Annalisa Crannell, Department of Mathematics, Franklin \& Marshall College, Lancaster, PA 17604, USA. email: annalisa.crannell@fandm.edu M. Sohaib Alam, Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA. email: malam@physics.utexas.edu

QUASICONTINUOUS FUNCTIONS WITH EVERYWHERE DISCONTINUOUS ITERATES

Abstract

This paper gives examples of two quasicontinuous functions whose second iterates are discontinuous everywhere. It is well-known that every quasicontinuousfunction has a dense-indeed, residual - set of points of continuity; our counter-examples show that this property does not hold for compositions of such functions.

Given topological spaces X and Y, a set $U \subset X$ is quasi-open if $\operatorname{cl}(\operatorname{int}(U)) \supset$ U. A function $f: X \rightarrow Y$ is quasicontinuous if for any open $\mathrm{V} \subset \mathrm{Y}, f^{-1}(V)$ is quasi-open in X. We will use C_{f} and D_{f} to denote the points in X at which f is continuous or discontinuous, respectively, and $C_{f}^{\infty}=\left\{x \in X \mid f^{k}(x) \in\right.$ $\left.C_{f} \quad \forall k \geq 0\right\}$. That is, if $x \in C_{f}^{\infty}$, then f is continuous at every point along the orbit of x, and, accordingly, f^{k} is continuous at x for every $k>0$.

It is well known ([5], [6], [7], [4]) that if X and Y are "nice" (e.g., metric spaces), then C_{f} forms a residual subset of X. In [3], the authors showed that a similar statement can be made for compositions under the additional condition that f is semi-open. (For every non-empty open $U \subset X$, there is a non-empty open subset $V \subset f(U)$.) That is, they showed the following.

Theorem 1. Let X be a compact metric space and let $f: X \rightarrow X$ be both quasicontinuous and semi-open. Then C_{f}^{∞} is residual.

Note that the theorem holds even though f^{k} might not be quasi-continuous for any $k>1$. The purpose of this paper is to give two examples demonstrating that the "semi-open" condition in the theorem is necessary. Indeed, we provide

[^0]two examples of maps which are quasicontinuous but whose second iterates are discontinuous everywhere in the domain. The first example is rather simple to describe and is defined on a cylinder. The second example is somewhat more complicated to construct and is defined on a closed interval of the real line.

Example 1. A quasicontinuous map on the cylinder with everywhere discontinuous second iterate.

Let $X=[-1,1] \times \mathbf{S}^{1}$, where the model of \mathbf{S}^{1} is $[0,1] /(0 \sim 1)$. Define the function $g: X \rightarrow X$ such that

$$
g(x, y)= \begin{cases}(x, 0) & \text { if } y \in(0,1 / 2) \text { or if } y \in\{0,1 / 2\} \text { and } x \in \mathbb{Q} \\ (x, 1 / 2) & \text { otherwise }\end{cases}
$$

Note that g is not semi-open.

$$
g(X)=\{(x, 0) \mid x \in[-1,1]\} \cup\{(x, 1 / 2) \mid x \in[-1,1]\}
$$

so g sends the cylinder into the union of two line segments. Likewise, it is easy to see that g is quasi-continuous.

The second iterate of g is

$$
g^{2}(x, y)= \begin{cases}(x, 0) & \text { if } x \in \mathbb{Q} \cap[-1,1] \\ (x, 1 / 2) & \text { if } x \in \mathbb{Q}^{c} \cap[-1,1]\end{cases}
$$

It follows that g^{2} is discontinuous everywhere on the cylinder.
Example 2. A quasicontinuous map on $[0,2]$ with everywhere discontinuous second iterate.

Define $h:[0,2] \rightarrow[0,2]$ as a periodic sum of two other functions s and q, which are defined below. We will make extensive use of the standard middlethirds Cantor set, \mathcal{C}, and also of its connection to base- 3 notation.

First, we choose a subset $S \subset \mathcal{C}$ to be the set of all numbers whose base-3 expansion ends in ' $\overline{022}_{3}$ '. Note that S has the following properties:
(1) S is dense in \mathcal{C};
(2) $\mathcal{C} \backslash S$ is dense in \mathcal{C}; and,
(3) S contains no points of the form $k / 2^{n}$, for $k, n \in \mathbb{N}$.
(The last property follows from geometric series; the reader can verify that every point in S can be written as $m /\left(19 \cdot 3^{n}\right)$ for some $m, n \in \mathbb{N}$.)

