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Abstract

We demonstrate how certain types of symmetric derivatives originate
from a simple least-squares regression problem involving discrete Cheby-
shev polynomials. As the number of data points used in this regression
tends to infinity, the resulting integrals, which involve Legendre polyno-
mials, lead to Lanczos derivatives, a result that demonstrates how this
latter entity is merely a continuous version of the symmetric derivative.

1 Introduction.

A well-known fact is that the symmetric derivative

f ′s(x) = lim
h→0

f(x+ h)− f(x− h)
2h

, (1)

is a proper extension of the usual derivative f ′.
A variety of means exist for constructing second-order symmetric deriva-

tives. Two examples are given by

lim
h→0

f(x+ h)− 2f(x) + f(x− h)
h2

(2)
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and

lim
h→0

4
7
·

2f(x+ h)− f
(
x+ h

2

)
− 2f(x)− f

(
x− h

2

)
+ 2f(x− h)

h2
. (3)

That each of these limits yields a proper extension of the usual second-
order derivative can be seen by considering the function f(x) = x|x| at the
origin.

A typical method for constructing such difference quotients involves al-
gebraically manipulating Taylor polynomial approximations of f based at x.
The purpose of this note is to view this situation from a statistical perspective.
We demonstrate how each difference quotient also arises from a polynomial
regression problem in which the number of data points determines the number
of terms in the difference quotient. The polynomial of best fit is written as a
discrete Chebyshev polynomial expansion, one of whose coefficients leads to a
symmetric difference quotient. As the number of data points tends to infinity,
these symmetric difference quotients give rise to integral-based derivative ex-
tensions involving Legendre polynomials. The process by which this is carried
out utilizes a number of important properties of orthogonal polynomials.

2 Preliminaries.

Let α(x) be a nondecreasing function defined on some finite interval I. To
this function, we may associate the distribution dα(x), an inner product

〈f, g〉 =
∫
I

f(x)g(x) dα(x),

and the normed inner product space L2
α. The family of orthogonal polynomials

corresponding to α is then constructed using the Gram-Schmidt process. For
an elaboration of this process, we refer the reader to Szegö’s text ([9], Sections
1.4, 2.1, 2.2, 2.8).

The discrete Chebyshev polynomials and Legendre polynomials are the two
relevant polynomial families for purposes of this discussion. The former arises
by letting α(x) denote a step function with jumps of one unit at the points
x = 0, 1, . . . , N − 1, where N is any fixed positive integer. In this case,

〈f, g〉 =
N−1∑
j=0

f(j)g(j). (4)

The Legendre polynomials are the continuous analog of the Chebyshev family
and arise when α(x) is constant and equal to one on the interval [−1, 1]. Typ-
ical notation for either family involves scaling by a conventional factor. The
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table below gives this scaling factor and summarizes other useful properties to
be used in later discussions. A summary of these identities may be found in
the texts of Abramowiz and Stegun ([1], 22.2) and Nikiforov, et al. ([6], Table
2.2).

Family Norm squared
Leading

coefficient
Discrete Chebyshev, Tm,
m = 0, 1, . . . , N − 1

(N +m)!
(2m+ 1)(N −m− 1)!

(2m)!
(m!)2

Legendre, Pm,
m = 0, 1, 2, . . .

2m+ 1
2

(2m)!
2m(m!)2

Table 1: Summary of discrete Chebyshev and Legendre polynomial properties

Explicit formulas for Legendre polynomials can be found in a variety of
sources. For the discrete Chebyshev polynomials, we will use Rodrigues’ for-
mula:

Tm(x) = ∆mφm(x), m = 0, 1, 2, . . . , N − 1, (5)

where

φm(x) =
(x−m+ 1)m(x−N −m+ 1)m

m!
, (6)

(x)m denotes the pochhammer symbol x(x+ 1) · · · (x+m− 1), and ∆ denotes
the forward difference operator ([3], 10.23).

