
INROADS Real Analysis Exchange
Vol. 32(2), 2006/2007, pp. 587–596

Kandasamy Muthuvel, Department of Mathematics, University of
Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901-8601, USA.
email: muthuvel@uwosh.edu

CONTINUITY OF DARBOUX FUNCTIONS
WITH NICE FINITE ITERATIONS

Abstract

A function that maps intervals into intervals is called a Darboux
function. We prove that if g is a continuous function that is non-constant
on every non-empty open interval, and f is a Darboux function such
that, for every real number x, fnx(x) = g(x) for some positive integer
nx, and the set of all such nx is bounded, then f is continuous. In
the above statement, the hypothesis “the set of all such nx is bounded”
cannot be dropped. We also show that if g is a continuous function that
takes a constant value k on some non-empty open interval I and k ∈ I,
then there exists a discontinuous Darboux function f : R→ R with the
property that, for every real number x, fnx(x) = g(x) for some positive
integer nx ≤ 2. In the previous statement, if k /∈ I, then no conclusion
can be drawn about the function f .

1 Introduction.

It is shown in [4] that if f : R → R is a surjective Darboux function and
g : R → R is a function such that g ◦ f is continuous, then g is continuous.
It is also shown that “continuous” and “Darboux” can be interchanged in the
above statement. A special case of the above result is that if the nth iterate of
a surjective Darboux function f is continuous for some positive integer n, then
f is continuous. If f is a Darboux function and every real number is a periodic
point (that is, fnx(x) = x), then f2(x) = x for all x, and f is continuous (see
[6]). It is natural to ask if f : R→ R is a Darboux function and g : R→ R is a
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continuous function such that, for every real number x, fnx(x) = g(x) for some
positive integer nx, what can be said about the function f? In [5], we showed
that there exist a continuous function g : R→ R that is non-constant on every
non-empty open interval and a discontinuous Darboux function f : R → R
such that, for every real number x, fnx(x) = g(x) for some positive integer nx.
In this paper, we prove that if g : R→ R is a continuous function that is non-
constant on every non-empty open interval, f : R→ R is a Darboux function,
and m is a positive integer such that, for every real number x, fnx(x) = g(x)
for some positive integer nx ≤ m, then f is continuous. We also show that if
“continuous” and “Darboux” are interchanged in the hypotheses of the above
statement, then g is continuous. In the above statements, g is non-constant
on every non-empty open interval cannot be dropped.

Definition 1. A real-valued function f on the set of all real numbers is called
a Darboux function if a and b are real numbers and f(a) 6= f(b), then for any
real number y between f(a) and f(b), there exists a real number x between a
and b such that y = f(x); that is, the image of every interval is an interval.

It is well-known that every continuous function on R is Darboux. However,
not every Darboux function is continuous [1]. Recall that a function f is an
n-to-1 (respectively, finite-to-1) function if

∣∣f−1(y)
∣∣ = n (respectively, f−1(y)

is finite) for every real number y in the range of f . It is proved in [2] that
a continuous n-to-1 function from R into R exists if and only if n is an odd
integer. A classical result states that if f : R → R is Darboux and f−1(y) is
a closed set for every real number y, then f is continuous. This implies that
any n-to-1 Darboux function is continuous.

2 Theorems and Examples.

The following simple proposition is used repeatedly in this paper.

Proposition 1. The following conditions are equivalent for a Darboux func-
tion f : R→ R.

(i) f is discontinuous at a real number a.

(ii) There exists a positive real number ε such that a ∈ f−1(y) for every
y ∈ (f(a), f(a) + ε) or a ∈ f−1(y) for every y ∈ (f(a)− ε, f(a)).

Corollary 1. Let f : R → R be a Darboux function. If f−1(y) is a closed
set for every y in an everywhere dense subset of R, then f is continuous. In
particular, a finite-to-1 Darboux function is continuous.
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Corollary 2. If g : R → R is a finite-to-1 function, f : R → R is a Darboux
function, and m is a positive integer such that, for every real number x, there
exists some positive integer nx ≤ m with the property that fnx(x) = g(x),
then f is continuous. In particular, if the nth iterate of a Darboux function
is a non-constant polynomial function for some positive integer n, then the
Darboux function is continuous.

