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ON FINITELY CONTINUOUS DARBOUX
FUNCTIONS AND STRONG FINITELY

CONTINUOUS FUNCTIONS

Abstract

Properties of the families of finitely continuous and strong finitely
continuous functions are investigated. We show that the Darboux prop-
erty implies continuity of strong finitely continuous functions and that
the family DB∗∗

1 is superporous in the space of all finitely continuous
functions with the Darboux property.

1 Notions.

We apply standard symbols and notions. By R we denote the set of real
numbers. By Q (N) we denote the set of rational numbers (positive integers).
For a metric space Z, z ∈ Z and R > 0 by BZ(z,R) (or simply B(z,R)) we
denote an open ball with center z and radius R. Let A ⊂ Z, z ∈ Z, R > 0. If
there does not exist y ∈ Z and r > 0 such that B(y, r) ⊂ B(z,R) \A, then let
γ(z,R,A) = 0. Otherwise let

γ(z,R,A) = sup{r > 0 : ∃y∈ZB(y, r) ⊂ B(z,R) \A}.

If

lim sup
R→0+

γ(z,R,A)
R

> 0,

then we say that A is porous at z. We say that A is superporous in z, if for
every set B ⊂ Z, porous at z, the set A ∪B is porous at z. If f is a function,
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then by Cf (Df ) we denote the set of all continuity (discontinuity) points of
the function f . No distinction is made between a function and its graph.

Let X be a metric space. The function f ∈ RX is said to be Darboux if, for
every connected set A ⊂ X, the image f(A) is a connected subset of R (i.e., an
interval). The class F ⊂ RX is an ordinary system (in the sense of Aumann)
if F contains all constants and for f, g ∈ F , max(f, g) ∈ F , min(f, g) ∈ F ,
f + g ∈ F , f · g ∈ F , and (if {x : g(x) = 0} = ∅) f

g ∈ F .
If f ∈ RR, x ∈ R, then let L+(f, x), L−(f, x), and L(f, x) denote the

following limit sets: L+(f, x) denotes the set of all α ∈ R̃ such that there
exists a sequence (xn)∞n=1 (xn > x, n = 1, 2 . . .) for which lim

n→∞
xn = x and

lim
n→∞

f(xn) = α. Similarly L−(f, x) denotes the set of all α ∈ R̃ such that

there exists a sequence (xn)∞n=1 (xn < x, n = 1, 2 . . .) for which lim
n→∞

xn = x

and lim
n→∞

f(xn) = α. Finally, L(f, x) = L+(f, x) ∪ L−(f, x).

Let A be a covering of a metric space X (i.e.,
⋃
A = X). The function

f ∈ RX is said to be A-continuous if, for all A ∈ A, the restriction f �A is
continuous. The function f ∈ RX is said to be n-continuous (finitely continu-
ous), if there exists a covering A of X such that card(A) = n (card(A) < ω),
and f is A-continuous.

R. Pawlak in [3] introduced the notions of the class of functions B∗∗1 , inter-
mediate between the family of continuous functions and the class of Baire∗1
functions. We say that the function f belongs to the class B∗∗1 , if either Df = ∅
or f �Df is a continuous function.

If f ∈ RR is a Darboux function, then f is 2-continuous if and only if f
belongs to the class B∗∗1 (see [1]).

Denote by the symbol C (DB∗∗1 respectively) the set of all bounded contin-
uous functions from RR (all bounded Darboux functions from RR belonging
to the class B∗∗1 ), with the metric of the uniform convergence. H. Pawlak [4]
proved that C ⊂s DB∗∗1 ; i.e., C is a superporous subset of DB∗∗1

Denote by the symbol DB1C∗ (DC∗, respectively) the set of all bounded
finitely continuous Darboux functions from RR belonging to the class B1 (the
set of all bounded finitely continuous Darboux functions from RR).