3 Regression and Chebyshev Polynomials.

Let m denote an arbitrary integer satisfying m ≥ 1, and let n be any other
integer such that m ≤ 2n. We use the discrete Chebyshev polynomials and
regression to construct a symmetric difference quotient whose limit yields a
proper extension of the usual mth-order derivative f (m). This difference quo-
tient involves 2n terms when m is odd and 2n+ 1 terms when m is even.

Fix x and assume f is defined in some open interval about x. For h
sufficiently small, f(x + ht), considered as a function of t, is defined at the

data points tj =
j

n
, where −n ≤ j ≤ n.

Set N = 2n + 1 in (4). Then as j increases from −n to n, the points
n(tj + 1) vary between 0 and 2n. Hence, the functions

Tn,k(t) = Tk (n(t+ 1)) (7)
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form an orthogonal family with respect to the distribution dα̃(t), where α̃(t)
is a step function having unit jumps at each of the 2n+ 1 points tj .

The mth degree least-squares polynomial of best fit using the data points
tj , where −n ≤ j ≤ n, is the polynomial Qm that minimizes the sum of squares

n∑
j=−n

(f(x+ htj)−Qm(tj))
2
. (8)

Properties of orthogonal polynomials associated with the distribution dα̃(t)
then dictate that Qm can be expressed as a discrete Chebyshev polynomial
expansion as follows:

Qm(t) =
m∑
k=0

〈f(x+ ht), Tn,k(t)〉
‖Tn,k‖2

Tn,k(t). (9)

The focus of the ensuing discussion will be on the leading coefficient of (9),
which we denote by am(n, h), and which, by the second and third columns of
Table 1, simplifies to

am(n, h) =
〈f(x+ ht), Tn,m(t)〉

‖Tn,m‖2
(2m)!
(m!)2

nm

=
(2m+ 1)!(2n−m)!

(2n+m+ 1)!
nm

(m!)2

n∑
j=−n

f(x+ htj)Tn,m(tj).
(10)

4 Symmetric Difference Quotients.

The expression am(n, h) leads to a symmetric difference quotient that extends
the usual mth order derivative f (m). The motivation for this construction is
as follows.

If f possesses an mth-degree Taylor polynomial about x in the variable t,

then the coefficient of tm is
f (m)(x)hm

m!
. At the same time, the corresponding

coefficient of the approximating polynomial Qm is given by am(n, h). Given
that both Qm and the Taylor polynomial approximate f near x when this
latter polynomial does in fact exist, we are motivated to consider the limit

f (m)
s,n (x) def= lim

h→0

m!
hm

am(n, h)

= lim
h→0

(2m+ 1)!(2n−m)!
(2n+m+ 1)!

nm

m!hm

n∑
j=−n

f(x+ htj)Tn,m(tj).
(11)
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Before establishing that f (m)
s,n is a proper extension of the usual mth order

derivative, we demonstrate, through simple examples, how (11) reduces to a
symmetric difference quotient.

Consider the case when m = n = 1. Then calculations establish that
Tm(t) = 2t− 2, in which case (11) yields the usual symmetric first derivative
(1). In a similar manner, if m = 2, then Tm(t) = 6t2 − 24t + 12. The
combination m = 2 and n = 1 yields (2) and that of m = n = 2 leads to
(3). We also observe that for each fixed value of m, there exist infinitely many
difference quotients as n varies. Finally, the example f(x) = sgn(x)

√
|x| with

m = 2 and x = 0 illustrates how f (m)
s,n (x) can exist even if f (m−1)

s,n (x) does not.
We now state our main result.

Theorem 4.1. Fix m, and let n be such that 2n ≥ m. Suppose that f is
(m − 1)-times continuously differentiable in some neighborhood of x and that
f (m) exists and is continuous in a neighborhood of x, except possibly at x
itself, where the limits of both the left and right mth derivatives, f (m)

− (x) =
lim
h→0+

f (m)(x− h) and f (m)
+ (x) = lim

h→0+
f (m)(x+ h) exist. Then f (m)

s,n (x) exists

and

f (m)
s,n (x) =

f
(m)
− (x) + f

(m)
+ (x)

2
.