For $x \in[0,1] \backslash \mathcal{C}$, represent the location of the first ' 1 ' in the base- 3 expansion by $o(x)=\min \left\{k \mid x=0 . x_{1} x_{2} x_{3} \cdots 3\right.$ and $\left.x_{k}=1\right\}$.

Now we are ready to define $s:[0,1] \rightarrow[0,1]$ by

$$
s(x)= \begin{cases}0 & x \in \mathcal{C} \backslash S \text { or } x \in[0,1] \backslash \mathcal{C} \text { with } o(x) \text { even } \\ 1 & x \in S \text { or } x \in[0,1] \backslash \mathcal{C} \text { with } o(x) \text { odd }\end{cases}
$$

By definition, s is locally constant on $[0,1] \backslash \mathcal{C}$. It follows that its discontinuity set is $D_{s}=\mathcal{C}$. Note that s is not semi-open. It is, however, quasicontinuous; i.e., $[0,1] \backslash \mathcal{C} \subset s^{-1}(0) \subset[0,1]$, and so the inverse image of any open set containing 0 is quasi-open. The same is true for $s^{-1}(1)$.

We now define the function $q:[0,1] \rightarrow[0,1]$. We begin by writing points in base- 2 notation. If $x \in[0,1]$ has two base- 2 expansions, choose the one that ends $\overline{0}_{2}$, not $\overline{1}_{2}$. Then let $q\left(0 . x_{1} x_{2} x_{3} \ldots 2\right)=0 .\left(2 x_{1}\right)\left(2 x_{2}\right)\left(2 x_{3}\right) \ldots 3$.

It is easy to see that q is not semi-open: $q([0,1]) \subset \mathcal{C}$. (Indeed, although q^{-1} is not defined on all of \mathcal{C}, q^{-1} can be continuously extended to all of $[0,1]$ to form the "Devil's staircase", a common example from introductory analysis and dynamics [1].)

It is clear that q is not a continuous function. However, let us now show that q is a quasi-continuous function. It suffices [7] to show that for all $x \in[0,1]$ and for all $\epsilon>0$, there exists an open set U, where $x \in \operatorname{cl}(U)$, such that $q(U) \subset B_{\epsilon}(q(x))$. Choose x and ϵ as above; choose $m \in \mathbb{N}$ such that $\left(\frac{1}{3}\right)^{m}<\epsilon$. Let $N>m$ be the first place value after m in the base- 2 expansion of x for which $x_{N}=0$, and let $\delta=\left(\frac{1}{2}\right)^{N}$. Pick $y \in(x, x+\delta)$. It follows that $x=$ $0 . x_{1} x_{2} \ldots x_{N-1} 0 x_{N+1} \cdots 2$ and $y=0 . x_{1} x_{2} \ldots x_{N-1} 0 y_{N+1} \cdots 2$. Accordingly,

$$
\begin{aligned}
|q(y)-q(x)|= & 0 .\left(2 x_{1}\right)\left(2 x_{2}\right) \ldots\left(2 x_{N-1}\right) 0\left(2 y_{N+1}\right)\left(2 y_{N+2}\right) \ldots 3 \\
& \quad-0 .\left(2 x_{1}\right)\left(2 x_{2}\right) \ldots\left(2 x_{N-1}\right) 0\left(2 x_{N+1}\right)\left(2 x_{N+2}\right) \ldots 3 \\
\leq & 0.00 \ldots 001 \overline{0}_{3} \\
= & \left(\frac{1}{3}\right)^{N}<\epsilon
\end{aligned}
$$

where the ' 1 ' on the second line of the inequality appears at the $N^{t h}$ place value. Thus, q is quasi-continuous at every point $x \in[0,1]$.

A similar argument shows that q is continuous at every point not of the form $k / 2^{n}$; that is, the set of discontinuity points of q is exactly $D_{q}=$ $\left\{\left.\frac{k}{2^{n}} \right\rvert\, k, n \in \mathbb{N}\right.$ such that $\left.0<k<2^{n}\right\}$.

Let \tilde{s} and \tilde{q} be the periodic extensions of s and q to $[0,2]$; i.e., $\tilde{q}(x)=q(x)$ for $x \in[0,1]$ and $\tilde{q}(x)=q(x-1)$ for $x \in(1,2]$. We are now in a position to describe our main example, $h:[0,2] \rightarrow[0,2]$, defined by $h(x)=\tilde{q}(x)+\tilde{s}(x)$.

