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QUASICONTINUOUS FUNCTIONS WITH
EVERYWHERE DISCONTINUOUS

ITERATES

Abstract

This paper gives examples of two quasicontinuous functions whose
second iterates are discontinuous everywhere. It is well-known that every
quasicontinuousfunction has a dense—indeed, residual—set of points of
continuity; our counter-examples show that this property does not hold
for compositions of such functions.

Given topological spacesX and Y , a set U ⊂ X is quasi-open if cl(int(U)) ⊃
U . A function f : X → Y is quasicontinuous if for any open V ⊂ Y, f−1(V ) is
quasi-open in X. We will use Cf and Df to denote the points in X at which
f is continuous or discontinuous, respectively, and C∞f = {x ∈ X | fk(x) ∈
Cf ∀k ≥ 0}. That is, if x ∈ C∞f , then f is continuous at every point along
the orbit of x, and, accordingly, fk is continuous at x for every k > 0.

It is well known ([5], [6], [7], [4]) that if X and Y are “nice” (e.g., metric
spaces), then Cf forms a residual subset of X. In [3], the authors showed
that a similar statement can be made for compositions under the additional
condition that f is semi-open. (For every non-empty open U ⊂ X, there is a
non-empty open subset V ⊂ f(U).) That is, they showed the following.

Theorem 1. Let X be a compact metric space and let f : X → X be both
quasicontinuous and semi-open. Then C∞f is residual.

Note that the theorem holds even though fk might not be quasi-continuous
for any k > 1. The purpose of this paper is to give two examples demonstrating
that the “semi-open” condition in the theorem is necessary. Indeed, we provide
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two examples of maps which are quasicontinuous but whose second iterates are
discontinuous everywhere in the domain. The first example is rather simple to
describe and is defined on a cylinder. The second example is somewhat more
complicated to construct and is defined on a closed interval of the real line.

Example 1. A quasicontinuous map on the cylinder with everywhere discon-
tinuous second iterate.

Let X = [−1, 1] × S1, where the model of S1 is [0, 1]/(0 ∼ 1). Define the
function g : X → X such that

g(x, y) =

{
(x, 0) if y ∈ (0, 1/2) or if y ∈ {0, 1/2} and x ∈ Q,
(x, 1/2) otherwise.

Note that g is not semi-open.

g(X) = { (x, 0) |x ∈ [−1, 1] } ∪ { (x, 1/2) |x ∈ [−1, 1] } ,

so g sends the cylinder into the union of two line segments. Likewise, it is easy
to see that g is quasi-continuous.

The second iterate of g is

g2(x, y) =

{
(x, 0) if x ∈ Q ∩ [−1, 1]
(x, 1/2) if x ∈ Qc ∩ [−1, 1]

.

It follows that g2 is discontinuous everywhere on the cylinder.

Example 2. A quasicontinuous map on [0, 2] with everywhere discontinuous
second iterate.

Define h : [0, 2] → [0, 2] as a periodic sum of two other functions s and q,
which are defined below. We will make extensive use of the standard middle-
thirds Cantor set, C, and also of its connection to base-3 notation.

First, we choose a subset S ⊂ C to be the set of all numbers whose base-3
expansion ends in ‘0223’. Note that S has the following properties:

(1) S is dense in C;
(2) C \ S is dense in C; and,
(3) S contains no points of the form k/2n, for k, n ∈ N.

(The last property follows from geometric series; the reader can verify that
every point in S can be written as m/(19 · 3n) for some m,n ∈ N.)

For x ∈ [0, 1] \ C, represent the location of the first ‘1’ in the base-3 expan-
sion by o(x) = min{k | x = 0.x1x2x3 . . .3 and xk = 1}.
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Now we are ready to define s : [0, 1]→ [0, 1] by

s(x) =

{
0 x ∈ C \ S or x ∈ [0, 1] \ C with o(x) even
1 x ∈ S or x ∈ [0, 1] \ C with o(x) odd

.

By definition, s is locally constant on [0, 1]\C. It follows that its discontinuity
set is Ds = C. Note that s is not semi-open. It is, however, quasicontinuous;
i.e., [0, 1] \ C ⊂ s−1(0) ⊂ [0, 1], and so the inverse image of any open set
containing 0 is quasi-open. The same is true for s−1(1).

We now define the function q : [0, 1] → [0, 1]. We begin by writing points
in base-2 notation. If x ∈ [0, 1] has two base-2 expansions, choose the one that
ends 02, not 12. Then let q(0.x1x2x3 . . .2) = 0.(2x1)(2x2)(2x3) . . .3 .