Proof. Begin by considering the expression from (11). Summation by parts
m times, Rodrigues’ formula (5), and the behavior of φ at the boundary terms
of summation yield the following, where we’ve set βn,m,h = (2m+1)!(2n−m)!

(2n+m+1)! .

βn,m,h
nm

m!hm

n∑
j=−n

f(x+ htj)Tn,m(tj)

=βn,m,h
nm

m!hm

n∑
j=−n

f

(
x+ h

j

n

)
Tm(j + n)

=βn,m,h
nm(−1)m

m!hm

n∑
j=−n

∆mf

(
x+ h

j

n

)
φ(j +m+ n).

The above sum is written in terms of a forward difference operator. We now
carefully manipulate it to introduce symmetric differences. The polynomial φ
has 2m roots at x = 0, 1, . . . ,m− 1 and at x = 2n+ 1, N + 1, . . . , N +m− 1 =
2n + m. To exploit the symmetry of the roots about x = n +

m

2
, we make

the change of index j′ = j +
m

2
in the above sum. The upper limit may
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be written as j′ = n − m

2
due to the fact n − m

2
< j′ ≤ n +

m

2
implies

2n+ 1 ≤ j +m+ n ≤ 2n+m; i.e., j +m+ n is a root of φ. Performing this
change of index and relabelling j′ as j, we may rewrite (11) as

f (m)
s,n (x) = lim

h→0
βn,m,h

nm(−1)m

m!hm

n−m/2∑
j=−n+m/2

∆mf

(
x+ h

(
j −m/2

n

))
φ(j+m/2+n).

Note that if m is odd, we interpret this sum to start at the fraction j =
−n+m/2 and increase by 1 through j = n−m/2.

The function φ(j +m/2 + n) is an even function of j, implying that

f (m)
s,n (x) =βn,m,h

nm(−1)m

m!
×

lim
h→0

[
1
hm

n−m/2∑
j=j0

∆mf

(
x+ h

(j −m/2
n

))
φ(j +m/2 + n)

+
1
hm

n−m/2∑
j=j0

∆mf

(
x+ h

(−j −m/2
n

))
φ(j +m/2 + n)

+
1
hm

∆mf

(
x+ h

(j −m/2
n

)) ∣∣∣∣
j=0

φ(m/2 + n)
]
,

(12)

where j0 =
m

2
(mod 2). We now proceed with the proof under the assumption

that m is even. The case when m is odd is slightly simpler owing to the fact
that (12) has no central term corresponding to j = 0.

The mth order forward difference operator is given by

∆mf

(
x+ h

(
j −m/2

n

))
=

m∑
i=0

f

(
x+ h

(
j + i−m/2

n

))
(−1)m−i

(
m
i

)
.

From this, it follows that

∆mf

(
x+ h

(
−j −m/2

n

))
= (−1)m∆mf

(
x− h

(
j −m/2

n

))
,
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so that (12) simplifies to

f (m)
s,n (x) =βn,m,h

nm(−1)m

m!
× lim
h→0

[
1
hm

n−m/2∑
j=1

[
∆mf

(
x+ h

(j −m/2
n

))

+ (−1)m∆mf

(
x− h

(j −m/2
n

Big)
)]

φ(j +m/2 + n) (13)

+
1
hm

∆mf

(
x+ h

(j −m/2
n

)) ∣∣∣∣
j=0

φ(m/2 + n)
]
.

A second useful forward difference operator identity is given by

∆m

((
j −m/2

n

)k)
=

m∑
i=0

(
j −m/2

n

)k
(−1)m−i

(
m
i

)

=

{
0, if k < m;
m!
nm , if k = m.