Theorem 1. C ⊂s DB∗∗1 ⊂s DB1C∗ ⊂s DC∗

Proof. We show first that

DB∗∗1 ⊂s DB1C∗. (1)

Let f ∈ DB1C∗ and Z ⊂ DB1C∗ be porous at f . We shall prove that DB∗∗1 ∪Z
is porous at f .
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Because Z is porous at f ,

lim sup
S→0+

γ(f, S,Z)
S

> 0. (2)

Let R > 0. We shall show that γ(f,R,DB∗∗1 ∪ Z) ≥ γ(f,R,Z)/16.
According to (2), there exists g ∈ DB1C∗ and r1 > γ(f,R, Z)/2 > 0 such that

B(g, r1) ⊂ B(f,R) \ Z. (3)

Let r = r1
8 . Of course r > γ(f,R,B)/16. We shall show that there exists

h ∈ DB1C∗ such that

B(h, r) ⊂ B(f,R) \ (DB∗∗1 ∪ Z). (4)

Because g is finitely continuous and Darboux, the set of discontinuities of g
is nowhere dense [1], hence int(Cg) is dense in R. Let x0 ∈ int(Cg) and a, b be
such that a < x0 < b, [a, b] ⊂ intCg, g([a, b]) ⊂ (g(x0)−r, g(x0)+r). Let C be
a classical Cantor set on [a, b], C◦ be the set of bilateral condensation points of
C, c0 ∈ C◦,

(
(an, bn))∞n=1 be a sequence of components of [a, b]\C, cn = an+bn

2
for n = 1, 2, . . .. Let `n, κn, n = 1, 2, . . ., be functions linear on [an, cn] and on
[cn, bn] such that `n(an) = `n(bn) = g(x0)− 3r, `n(cn) = g(x0) + 3r κn(an) =
κn(bn) = g(x0) + 3r, κn(cn) = g(x0) − 3r. Let N1 = {n ∈ N : bn < c0},
N2 = {n ∈ N : an > c0}. Define

h(x) =



g(x), x 6∈ (a, b)
`n(x), x ∈ [an, bn], n ∈ N1

g(x0)− 3r, x ∈ C◦ ∩ (a, c0]
κn(x), x ∈ [an, bn], n ∈ N2

g(x0) + 3r, x ∈ C◦ ∩ (c0, b)

Then h � ((a, b) \ C), h � (C ∩ (a, c0]) and h � (C ∩ (c0, b)) are continuous.
Moreover h�(R\ (a, b)) = g �(R\ (a, b)) and g is finitely continuous. Therefore
h is finitely continuous.

Because g ∈ D, it follows that h has the Darboux property on (−∞, a) and
(b,∞). If I is an interval, I ⊂ (a, b), then h(I) = `n(I) or h(I) = κn(I) for
some n ∈ {1, 2, . . .} or h(J) = [g(x0) − 3r, g(x0) + 3r], so h(J) is an interval.
Thus h has the Darboux property on (a, b). Moreover h is left continuous at
the point a, right continuous at the point b and

h(a) ∈ L+(h, a) = [g(x0)− 3r, g(x0) + 3r] = L−(f, b) 3 h(b).

So, h is a Darboux function.
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Observe that h ∈ B1. Indeed, let K be a perfect set. If there exists
x ∈ K ∩ Ch, then h �K is continuous at x. We can assume, that K ⊂ Dh.
Because h ∈ DC∗, we have that Dh is a nowhere dense set, therefore K is
a boundary set. Thus there exists k ∈ {1, 2, 3, 4} and u < v such that F =
K ∩ [u, v] = K ∩ (u, v) ⊂ Jk, where J1 = (−∞, a), J2 = (b,∞), J3 = (a, c0),
J4 = (c0, b). It enough to show that h � F has a point of continuity. If
k ∈ {1, 2}, it is a consequence of h �F = g �F and g ∈ B1. If k ∈ {3, 4}, then
h�F is continuous.