Proof. First, we prove that ∀y ∈ R, f−1(y) is finite. Assume, to the contrary,
that f−1(y) is infinite. For x ∈ f−1(y), let nx be a positive integer such that
nx ≤ m and fnx(x) = g(x). Consequently, for infinitely many values of x in
f−1(y), nx is same and g(x) is same. This contradicts that g is finite-to-1. So,
f−1(y) is finite, and the result follows from Corollary 1.

Proposition 2 ([4], Theorem 1). Let f and g be real-valued functions on the
reals, and let f be surjective.

(i) If g ◦ f, the composition of g with f , is continuous and f is Darboux,
then g is continuous.

(ii) If g ◦ f is Darboux and f is continuous, then g is Darboux.

Corollary 3. If f : R → R is a surjective Darboux function and fn is con-
tinuous for some positive integer n, then f is continuous.

Note that Corollary 3 is not true if the condition “surjective” is dropped.
For, let f(x) = | sin( 1

x )| whenever x < 0, and f(x) = 1 otherwise. Then f
is Darboux and f2(x) = 1 for all x, but f is discontinuous at 0. However,
we prove the following theorem, which directly implies that, in Corollary 3,
“surjective Darboux function” can be replaced by “Darboux function that is
non-constant on every non-empty open interval.”

Theorem 1. Let g be a continuous function that is non-constant on every
non-empty open interval. If f : R → R is a Darboux function and m is
a positive integer such that, for every real number x, there exists a positive
integer nx ≤ m with the property that fnx(x) = g(x), then

(i) for every 1 ≤ n ≤ m, the restriction fn �D of fn is non-constant on
every somewhere dense set D,

(ii) f is continuous,

(iii) g has a fixed point if and only if f has a fixed point.
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Proof of (i). To prove, let us assume the opposite, that is, that p is the
smallest positive integer such that fp � D is constant for some somewhere
dense set D. For each 1 ≤ n ≤ m, let Dn = {d ∈ D : fn(d) = g(d)}. First, we
prove that Dn is nowhere dense for every integer n with p ≤ n ≤ m. For, since
fp �D is constant and n ≥ p, fn �D is constant. g �Dn is constant because
fn �D is constant, Dn ⊆ D, and g �Dn = fn �Dn. Since g is continuous and
g �Dn is constant, g is constant on Dn. If Dn is somewhere dense, then Dn

contains a non-empty open interval. Then g is constant on some non-empty
open interval, which contradicts the definition of g. So, Dn is nowhere dense
for every integer n with p ≤ n ≤ m. Note that D = ∪1≤n≤mDn, where D is
somewhere dense and Dn is nowhere dense for every integer n with p ≤ n ≤ m.
Since a finite union of nowhere dense sets is nowhere dense, we have 1 < p,
and Dk is somewhere dense for some positive integer k < p. We know that
g �Dk = fk �Dk. Hence, (fp−k ◦ g) �Dk = fp �Dk is constant, and Dk is
somewhere dense. Since Dk contains a non-empty open interval and g is a
continuous function that is non-constant on any open interval, g(Dk) contains
a non-empty open interval. g(Dk) is somewhere dense because g(Dk) ⊇ g(Dk).
Denote the set g(Dk) by S. Then, by (*), fp−k �S is constant, S is somewhere
dense, and p−k is a positive integer smaller than p. This contradicts the choice
of p. Thus, the statement (i) is true.
Proof of (ii). Let y ∈ f(R). For each x ∈ f−1(y), there exists a positive
integer n ≤ m such that g(x) = fn(x) = fn−1(f(x)) = fn−1(y) (for n =
1, fn−1(y) is defined to be y). Hence, f−1(y) ⊆ ∪1≤n≤mg