(14)

This second case follows from the fact
(
j −m/2

n

)m
is an mth degree polyno-

mial in j having leading coefficient
1
nm

[7].

We now consider what results as h tends to zero in (13). By L’Hospital’s
rule, the chain rule, the continuity of the first m− 1 derivatives of f at x, and
(14), we obtain

lim
h→0

1
hm

[
∆mf

(
x+ h

(j −m/2
n

))
+ (−1)m∆mf

(
x− h

(j −m/2
n

))]
= lim
h→0

1
m!h

[
∆mf (m−1)

(
x+ h

(j −m/2
n

))(j −m/2
n

)m−1

+ (−1)m∆mf (m−1)

(
x− h

(j −m/2
n

)(j −m/2
n

)m−1
)

(−1)m−1

]
= lim
h→0

1
m!h

∆m

[[
f (m−1)

(
x+ h

(j −m/2
n

))

− f (m−1)

(
x− h

(j −m/2
n

))](j −m/2
n

)m−1
]
.

Since the symmetric first derivative is the average of the left- and right-
first derivatives, the limiting value of this final difference quotient introduces
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f
(m)
− (x) + f

(m)
+ (x) and one additional factor of

(
j + i−m/2

n

)
so that the

preceding simplifies further to become

lim
h→0

1
m!h

∆m

[[
f (m−1)

(
x+ h

(j −m/2
n

))
− f (m−1)

(
x− h

(j −m/2
n

))](j −m/2
n

Big)m−1

]
(15)

=
f

(m)
− (x) + f

(m)
+ (x)

m!
∆m

(
j −m/2

n

)m
=
f

(m)
− (x) + f

(m)
+ (x)

nm
.

For the second limit in (13), we have

∆mf

(
x+ h

(
j −m/2

n

))∣∣∣∣
j=0

=
m∑
i=0

f

(
x+ h

(
i−m/2

n

))
(−1)m−i

(
m
i

)

= −f(x)(−1)m/2
(
m
m/2

)
+
m/2−1∑
i=0

(
f

(
x+ h

(
i−m/2

n

))
+f
(
x− h

(
i−m/2

n

)))
(−1)m−i

(
m
i

)
.

Using this identity and proceeding in a manner very similar to before, our
limit becomes

lim
h→0

1
hm

∆mf

(
x+ h

(
j −m/2

n

)) ∣∣∣∣
j=0

=
f

(m)
− (x) + f

(m)
+ (x)

m!

m/2−1∑
i=0

(
i−m/2

n

)m
(−1)m−i

(
m
i

)

=
f

(m)
− (x) + f

(m)
+ (x)

2m!
· 2

m/2−1∑
i=0

(
i−m/2

n

)m
(−1)m−i

(
m
i

)

=
f

(m)
− (x) + f

(m)
+ (x)

2m!

m∑
i=0

(
i−m/2

n

)m
(−1)m−i

(
m
i

)

=
f

(m)
− (x) + f

(m)
+ (x)

2nm
. (16)

We now are ready to substitute the results of (15) and (16) into (13). Again
utilizing the fact that φ(j +m/2 + n) is even, we obtain
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f (m)
s,n (x) = βn,m,h

nm(−1)m

m!
×

[f (m)
− (x) + f

(m)
+ (x)

2nm
φ(m/2+n)+

n−m/2∑
j=1

f
(m)
− (x) + f

(m)
+ (x)

nm
φ(j+m/2+n)

]

=
f

(m)
− (x) + f

(m)
+ (x)

2
· (−1)mβn,m,h

m!
·
[
φ(m/2+n)+2

n−m/2∑
j=1

φ(j+m/2+n)
]

=
f

(m)
− (x) + f

(m)
+ (x)

2
· βn,m,h

(−1)m

m!

2n−m∑
k=0

φ(k +m). (17)

To evaluate this last sum, we utilize the Chu-Vandermonde Sum Identity
[2]. It yields

2n−m∑
k=0

φ(k +m) = φ(m)
(−2n−m− 1)2n−m

(−2n)2n−m
= (−2n)m

(−2n−m− 1)2n−m
(−2n)2n−m

.