If ξ ∈ B(h, r), then, for x ∈ R, |ξ(x)−g(x)| ≤ |ξ(x)−h(x)|+|h(x)−g(x)| <
6r thus B(h, r) ⊂ B(g, 6r) = B

(
g, 3r1

4

)
, so, by (3),

B(h, r) ⊂ B(f,R) \ Z. (5)

Let ζ ∈ B(h, r). Then C ⊂ [a, b] ∩ Dζ and ζ �Dζ is discontinuous at c0.
Therefore ζ 6∈ B∗∗1 and we obtain that

B(h, r) ∩ DB∗∗1 = ∅ (6)

From (6) and (5) we have (4) and the proof of (1) is finished.
Now we similarly prove that DB1C∗ ⊂s DC∗. Let f ∈ DC∗ and Z ⊂ DC∗

be porous at f . Because Z is porous at f we have lim supS→0+
γ(f,S,Z)

S > 0.
Let R > 0. Then there exist g ∈ DC∗ and r1 > γ(f1,R,Z)

2 > 0 such, that
B(g1, r1) ⊂ B(f1, R) \ Z. Let r = r1

8 .
Because g is finitely continuous and Darboux so int(Cg) is dense in R. Let

x0 ∈ int(Cg) and let (as above) a, b be such that a < x0 < b, [a, b] ⊂ int(Cg),
g([a, b]) ⊂ (g(x0) − r, g(x0) + r). Let C be a classical Cantor set on [a, b],(
(an, bn))∞n=1 be a sequence of components of [a, b] \ C, and C◦ be the set

of bilateral condensation points of C. Let `n, (where n = 1, 2, . . .) be linear
functions such that `n(an) = g(x0)− 3r, `n(bn) = g(x0) + 3r.

Define

h(x) =


g(x), x 6∈ (a, b)
`n(x), x ∈ [an, bn], n = 1, 2, · · ·
g(x0) + 3r, x ∈ C◦

It is easy to see that h ∈ DC∗ and h ∈ B(h, r) ⊂ B
(
g, 3r1

4

)
⊂ B(f,R) \ Z.

Observe that if ζ ∈ B(h, r), then ζ � C has no continuity point. Therefore
ζ 6∈ B1 and in consequence B(h, r) ⊂ B(f,R) \ (DB1C∗ ∪ Z).

2 Strong Finitely Continuous Functions.

The function f ∈ RX is said to be strong n-continuous iff there exist continuous
functions f1, . . . , fn ∈ RX such that f ⊂

⋃n
k=1 fk. Of course, if f is strong
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n-continuous, then it is n-continuous, because X =
⋃n
k=1Ak where Ak = {x :

f(x) = fk(x)}, for k = 1, 2, . . . , n. The function is said to be strong finitely
continuous, if it is strong n-continuous for some n.

The family of finitely continuous, real-valued functions is an ordinary sys-
tem in the sense of Aumann [1]. In [2] the authors proved that the family
of functions with graph contained in the union of the graphs of a sequence
of continuous functions is also closed with respect to algebraic and lattice
operations. Similarly, as in [2], we obtain:

Proposition 1. If f , g are strong finitely continuous, then f + g, f · g,
min(f, g), and max(f, g) are strong finitely continuous.

We say that f is locally bounded iff for every x ∈ R there exists M > 0
and an open interval I such that x ∈ I and f(t) ∈ (−M,M) for t ∈ I. Of
course:

Proposition 2. If f is strong finitely continuous, then it is locally bounded.

Proposition 3. The family of strong finitely continuous functions (from RR)
is not an ordinary system in the sense of Aumann.

Proof. Let f(x) = 1 for x ∈ R, g(x) = x, for x 6= 0 and g(0) = 1. Then f ,
g are strong finitely continuous and {x : g(x) = 0} = ∅. Let h = f/g. Then
h(x) = 1/x for x 6= 0 and h(0) = 1, so h is not strong finitely continuous by
Proposition 2.