−1(fn−1(y)) =
g−1({fn−1(y) : 1 ≤ n ≤ m}). Since g is continuous and {fn−1(y) : 1 ≤ n ≤
m} is a closed set, g−1({fn−1(y) : 1 ≤ n ≤ m}) is a closed set. Consequently,

f−1(y) ⊆ g−1({fn−1(y) : 1 ≤ n ≤ m}) = ∪1≤n≤mg
−1(fn−1(y)) (**)

To complete the proof, assume, to the contrary, that f is discontinuous at a real
number a. Then, by Proposition 1, there exists an ε > 0 such that a ∈ f−1(y)
for every y ∈ (f(a), f(a) + ε) or a ∈ f−1(y) for every y ∈ (f(a) − ε, f(a)).
Consider the case a ∈ f−1(y) for every y ∈ (f(a), f(a) + ε). The other case
is similar. By (**), g(a) = fn−1(y) for some positive integer n ≤ m. For
each integer n, let Yn = {y ∈ (f(a), f(a) + ε) : g(a) = fn−1(y)}. Then
(f(a), f(a) + ε) = ∪1≤n≤mYn and |Y1| ≤ 1. Hence, Yj is somewhere dense
for some integer j with 2 ≤ j ≤ m, and, by the definition of Yj , f j−1 �Yj is
constant. This contradicts part (i) of the theorem. Thus, f is continuous on
R.
Proof of (iii). It is easy to see that every fixed point of f is a fixed point
of g. Conversely, suppose that g has a fixed point. If x < f(x) for all x, then
x < f(x) < f2(x) · · · < fn(x) = g(x), which contradicts that g has a fixed
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point. This shows that a ≥ f(a) for some real number a. Similarly, b ≤ f(b)
for some real number b. Consequently, since f is continuous, f(x)− x = 0 for
some x. Thus, f has a fixed point.

It is worth mentioning here that, under the hypotheses of the above the-
orem, if g has a point of period 2, then f has a point of period 2. This is a
consequence of famous Sarkovskii’s Theorem. However, if f(x) = −x+ 1 and
g(x) = x, then every point except 1

2 is a periodic point of f with period 2, but
g has no point of period 2.

It is interesting to compare the following corollary with Corollary 2.

Corollary 4. If f : R→ R is a Darboux function, g : R→ R is a countable-
to-1 continuous function, and m is a positive integer such that, for every real
number x, there exists some positive integer nx ≤ m with the property that
fnx(x) = g(x), then f is continuous.

Corollary 5. Let f : R→ R be a Darboux function. For some positive integer
n, if fn is continuous and non-constant on any non-empty interval, then f
is continuous. In particular, if the nth iterate of a Darboux function is a
polynomial, sine, or cosine function, then the Darboux function is continuous.

The following theorem shows that in Theorem 1 if the condition “g is non-
constant on every non-empty open interval” is dropped, then the function f
need not be continuous.

Theorem 2. Let g be a continuous function that takes a constant value k on
some non-empty open interval I and k ∈ I. Then there exists a discontinuous
Darboux function f : R → R with the property that for every real number x,
fnx(x) = g(x) for some positive integer nx ≤ 2.

Proof. Choose a and b in I such that a < k < b. Pick an interval (p, q)
containing k such that (p, q) ⊆ (a, b). Let c be a real number in the interval
(a, p). Define f : R → R as follows. For x ∈ (a, c], let f(x) = k + ε sin( 1

x−a ),
where ε = 1

2 min{k − p, q − k}. For x ∈ (c, p), let the graph of f be the line
segment joining the points (c, f(c)) and (p, k); i.e., f(x) = k−f(c)