Substituting this result into (17) and carefully simplifying the factorials, we
ultimately arrive at our desired result:

f (m)
s,n (x) =

f
(m)
− (x) + f

(m)
+ (x)

2
.

5 From Symmetric Derivatives to Lanczos Derivatives.

The symmetric difference quotient whose limit yields fms,n is defined for all n
satisfying m ≤ 2n. As n increases, it is natural to ask what happens to the
values of these difference quotients. Because our convention has been to space

inputs
h

n
units apart, we should not be surprised that a definite integral results

from this process.
Recall that Legendre polynomials are the continuous analog of the discrete

Chebyshev polynomials. One means of expressing this fact is through the
asymptotic relation that exists between the two families. Namely, that for m
fixed and for t in [−1, 1],

(2n)−mTn,m(t) = Pm(t) + O
(

1
n

)
as n→∞ (18)
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([6], p. 42). Using this formula, we can formally establish that, for m and h
fixed, (10) converges to a definite integral as n→∞, an integral that can be
viewed as the leading coefficient in a Legendre series expansion.

If we assume that f is square integrable in a sufficiently small neighborhood
of x, then the calculations establishing that (10) converges to an integral are
fairly straightforward and are as follows:

am(n, h) = βn,m,h
nm

(m!)2

n∑
j=−n

f(x+ htj)Tn,m(tj)

= βn,m,h
2mn2m+1

(m!)2

n∑
j=−n

f(x+ htj)
(
Pm(tj) + O

(
1
n

))
1
n

= βn,m,h
2mn2m+1

(m!)2

n∑
j=−n

f(x+ htj)Pm(tj)
1
n

+
(2n−m)!n2m+1

(2n+m+ 1)!
O
(

1
n

)

Since lim
n→∞

(2n−m)!
(2n+m+ 1)!

n2m+1 =
1

22m+1
, we arrive at

am(h) def= lim
n→∞

am(n, h) =
(2m+ 1)!
2m+1(m!)2

∫ t=1

t=−1

f(x+ ht)Pm(t) dt.

This same integral would arise had we instead sought to determine the
polynomial Qm that minimizes the mean-square error∫ t=1

t=−1

(f(x+ ht)−Qm(t))2 dt,

which is analogous to the sum of squares in (8). Indeed, properties of Legendre
polynomials dictate that this integral is minimized when

Qm(t) =
m∑
k=0

1
‖Pk‖2

(∫ t=t

t=−1

f(x+ ht)Pk(t) dt
)
Pk(t).

Referring to properties given in Table 1, we deduce that the leading coefficient
of Qm is precisely am(h). Thus, am(h) is a Legendre coefficient scaled by the
leading term of the corresponding Legendre polynomial.

The transition in the preceding paragraphs has all taken place with m
and h fixed. If we proceed in the spirit of our earlier approach of comparing
coefficients of orthogonal polynomial expansions to like coefficients in Taylor
expansions in order to obtain an extension of the usual mth order derivative,
it makes sense to consider the limit
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f
(m)
L (x) def= lim

h→0

m!
hm

am(h)

= lim
h→0

(2m+ 1)!
2m+1hmm!

∫ t=1

t=−1

f(x+ ht)Pm(t) dt. (19)

The quantity f
(m)
L in (19) has been the recent focus of investigation by the

authors and is referred to as the mth order Lanczos derivative, named in honor
of Cornelius Lanczos. A general discussion of the Lanczos derivative may be
found in [5], [8], and [4]. In particular, the authors prove in [4] that Theorem 1
remains valid if f (m)

s,n (x) is replaced by f (m)
L (x). What is new about the results

contained in this note is that they spell out in detail how the the Lanczos
derivative is a continuous analog of certain symmetric derivatives and how it
is derived from them via a limiting process.
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