Let $\mathbf{C}=\mathcal{C} \cup\{x \in[1,2] \mid x-1 \in \mathcal{C}\}$. It follows from the definitions of \tilde{s} and \tilde{q} that the set of discontinuities of h is $D_{h}=\mathbf{C} \cup\left\{k / 2^{n}\right\}$. Because the sum of a continuous function with a quasicontinuous function is quasicontinuous,
it follows that h is quasicontinuous on $C_{\tilde{q}} \cup C_{\tilde{s}}$-that is, on the complement of $\mathbf{C} \cap\left\{k / 2^{n}\right\}$. We will now show that h is also quasicontinuous at points in $\mathbf{C} \cap\left\{k / 2^{n}\right\}$ as well.

As in the proof for the quasicontinuity of q, we choose $x \in \mathbf{C} \cap\left\{k / 2^{n}\right\}$, $\epsilon>0$ and then fix m, δ such that $(1 / 3)^{m}<\epsilon$ and $\delta=(1 / 2)^{N}$, where N is the first place value after m in the base-2 expansion of x for which $x_{N}=0$. Property (3) of the set S tells us that neither x nor $x-1$ is in S, so $\tilde{s}(x)=0$. Let $U=\{y \in(x, x+\delta) \mid y \notin \mathbf{C} ; o(y)$ even $\}$. The argument above shows that $h(U) \subset B_{\epsilon}(x)$; it remains to show $x \in \operatorname{cl}(U)$. Because $x=k / 2^{n}$ is not an endpoint of the Cantor set, we know the base-3 expansion $x=x_{0} \cdot x_{1} x_{2} \ldots 3$ does not end in ' $\overline{2}_{3}$ '. Therefore, we may find points arbitrarily close to x with their first ' 1 ' in an even position. Either replace a ' 0 ' in an even position with a ' 1 ', or if no such ' 0 ' exists, replace ' 02 ' with ' 21 '. This shows $x \in \operatorname{cl}(U)$, and h is quasicontinuous at x.

We now show that the second iterate of h is discontinuous everywhere on $[0,2]$. To do so, let R denote the set of points whose base- 2 expansions terminate in $\overline{011}$. We will use the fact that both R and $[0,2] \backslash R$ form dense subsets of the interval $[0,2]$. (Compare this to properties (1) and (2) of the set $S \subset \mathcal{C}$.) Now look at the effect that the second iterate of h has on both of these dense subsets.

First, take a point $x=x_{0} \cdot x_{1} x_{2} \ldots x_{n} \overline{011}_{2} \in R$. We see that $h(x)=$ $y_{0} .\left(2 x_{1}\right)\left(2 x_{2}\right) \ldots\left(2 x_{n}\right) \overline{022}_{3}$, where y_{0} might be either 0 or 1 . It follows from the definition of \tilde{s} that $h^{2}(x)>1$. Similarly, if $x \in[0,2] \backslash R$, we have $h^{2}(x) \leq 1$, with equality only in the case $x=1$. Because both R and $[0,2] \backslash R$ are dense, and because q is strictly monotone, it follows that at any point $x \in[0,2]$ and for any $\alpha<1$, we can find another point y arbitrarily close to x with $|h(x)-h(y)|>\alpha$. Therefore, h^{2} is discontinuous on all of $[0,2]$.

References

[1] Gregory L. Baker, Jerry P. Gollub, Chaotic Dynamics: An Introduction, Cambridge University Press, Cambridge, 1996.
[2] J. Borsík, J. Doboš, M. Repický, Sums of Quasicontinuous Functions with Closed Graphs, Real Anal. Exchange 25(2) (1999/00), 679-690.
[3] Annalisa Crannell, Marc Frantz, Michelle LeMasurier, Closed Relations and Equivalence Classes of Quasicontinuous Functions. Real Anal. Exchange, 31(2) (2005/06), 409-423.
[4] A. Crannell, M. Martelli, Dynamics of Quasicontinuous Systems, J. Difference Eqn. Appl., 6 (2000) 351-361.
[5] J. Ewert, J. S. Lipiński, On Points of Continuity, Quasicontinuity, and Cliquishness of Real Functions, Real Anal. Exchange, 8(2) (1982-83), 473478.
[6] M. Matejdes, Quelques remarques sur la quasi-continuit des multifonctions, Math. Slovaca, 37(3) (1987), 267-271.
[7] T. Neubrunn, Quasi-continuity, Real Anal. Exchange, 14(2) (1988-89), 259-306.

[^0]: Key Words: iteration, quasicontinuity, quasicontinuous functions
 Mathematical Reviews subject classification: 54C08, 54H20
 Received by the editors July 20, 2007
 Communicated by: Zbigniew Nitecki

