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THE INTERSECTION CONDITIONS FOR
〈s〉-DENSITY SYSTEMS OF PATHS

Abstract

We investigate the intersection conditions for an 〈s〉-density system
of paths. We show, for example, that for every unbounded and nonde-
creasing sequence of positive numbers 〈s〉 such that lim infn→∞

sn
sn+1

=

0, there exists a system of paths connected with 〈s〉-density points which
does not satisfy the intersection conditions. Moreover, we show that a
function f : R → R is 〈s〉-approximately continuous if and only if f is
continuous with respect to some 〈s〉-density system of paths.

1 Introduction.

The notion of a density point was introduced by Lebesgue at the beginning
of the 20th century. Together with his fundamental theorem that almost all
points of a Lebesgue measurable set are density points of that set, they turned
out to play an important role in the theory of real functions.

The density topology connected with the notion of a density point was
discovered by Haupt and Pauc [5] and was subsequently studied in detail
by Goffman, Neugebauer, Nishiura, Waterman and Tall. It turned out that
a function is approximately continuous if and only if it is continuous with
respect to the density topology.

Some generalizations of the notion of a Lebesgue density point on the real
line were introduced by Taylor [8]. Wilczyński presented the concept of a
density point with respect to category [10]. Further, Filipczak and Hejduk [3],
generalized the notion of a density point using unbounded and nondecreasing
sequences of positive numbers. Such an approach to density points gave rise
to 〈s〉-density topologies and 〈s〉-approximately continuous functions. Some
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properties of the latter were studied in the papers [3], [2], [4], [6], [7]. Although
an 〈s〉-density topology is often essentially bigger than the density topology,
it turns out that most of its properties are analogous to those of the density
topology.

In this paper, we show that, although an 〈s〉-density topology and the den-
sity topology are so similar, the systems of paths generated by these topologies
have different properties. We concentrate on the intersection conditions for
relevant systems of paths.

2 Notation and Definitions.

Throughout this paper, N denotes the set of positive integers, m (m∗) stan-
dard Lebesgue measure (Lebesgue outer measure) on the real line R and L the
σ-algebra of Lebesgue measurable subsets of R. By Td we denote the density
topology in R and by S the family of all unbounded and nondecreasing se-
quences of positive numbers. The symbol 〈s〉 denotes a sequence {sn}n∈N ∈ S.
Moreover, a set H ∈ L is a measurable hull of A ⊂ R, if A ⊂ H and every
Lebesgue measurable set Y ⊂ H \A has Lebesgue measure zero.

We introduce the following notation: S0 = {〈s〉 ∈ S : lim infn→∞
sn

sn+1
=

0} and S1 = {〈s〉 ∈ S : lim infn→∞
sn

sn+1
> 0}. Of course, we have that

S = S0 ∪ S1.
This paper concerns two systems of paths generated by density points and

〈s〉-density points. We start with some definitions.

Definition 1 ([1]). Let x ∈ R. A path leading to x is a set Ex ⊂ R such that
x ∈ Ex and x is a point of accumulation of Ex.

Definition 2 ([1]). A system of paths is a collection E = {Ex : x ∈ R} such
that each Ex is a path leading to x.

Definition 3 ([3]). We say that x ∈ R is a density point of the set A ∈ L
with respect to the sequence {sn}n∈N ∈ S, also called an 〈s〉-density point, if

lim
n→∞

m(A ∩ [x− 1/sn, x+ 1/sn])
2/sn

= 1.

For any 〈s〉 ∈ S and A ∈ L, let

Φ〈s〉(A) = {x ∈ R : x is an 〈s〉-density point of A}.

It is known that Φ〈s〉 is a lower density operator, the family T〈s〉 = {A ∈ L :
A ⊂ Φ〈s〉(A)} is a topology in R and this topology is equal to the density
topology if and only if 〈s〉 ∈ S1 [3].
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Definition 4 ([1]). A system of paths E = {Ex : x ∈ R} is said to be of
(1, 1)-density type, if x is a density point of the set Ex for each x ∈ R.