p−c (x−c)+f(c).
For x /∈ (a, p), let f(x) = g(x). Clearly, f is continuous at all points except
the point a. It is easy to see that f maps intervals into intervals, and hence,
f is Darboux. For x ∈ (a, c], f(x) ∈ [k − ε, k + ε] ⊆ (k − 2ε, k + 2ε) ⊆ (p, q).
Since the graph of f over the interval (c, p) is the line segment joining the
points (c, f(c)) and (p, k), and both f(c) and k belong to (p, q), we have
f(x) ∈ (p, q) for x ∈ (c, p). Consequently, for x ∈ (a, p), f(x) ∈ (p, q). Note
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that (p, q)∩(a, p) = ∅, f = g on R\(a, p), and f((p, q)) = g((p, q)) = {k}. This
implies that, for x ∈ (a, p), f2(x) = k = g(x). Thus, for every x, fnx(x) = g(x)
for some positive integer nx ≤ 2, but f is discontinuous at a.

The following two examples show that in Theorem 2, if k /∈ I, then no
conclusion can be drawn about the function f .

Example 1. There exist a continuous function g : R → R taking a constant
value k on some non-empty open interval I with k /∈ I and a positive inte-
ger m such that if f is a Darboux function with the property that, for every
real number x, fnx(x) = g(x) for some positive integer nx ≤ m, then f is
continuous.

Construction. Let

g(x) =

{
x+ 1 whenever x ≥ 0
1 otherwise.

First, we prove the following results.

(1) f(x) > 0 for all x ≤ 0.

(2) f �(0,∞) is finite-to-1, and f is continuous at every real number x > 0.

(3) f(x) > x > 0 for all x > 0.

(4) For every positive integer n, fn �(0,∞) is finite-to-1.

Proof of (1). For each x ≤ 0, there exists a positive integer nx ≤ m such
that fnx(x) = g(x) = 1. Let n = max{nx : x ≤ 0}. Then fn(a) = 1 for
some a ≤ 0, and {fn(x) : x ≤ 0} ⊆ {1, fn−1(1), fn−2(1), . . . , f(1)}. Since
any Darboux function maps every interval onto an interval, fn is Darboux,
and fn(x) = 1 for some x ≤ 0; fn takes the constant value 1 on the interval
(−∞, 0]. To prove (1), assume, to the contrary, that f(c) ≤ 0 for some c ≤ 0.
Denote f(c) by b. Then fn−1(b) = fn−1(f(c)) = fn(c) = 1. Hence, fn(b) =
f(1). Because b ≤ 0, fn(b) = 1. Consequently, f(1) = 1. So, 1 is a fixed point
of both f and g. By the construction, g has no fixed point. Thus, f(x) > 0
for all x ≤ 0.

Proof of (2). Suppose that f � (0,∞) is not finite-to-1. Then, for some
infinite subset D of (0,∞), f �D is constant. Hence, there exists a positive
integer n ≤ m such that g(d) = fn(d) for all d in some infinite subset D1 of D.
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This implies that g �D1 is constant, which contradicts that g � (0,∞) is one-
to-one. Thus, f � (0,∞) is finite-to-1, and, by Proposition 1, f is continuous
at every real number x > 0.
Proof of (3). Note that every fixed point of f is a fixed point of g. Since
g has no fixed point and f is continuous on (0,∞), either f(x) > x for all
x > 0 or f(x) < x for all x > 0. By (1), f(0) > 0. If f(x) < x for all x > 0,
then f((0, f(0)

2 )) ⊆ (−∞, f(0)
2 ) and f(0) /∈ (−∞, f(0)

2 ]. Hence, f([0, f(0)
2 )) is

not an interval. This contradicts that f is Darboux. Thus, f(x) > x > 0 for
all x > 0.
Proof of (4). Suppose not. Let n be the smallest positive integer such that
fn � (0,∞) is not finite-to-1. Then there exists an infinite subset D of (0,∞)
such that fn �D is constant. Since D is infinite and f � (0,∞) is finite-to-1,
f(D) is infinite. By (3), we have f(D) ⊆ (0,∞). By the definition of n,
fn−1 � (0,∞) is finite-to-1. Hence, fn−1(f(D)) is infinite, which contradicts
that fn �D is constant. This completes the proof of (4).