3 Finitely Continuous Functions with a Nowhere Dense
Set of Discontinuity Points.

The finitely continuous function (as well as the strong finitely continuous func-
tions) can be everywhere discontinuous. For example f ∈ RR, f(x) = 1 for
x ∈ Q f(x) = 0 for x 6∈ Q. On the other hand if f is finitely continuous and
Darboux, then the set of discontinuity points is nowhere dense. For strong
finitely continuous functions, the Darboux property is enough to imply conti-
nuity everywhere.

Theorem 2. If f is strong finitely continuous and Darboux, then it is contin-
uous.

Proof. Fix a ∈ R. Let g1, . . . , gn : R → R be continuous functions such
that f ⊂

⋃n
k=1 gk. Suppose that f is not continuous at a. Then there exists

p ∈ L(f, a), p 6= f(a). We can assume that p < f(a). (By Proposition 2
we have −∞ < p < ∞.) Let α ∈ (p, f(a)) \ {gi(a), i = 1, . . . , n}. Denote
d0 = |α − p|, di = |α − gi(a)|, i = 1, . . . , n and let ε = min(d0, d1, . . . , dn).
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For i ∈ {1, . . . , n}, from the continuity gi, we infer that there exists δi > 0
such that gi((a − δi, a + δi)) ⊂ (gi(a) − ε, gi(a) + ε). Let I = (a − δ, a + δ)
where δ = min{δ1, . . . , δn}. There exists y ∈ I such that |p − f(y)| < ε.
Then f(y) < α < f(a) and by the Darboux property there exists z ∈ I
such that f(z) = α. Because f ⊂

⋃n
k=1 gk, there exists i ∈ {1, . . . , n} such

that f(z) = gi(z). Then |gi(z) − gi(a)| = |α − gi(a)| = di ≥ ε. This is a
contradiction.

Corollary 1. Let f ∈ RR. If there exists (a, b) ⊂ R such that f � (a, b) is
Darboux and (a, b) \ Cf 6= ∅, then f is not strong finitely continuous.

Observe that f is a finitely continuous function with a nowhere dense set
of discontinuity points iff there exists a covering {A1, . . . , An} of X such that⋃n
i=1 int(Ai) is dense in X and f �Ai is continuous. Indeed, if B1, . . . , Bk are

such that
⋃k
k=1Bi = X and f �Bi is continuous, for i = 1, . . . , k, then it is

enough to take n = k+ 1, A1 = Cf and Ai = Bi−1, (for i = 2, . . . , n). If there
exists a covering A1, . . . , An of X such that

⋃n
i=1 int(Ai) is dense in X and

f �Ai is continuous, then
⋃n
i=1 int(Ai) ⊂ int(Cf ), hence int(Cf ) is dense in X.

In [5] the authors introduced the notion of almost semi open step functions.
A partition P = {Pι : ι ∈ T} of a topological space X is called almost semi-
open if the union

⋃
ι∈T int(Pι) is dense in X. An almost semi-open step

function is understood to be a real-valued function φ on X which is piecewise
constant on the partition elements of an almost semi-open partition P. We
have:

Proposition 4. [5] Let f ∈ RR be a real-valued, bounded, cliquish function
on a compact metrizable space X. Then there exists a chain K = (Pn)∞n=1 of
finite almost semi-open partitions of the space X, such that f can be attained
as the uniform limit of a sequence of almost semi-open step functions defined
on K.

Denote by the symbolNd (NdC∗∗, NdC∗ respectively) the set of all bounded
functions from RR with a nowhere dense set of discontinuity points (all bounded
strong finitely continuous functions belonging to the class Nd, all bounded
finitely continuous functions belonging to the class Nd), with the metric of
uniform convergence.

Semi-open step functions defined on a finite almost semi-open partition of
the space X are strong finitely continuous and have a nowhere dense set of
discontinuity points. Moreover, every bounded real-valued cliquish function
is a uniform limit of a sequence of such functions. Thus the class NdC∗∗ is a
dense subset of Nd.