Definition 5. A system of paths E = {Ex : x ∈ R} is said to be of 〈s〉-density
type if x is an 〈s〉-density point of the set Ex for each x ∈ R.

The following properties of (1, 1)-density systems of paths have been es-
tablished [1].

type bilateral non- I.C I.I.C E.I.C E.I.C.[w] one-sided
porous E.I.C.[w]

(1,1)-
density yes yes yes yes yes yes yes

In the next part of this paper, we will examine whether an 〈s〉-density system
of paths fulfills these conditions. We start with the following definitions.

Definition 6 ([9]). Let A ⊂ R be any set. The right hand porosity (left
hand porosity, bilateral porosity) of the set A at the point x is defined as

p+(A, x) = lim sup
r→0+

l(A, x, x+ r)
r

(p−(A, x) = lim sup
r→0+

l(A, x, x− r)
r

, p(A, x) =

lim sup
r→0

l(A, x, x+ r)
|r|

), where l(A, x, x + r) (l(A, x, x − r)) denotes the length

of the largest open subinterval of (x, x+ r) ((x− r, x)) containing no point of
A.

Definition 7 ([1]). Let E = {Ex : x ∈ R} be a system of paths.
1. E is said to be bilateral, if x is a bilateral point of accumulation of Ex

for each x ∈ R.
2. E is said to be nonporous, if for each x ∈ R the set Ex has bilateral

porosity 0 at x.

Definition 8 ([1]). Let E = {Ex : x ∈ R} be a system of paths. E is said
to satisfy the condition listed below, if there is associated with E a positive
function δ on R so that whenever 0 < y − x < min{δ(x), δ(y)}, the sets Ex

and Ey intersect in the stated fashion:
1. intersection condition (I.C.): Ex ∩ Ey ∩ [x, y] 6= ∅,
2. internal intersection condition (I.I.C.): Ex ∩ Ey ∩ (x, y) 6= ∅,
3. external intersection condition (E.I.C.): Ex ∩ Ey ∩ (y, 2y − x) 6= ∅ and
Ex ∩ Ey ∩ (2x− y, x) 6= ∅,

4. external intersection condition with parameter [w] (where w > 0) (E.I.C.
[w]): Ex∩Ey∩(y, (w+1)y−wx) 6= ∅ and Ex∩Ey∩((w+1)x−wy, x) 6= ∅,

5. one-sided external intersection condition with parameter [w] (where w >
0): Ex∩Ey ∩ (y, (w+ 1)y−wx) 6= ∅ or Ex∩Ey ∩ ((w+ 1)x−wy, x) 6= ∅.
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Obviously, any system of paths having the I.I.C. property has the I.C.
property. Moreover, if a system of paths does not satisfy the one-sided external
intersection condition with parameter [w], then it does not satisfy E.I.C.[w]
nor E.I.C..

From the definition of an 〈s〉-density point it is clear that an 〈s〉-density
system of paths is bilateral for each 〈s〉 ∈ S.

3 The 〈s〉-Approximately Continuous Functions.

Now consider functions continuous with respect to a system of paths.

Definition 9 ([1]). Let E = {Ex : x ∈ R} be a system of paths. We say that
a function f : R → R is continuous at a point x0 with respect to system of
paths E (E-continuous), if f(x0) = limx→x0,

x∈Ex0

f(x).

Definition 10 ([6]). Let f : R → R and 〈s〉 ∈ S. We say that f is 〈s〉-
approximately continuous at a point x0 ∈ R, if there exists a set Ax0 ∈ L such
that x0 ∈ Φ〈s〉(Ax0) and f(x0) = limx→x0,

x∈Ax0

f(x).

Definition 11 ([6]). Let f : R → R and 〈s〉 ∈ S. We say that f is 〈s〉-
approximately continuous, if f is 〈s〉-approximately continuous at every point
x ∈ R.

