
of this part.

The implication (v) =⇒ (i) follows directly from our definitions.

Theorem B. Let f ∈ C(T ) be an interval map such that E(f) ∈ (1,∞) is
irrational. If there is a measure µ ∈Me(f) for which E(µ) = E(f) and fsuppµ

is piecewise monotone, then (suppµ, f) is a twist E(f)-system.

Proof. By our assumptions # Fix(f) = 1 (cf. Remark 2.1 in Section 2). Let
S = suppµ. Then f(S) = S and since fS is piecewise monotone, (S, f) is a
unisystem; i.e., (S, f) ∈ U . By Theorem A(ii) we need to show that there is a
transitive point x ∈ S such that the E(f)-code Kx of orb(f, x) is monotone.
Take an arbitrary point x ∈ S generic for µ and suppose to the contrary that
Kx is not monotone. By Lemma 3.6 there is a periodic point p ∈ Per(fS) such
that E(orb(fS , p), fS) > E(f). Then from Lemma 3.5 we obtain that there is
a periodic point p∗ ∈ Per(f) for which E(orb(f, p∗), f) = E(orb(fS , p), fS) >
E(f) - a contradiction. This proves the theorem.

In the following remark we are speaking about the topological entropy of
a twist system (T, g) ∈ U . It is defined as the entropy of gT - (for entropy see
[11]).

Remark 4.1. It was shown (see [5], [6], [7]) that for twist systems with real
eccentricities various behaviors are possible. Namely, it was proved that when
modality increases, entropy may stay bounded, but it may also increase to
infinity (independently of the eccentricities).
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