It is easy to see that q is not semi-open: q([0, 1]) ⊂ C. (Indeed, although
q−1 is not defined on all of C, q−1 can be continuously extended to all of [0, 1]
to form the “Devil’s staircase”, a common example from introductory analysis
and dynamics [1].)

It is clear that q is not a continuous function. However, let us now show that
q is a quasi-continuous function. It suffices [7] to show that for all x ∈ [0, 1]
and for all ε > 0, there exists an open set U , where x ∈ cl(U), such that
q(U) ⊂ Bε(q(x)). Choose x and ε as above; choose m ∈ N such that

(
1
3

)m
< ε.

Let N > m be the first place value after m in the base-2 expansion of x for
which xN = 0, and let δ =

(
1
2

)N . Pick y ∈ (x, x + δ). It follows that x =
0.x1x2 . . . xN−10xN+1 . . .2 and y = 0.x1x2 . . . xN−10yN+1 . . .2. Accordingly,

|q(y)− q(x)| = 0.(2x1)(2x2) . . . (2xN−1)0(2yN+1)(2yN+2) . . .3
− 0.(2x1)(2x2) . . . (2xN−1)0(2xN+1)(2xN+2) . . .3

≤ 0.00 . . . 0010̄3

=
(

1
3

)N
< ε,

where the ‘1’ on the second line of the inequality appears at the N th place
value. Thus, q is quasi-continuous at every point x ∈ [0, 1].

A similar argument shows that q is continuous at every point not of
the form k/2n; that is, the set of discontinuity points of q is exactly Dq ={
k
2n | k, n ∈ N such that 0 < k < 2n

}
.

Let s̃ and q̃ be the periodic extensions of s and q to [0, 2]; i.e., q̃(x) = q(x)
for x ∈ [0, 1] and q̃(x) = q(x − 1) for x ∈ (1, 2]. We are now in a position to
describe our main example, h : [0, 2]→ [0, 2], defined by h(x) = q̃(x) + s̃(x).

Let C = C ∪{x ∈ [1, 2] | x−1 ∈ C}. It follows from the definitions of s̃ and
q̃ that the set of discontinuities of h is Dh = C ∪ {k/2n}. Because the sum
of a continuous function with a quasicontinuous function is quasicontinuous,
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it follows that h is quasicontinuous on Cq̃ ∪ Cs̃—that is, on the complement
of C ∩ {k/2n}. We will now show that h is also quasicontinuous at points in
C ∩ {k/2n} as well.

As in the proof for the quasicontinuity of q, we choose x ∈ C ∩ {k/2n},
ε > 0 and then fix m, δ such that (1/3)m < ε and δ = (1/2)N , where N is
the first place value after m in the base-2 expansion of x for which xN = 0.
Property (3) of the set S tells us that neither x nor x− 1 is in S, so s̃(x) = 0.
Let U = {y ∈ (x, x+ δ) | y /∈ C; o(y) even}. The argument above shows that
h(U) ⊂ Bε(x); it remains to show x ∈ cl(U). Because x = k/2n is not an
endpoint of the Cantor set, we know the base-3 expansion x = x0.x1x2 . . .3
does not end in ‘23’. Therefore, we may find points arbitrarily close to x with
their first ‘1’ in an even position. Either replace a ‘0’ in an even position with
a ‘1’, or if no such ‘0’ exists, replace ‘02’ with ‘21’. This shows x ∈ cl(U), and
h is quasicontinuous at x.

We now show that the second iterate of h is discontinuous everywhere
on [0, 2]. To do so, let R denote the set of points whose base-2 expansions
terminate in 011. We will use the fact that both R and [0, 2] \ R form dense
subsets of the interval [0, 2]. (Compare this to properties (1) and (2) of the
set S ⊂ C.) Now look at the effect that the second iterate of h has on both of
these dense subsets.

First, take a point x = x0.x1x2 . . . xn0112 ∈ R. We see that h(x) =
y0.(2x1)(2x2) . . . (2xn)0223, where y0 might be either 0 or 1. It follows from
the definition of s̃ that h2(x) > 1. Similarly, if x ∈ [0, 2]\R, we have h2(x) ≤ 1,
with equality only in the case x = 1. Because both R and [0, 2] \R are dense,
and because q is strictly monotone, it follows that at any point x ∈ [0, 2]
and for any α < 1, we can find another point y arbitrarily close to x with
|h(x)− h(y)| > α. Therefore, h2 is discontinuous on all of [0, 2].
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