The family of all 〈s〉-approximately continuous functions is equal to the
family of functions continuous with respect to the topology T〈s〉 [6]. Moreover,
it is clear that the following theorem holds.

Theorem 12. Let f : R → R and 〈s〉 ∈ S. Then f is 〈s〉-approximately
continuous if and only if f is continuous with respect to some 〈s〉-density
system of paths.

We will need two more theorems

Theorem 13 ([7]). Let 〈s〉 ∈ S. If f : R→ R is 〈s〉-approximately continuous,
then f is in the first class of Baire.

Theorem 14 ([1]). Let f be in the first class of Baire and E-continuous for
a choice of paths E = {Ex : x ∈ R}. If the system E is bilateral, then f has
the Darboux property.

From Theorems 12, 13 and 14, we conclude the following.

Corollary 15. Let 〈s〉 ∈ S. If f : R → R is 〈s〉-approximately continuous,
then f has the Darboux property.

There is another proof of Corollary 15, which is independent of the prop-
erties of systems of paths [4, Cor. 9].
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4 The Intersection Conditions for 〈s〉-Density Systems of
Paths.

Let us return to the properties of an 〈s〉-density system of paths. We will
consider only sequences 〈s〉 belonging to S0 because otherwise the notions of
an 〈s〉-density point and a density point are equivalent [3]. Consequently, for
the sequences belonging to S1, the properties of an 〈s〉-density system of paths
and (1,1)-density system of paths coincide. Consider a sequence 〈s〉 belonging
to S0. There exists a subsequence {skn

}n∈N of the sequence 〈s〉 such that
lim

n→∞
skn

skn+1
= 0. Putting, for x ∈ R and M ∈ N,

EM
x =

∞⋃
n=M

((x+
1

skn+1

, x+
1

skn+1
) ∪ (x+

1
√
skn

skn+1
, x+

1
skn

))

∪
∞⋃

n=M

((x− 1
skn

, x− 1
√
skn

skn+1
) ∪ (x− 1

skn+1
, x− 1

skn+1

)) ∪ {x},

we have that the family EM = {EM
x : x ∈ R} is an 〈s〉-density system of

paths, because, for each x ∈ R, the point x is an 〈s〉-density point of the set
EM

x [3].

Theorem 16. Let 〈s〉 ∈ S0. There exists an 〈s〉-density system of paths
E = {Ex : x ∈ R} such that p+(Ex, x) = p−(Ex, x) = 1 for each x ∈ R.

Proof. Let 〈s〉 ∈ S0 and consider an 〈s〉-density system of paths E1 = {E1
x :

x ∈ R}. For each x ∈ R we have that p+(E1
x, x) = p−(E1

x, x) = 1. Indeed, if
we consider rn =

(√
skn

skn+1

)−1, we obtain that

1≥ l(, E
1
x, x, x+ rn)
rn

≥
(√skn

skn+1)−1 − (skn+1)−1

(√skn
skn+1)−1

=1−
√

skn

skn+1
.

Since lim
n→∞

(1 −
√

skn

skn+1
) = 1, we have lim

n→∞
l(E1

x,x,x+rn)
rn

= 1 and finally

p+(E1
x, x) = lim sup

r→0+

l(E1
x,x,x+r)

r = 1. In the same manner, we can see that

p−(E1
x, x) = 1.

To prove the next theorem, we need the following lemma.

Lemma 17. Let 〈s〉 ∈ S0 and δ : R → (0,∞) be any function. Let {skn} be
a subsequence of the sequence 〈s〉 and An = {x ∈ R : δ(x) > 1

skn
} for each

n ∈ N. For any N0 ∈ N, there exists a positive integer n0 ≥ N0 and a point
x0 ∈ An0 such that for any set C ∈ L, if there exists r > 1 such that

m
(
C ∩

[
x0, x0 + (

√
sknskn+1)−1

])
≥ (r
√
sknskn+1)−1
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for each n ≥ n0, then C ∩An 6= ∅ for each n ≥ n0.