By (2), f is continuous on (0,∞). To show that f is continuous on R,
assume, to the contrary, that f is discontinuous at a real number a ≤ 0. By
(1), f(a) > 0. Then, by Proposition 1 and by (**) in the proof of the second
part of Theorem 1, there exist ε > 0 and a positive integer i such that f i(y)
is same for infinitely many values of y in (f(a)− ε, f(a) + ε). Without loss of
generality, we may assume that ε < f(a). Then (f(a)− ε, f(a) + ε) ⊆ (0,∞),
and f i(0,∞) is not finite-to-1. This contradicts (4). Thus, f is continuous on
R.

Example 2. There exist a continuous function g : R → R taking a constant
value k on some non-empty open interval I with k /∈ I and a discontinuous
Darboux function f such that, for every real number x, fnx(x) = g(x) for
some positive integer nx ≤ 3.

Construction. Let

g(x) =

{
−2x− 1 for x ≤ 0
−1 otherwise.

Let h : (0, 1)→ (−∞,−1) be a function that maps every non-empty open in-
terval onto (−∞,−1). Such a function can be easily constructed by transfinite
induction. Define a function f : R→ R by

f(x) =

{
h(x) whenever x ∈ (0, 1)
g(x) otherwise.
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For x ∈ (0, 1), f(x) < −1, f2(x) = f(f(x)) = −2f(x) − 1 > 1, and f3(x) =
f(f2(x)) = −1 = g(x). By the construction, f(x) = g(x) whenever x /∈ (0, 1).
So, fnx(x) = g(x) for some positive integer nx ≤ 3. Since f maps every
interval of R onto an interval, f is Darboux. Clearly, g is continuous on R and
f is discontinuous on (0, 1).

By interchanging “Darboux” and “continuous” in the hypotheses of The-
orem 1, we can now prove the following.

Proposition 3. Let f : R→ R be a continuous function and m be a positive
integer. Suppose g is a Darboux function that is non-constant on every non-
empty open interval and, for every real number x, there exists a positive integer
nx such that nx ≤ m and fnx(x) = g(x). Then g is continuous.

Proof. Assume, to the contrary, that g is discontinuous at a real number
a. Then, by Proposition 1, there exists ε > 0 such that a ∈ g−1(y) for every
y ∈ (g(a), g(a) + ε) or a ∈ g−1(y) for every y ∈ (g(a)− ε, g(a)). Consider the
case a ∈ g−1(y) for every y ∈ (g(a), g(a) + ε). The other case is similar. It is
easy to see that g−1(y) ⊆ ∪1≤n≤m(fn)−1(y). Since

a ∈ g−1(y) ⊆ ∪1≤n≤m(fn)−1(y) = ∪1≤n≤m(fn)−1(y) = ∪1≤n≤m(fn)−1(y)

for each y ∈ (g(a), g(a) + ε), we have fn(a) = y for some n ≤ m. This is
impossible because the set {fn(a) : 1 ≤ n ≤ m} is finite.

The following example shows that the hypothesis “nx ≤ m” is necessary
in the statement of the above theorem.

Example 3. There exist a continuous function f : R→ R and a discontinuous
Darboux function g : R → R that is non-constant on every non-empty open
interval such that, for every real number x, fnx(x) = g(x) for some positive
integer nx.

Construction. Let f(x) = | sin( 1
x )

2 |2n

for x ∈ [− 1
nπ ,−

1
(n+1)π ), where n ∈ N,

f(x) =

{√
x for x ≥ 0

x+ 1
π otherwise.

g(x) =

{
sin2( 1

x )

4 for x ∈ [− 1
π , 0)

f(x) otherwise.

Then it is easy to see that fn(x) = g(x) for x ∈ [− 1
nπ ,−

1
(n+1)π ) and n ∈ N.

Clearly, f is continuous on R, g is Darboux, and for every real number x, there
exists a positive integer nx such that fnx(x) = g(x), but g is discontinuous at
0.
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