Let A ⊂db B mean that the class A is a boundary and a dense subset of B.



Finitely Continuous Darboux Functions 21

Theorem 3. NdC∗∗ ⊂db NdC∗ ⊂db Nd

Proof. Let f ∈ NdC∗ and ε > 0. We show that there exists a finitely
continuous function g with a nowhere dense set of discontinuity points such
that g ∈ B(f, ε) \ C∗∗. Let x0 ∈ int(Cf ) and a, b, c, d be such that c < a <
x0 < b < d, [c, d] ⊂ Cf , f([c, d]) ⊂ (f(x0)− ε

2 , f(x0) + ε
2 ). Let w(x0) = f(x0),

w(x) = ε
2 sin( 1

x−x0
) + f(x0), for x 6= x0. Let s1, s2, be linear functions such

that s1(c) = f(c), s1(a) = w(a), s2(b) = w0(b), s2(d) = f(d). Define

g(x) =


f(x), x 6∈ [c, d],
s1(x), x ∈ [c, a],
w(x), x ∈ (a, b),
s2(x), x ∈ [b, d].

Of course g ∈ NdC∗ and g ∈ B(f, ε). By Corollary 1 g is not strong finitely
continuous.

Now let f ∈ Nd and ε > 0. We show that there exists a function g with
a nowhere dense set of discontinuity points such that g ∈ B(f, ε) \ C∗. Let
x0 ∈ int(Cf ) and a, b be such that a < x0 < b, [a, b] ⊂ Cf , f([a, b]) ⊂ (f(x0)−
ε
2 , f(x0) + ε

2 ). Let C be a classical Cantor set on [a, b],
(
(an, bn))∞n=1 be a

sequence of components of [a, b]\C and C◦ be the set of bilateral condensation
points of C. Then there exists a sequence (Cn)∞n=1 such that Cn is dense in C◦,

Cn ∩Ck = ∅ for n 6= k, (n, k = 1, 2, . . .) and C◦ =
∞⋃
n=1

Cn. Let `n, (where n =

1, 2, . . .) be linear functions satisfying `n(an) = f(x0)− ε
2 , `n(bn) = f(x0) + ε

2
and let (qn)∞n=1 be a sequence of all rational numbers from (f(x0)− ε

2 , f(x0)+
ε
2 ).

Define

g(x) =


f(x), x 6∈ (a, b),
`n(x), x ∈ [an, bn], n = 1, 2, · · · ,
qn, x ∈ Cn, n = 1, 2, · · · ,

Of course, g ∈ Nd and g ∈ B(f, ε). Suppose that g is finitely continuous. Then

it is n-continuous for some n. There exists A1, . . . , An such that C◦ =
n⋃
k=1

Ak

and g � Ai is continuous. Let r1, . . . , rn+1 ∈ K = (f(x0) − ε
2 , f(x0) + ε

2 )
be rational, (ri 6= rj for i 6= j). Let Li = f−1(ri) ∩ C◦ and d > 0 be
such that Ji = (ri − d, ri + d) ⊂ K, (i = 1, . . . , n), are pairwise disjoint.
Then Li, (i = 1, . . . , n) are dense in C◦. Therefore there exist open intervals
In ⊂ . . . ⊂ I1 ⊂ (a, b) and k1, . . . , kn ∈ {1, . . . , n} such that Aki ∩ Ii ∩ Li 6= ∅
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and f(Aki ∩ Ii) ⊂ Ji, (for i = 1, . . . , n). Let I = In. Then I ∩C◦ 6= ∅ because
I ∩ Ln 6= ∅. Thus we have that Ln+1 is dense in C◦ ∩ I. But

f(C◦ ∩ I) = f(
n⋃
k=1

Ak ∩ I) ⊂
n⋃
k=1

Jk

hence Ln+1 ∩ C◦ ∩ I = ∅. This is a contradiction.
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