Proof. Let N0 ∈ N. The proof starts with the obvious observation that

R =
∞⋃

n=N0

δ−1

((
1
skn

,∞
))

=
∞⋃

n=N0

An.

From this, we deduce there exists n0 ≥ N0 such that m∗(An0) > 0. Denote
by B0 a measurable hull of the set An0 . Since m(B0) > 0, there exists a point
x0 ∈ An0 that is a density point of B0. Let C ∈ L be any set with the following
property: there exists r > 1 such that

m
(
C ∩

[
x0, x0 + (

√
skn

skn+1)−1
])
≥ (r
√
skn

skn+1)−1

for each n ≥ n0. We claim that m(C ∩ B0) > 0. Indeed, from the fact that
x0 is a density point of B0, it follows that there exists α > 0 such that for all
h, if 0 < h < α, then m(B0 ∩ [x0, x0 + h])/h > (2r − 1)/2r. Moreover for any
n ≥ n0 we have

m
(
C ∩

[
x0, x0 +

(√
skn

skn+1

)−1
])

(√skn
skn+1)−1

≥ 1
r
.

Since lim
n→∞

(√
skn

skn+1

)−1 = 0, there exists n1 ≥ n0 such that

(
√
skn1

skn1+1)−1 < α.

Consequently, m
(
B0 ∩ C ∩

[
x0, x0 +

(√
skn1

skn1+1

)−1
])

> 0, and finally

m(B0 ∩ C) > 0. Hence, C ∩ An0 6= ∅. Since {An}n∈N is increasing, it follows
that C ∩An 6= ∅ for each n ≥ n0, completing the proof.

Theorem 18. Let 〈s〉 ∈ S0. There exists an 〈s〉-density system of paths
E = {Ex : x ∈ R} that does not satisfy the intersection condition (I.C.).

Proof. Since lim inf
n→∞

sn

sn+1
= 0, there exists a subsequence {skn

}n∈N of the

sequence 〈s〉 such that lim
n→∞

skn

skn+1
= 0. Hence, there exists N0 ∈ N such that

skn

skn+1
< 1

16 for each n ≥ N0. Moreover, skn 6= skn+1 and skn+1 > 4√sknskn+1

for each n ≥ N0. Consider the 〈s〉-density system of paths EN0 and suppose
there exists a function δ : R → (0,∞) such that the following condition is
fulfilled:

For all x, y, if 0 < y − x < min{δ(x), δ(y)}, then Ex ∩ Ey ∩ [x, y] 6= ∅. (1)
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By Lemma 17, there exists a positive number n0 ≥ N0 and a point x0 ∈
An0 = {x ∈ R : δ(x) > 1

skn0
} such that for any set C, for which there exists

r > 1 such that m
(
C ∩

[
x0, x0 + (√sknskn+1)−1

])
≥ (r√sknskn+1)−1 for each

n ≥ n0, we have C ∩An0 6= ∅. In particular, if we consider the set

C =
∞⋃

n=n0

(
x0 +

3
4
(√
sknskn+1

)−1
, x0 +

(√
sknskn+1

)−1
)
,

we obtain that C ∩ An0 6= ∅. Consequently, there exists a point y ∈ An0 and
a positive number n2 ≥ n0 such that

y ∈
(
x0 +

3
4

(√
skn2

skn2+1

)−1

, x0 +
(√

skn2
skn2+1

)−1
)
.

By the definition of the set EN0
x , we have EN0

x0
∩ [x0, y] ⊂

[
x0, x0 + (skn2+1)−1

)
and EN0

y ∩ [x0, y] ⊂
(
y − (skn2+1)−1, y

]
. Since skn2+1 > 4√skn2

skn2+1 and

y − x0 > 3
4

(√
skn2

skn2+1

)−1

, we conclude that EN0
x0
∩ EN0

y ∩ [x0, y] = ∅.

Simultaneously, min{δ(x0), δ(y)} ≥ (skn2
)−1 >

(√
skn2

skn2+1

)−1

> y − x0.
This contradicts (1), completing the proof.

Theorem 19. Let w > 0 and 〈s〉 ∈ S0. There exists an 〈s〉-density sys-
tem of paths E = {Ex : x ∈ R} that does not satisfy the one-sided external
intersection condition with parameter [w].

Proof. Since 〈s〉 ∈ S0, there exists a subsequence {skn
}n∈N of 〈s〉 such that

lim
n→∞

skn

skn+1
= 0. Hence, there exists N0 ∈ N such that skn

skn+1
< 1

16(w+1)2

for each n ≥ N0. It can easily be seen that skn
6= skn+1 and skn+1 >

4(w + 1)√skn
skn+1 for each n ≥ N0. Consider the 〈s〉-density system of paths

EN0 and suppose there exists a function δ : R→ (0,∞) such that the following
condition is fulfilled:

For all x, y ∈ R, if 0 < y − x < min{δ(x), δ(y)}, then (2)
(Ex ∩ Ey ∩ (y, (w + 1)y − wx) 6= ∅) ∨ Ex ∩ Ey ∩ ((w + 1)x− wy, x) 6= ∅).

By Lemma 17, there exists a positive number n0 ≥ N0 and a point x0 ∈ An0

(where An = {x ∈ R : δ(x) > 1
skn
}) such that for any set C for which there

exists r > 1 such that m
(
C ∩

[
x0, x0 + (√skn

skn+1)−1
])
≥ (r√skn

skn+1)−1

for each n ≥ n0, we have C ∩An0 6= ∅. In particular, if we consider the set

C =
∞⋃

n=n0

(
x0 +

3
4(w + 1)

(√
skn

skn+1

)−1
, x0 +

1
(w + 1)

(√
skn

skn+1

)−1
)
,
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we obtain, for r = 4(w + 1) > 1, that

m
(
C ∩

[
x0, x0 +

(√
skn

skn+1

)−1
])

≥m
([
x0 +

3
4(w + 1)

(√
skn

skn+1

)−1
, x0 +

1
(w + 1)

(√
skn

skn+1

)−1
])

=
1

4(w + 1)
(√
skn

skn+1

)−1
,

for each n ≥ n0. Therefore, An0 ∩C 6= ∅ and there exists a point y ∈ An0 and
n2 ≥ n0 such that

y ∈
(
x0 +

3
4(w + 1)

(√
skn2

skn2+1

)−1

, x0 +
1

(w + 1)

(√
skn2

skn2+1

)−1
)
.

Hence, (y, (w + 1)y − wx0) ⊂
(
x0 +

(
skn2+1

)−1
, x0 +

(√
skn2

skn2+1

)−1
)

.

From this, and the definition of the set EN0
x0

, we conclude that

EN0
x0
∩ (y, (w + 1)y − wx0) = ∅.

Consequently, EN0
x0
∩ EN0

y ∩ (y, (w + 1)y − wx0) = ∅. Moreover,

((w + 1)x0 − wy, x0) ⊂
(
y −

(√
skn2

skn2+1

)−1

, y −
(
skn2+1

)−1
)
.

It follows that

EN0
y ∩ ((w + 1)x0 − wy, x0) = ∅ and EN0

x0
∩ EN0

y ∩ ((w + 1)x0 − wy, x0) = ∅.

Simultaneously,

min{δ(x0), δ(y)}≥
(
skn2

)−1
>

1
(w + 1)

(√
skn2

skn2+1

)−1

>y − x0.

This contradicts condition (2), and the proof is complete.

In the table below we compare properties of the 〈s〉-density system of paths,
obtained above, to the known properties of the (1, 1)-density system of paths.

type bilateral non- I.C I.I.C E.I.C E.I.C.[w] one-sided
porous E.I.C.[w]

(1,1)-
density yes yes yes yes yes yes yes
〈s〉-

density yes no no no no no no

In each case “no” means there exists an 〈s〉-density system of paths which
does not satisfy the respective condition.
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