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CONTINUITY OF DARBOUX FUNCTIONS
WITH NICE FINITE ITERATIONS

Abstract

A function that maps intervals into intervals is called a Darboux
function. We prove that if g is a continuous function that is non-constant
on every non-empty open interval, and f is a Darboux function such
that, for every real number z, f™*(z) = g(z) for some positive integer
ng, and the set of all such n, is bounded, then f is continuous. In
the above statement, the hypothesis “the set of all such n, is bounded”
cannot be dropped. We also show that if g is a continuous function that
takes a constant value k on some non-empty open interval I and k € I,
then there exists a discontinuous Darboux function f : R — R with the
property that, for every real number z, f™*(z) = g(z) for some positive
integer n, < 2. In the previous statement, if k& ¢ I, then no conclusion
can be drawn about the function f.

1 Introduction.

It is shown in [4] that if f : R — R is a surjective Darboux function and
g : R — R is a function such that g o f is continuous, then g is continuous.
It is also shown that “continuous” and “Darboux” can be interchanged in the
above statement. A special case of the above result is that if the n'" iterate of
a surjective Darboux function f is continuous for some positive integer n, then
f is continuous. If f is a Darboux function and every real number is a periodic
point (that is, f™=(x) = z), then f2(x) = z for all 2, and f is continuous (see
[6]). Tt is natural to ask if f : R — R is a Darboux function and g : R — Ris a
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continuous function such that, for every real number z, f™=(x) = g(z) for some
positive integer n,, what can be said about the function f? In [5], we showed
that there exist a continuous function g : R — R that is non-constant on every
non-empty open interval and a discontinuous Darboux function f : R — R
such that, for every real number z, f"=(x) = g(z) for some positive integer n,.
In this paper, we prove that if g : R — R is a continuous function that is non-
constant on every non-empty open interval, f : R — R is a Darboux function,
and m is a positive integer such that, for every real number z, f"=(z) = g(x)
for some positive integer n, < m, then f is continuous. We also show that if
“continuous” and “Darboux” are interchanged in the hypotheses of the above
statement, then g is continuous. In the above statements, g is non-constant
on every non-empty open interval cannot be dropped.

Definition 1. A real-valued function f on the set of all real numbers is called
a Darboux function if a and b are real numbers and f(a) # f(b), then for any
real number y between f(a) and f(b), there exists a real number x between a
and b such that y = f(z); that is, the image of every interval is an interval.

It is well-known that every continuous function on R is Darboux. However,
not every Darboux function is continuous [1]. Recall that a function f is an
n-to-1 (respectively, finite-to-1) function if ’f‘l(y)| = n (respectively, f~1(y)
is finite) for every real number y in the range of f. It is proved in [2] that
a continuous n-to-1 function from R into R exists if and only if n is an odd
integer. A classical result states that if f : R — R is Darboux and f~!(y) is
a closed set for every real number y, then f is continuous. This implies that
any n-to-1 Darboux function is continuous.

2 Theorems and Examples.

The following simple proposition is used repeatedly in this paper.

Proposition 1. The following conditions are equivalent for a Darbouz func-

tion f : R — R.
(i) [ is discontinuous at a real number a.

(ii) There exists a positive real number € such that a € f=1(y) for every

y € (fla), fla)+€) orae f~1(y) for every y € (f(a) — € f(a)).

Corollary 1. Let f : R — R be a Darboux function. If f~1(y) is a closed
set for every y in an everywhere dense subset of R, then f is continuous. In
particular, a finite-to-1 Darboux function is continuous.
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Corollary 2. If g: R — R is a finite-to-1 function, f : R — R is a Darboux
function, and m is a positive integer such that, for every real number x, there
exists some positive integer n, < m with the property that f"=(x) = g(x),
then f is continuous. In particular, if the n** iterate of a Darbouz function
18 a non-constant polynomial function for some positive integer n, then the
Darboux function is continuous.

PROOF. First, we prove that Vy € R, f~!(y) is finite. Assume, to the contrary,
that f~1(y) is infinite. For = € f~!(y), let n, be a positive integer such that
ng; < m and f"(x) = g(z). Consequently, for infinitely many values of z in
f~Y(y), ny is same and g(x) is same. This contradicts that g is finite-to-1. So,
f~(y) is finite, and the result follows from Corollary 1. O

Proposition 2 ([4], Theorem 1). Let f and g be real-valued functions on the
reals, and let [ be surjective.

(i) If g o f, the composition of g with f, is continuous and f is Darbouz,
then g is continuous.

(i) If g o f is Darbouzx and f is continuous, then g is Darboux.

Corollary 3. If f : R — R s a surjective Darbouz function and f™ is con-
tinuous for some positive integer n, then f is continuous.

Note that Corollary 3 is not true if the condition “surjective” is dropped.
For, let f(z) = |sin(1)| whenever x < 0, and f(z) = 1 otherwise. Then f
is Darboux and f2(z) = 1 for all z, but f is discontinuous at 0. However,
we prove the following theorem, which directly implies that, in Corollary 3,
“surjective Darboux function” can be replaced by “Darboux function that is
non-constant on every non-empty open interval.”

Theorem 1. Let g be a continuous function that is non-constant on every
non-empty open interval. If f : R — R is a Darboux function and m is
a positive integer such that, for every real number x, there exists a positive
integer n, < m with the property that f"=(x) = g(x), then

(i) for every 1 < n < m, the restriction f™ | D of f™ is non-constant on
every somewhere dense set D,

(ii) f is continuous,

(iii) g has a fized point if and only if f has a fized point.
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PROOF OF (7). To prove, let us assume the opposite, that is, that p is the
smallest positive integer such that fP [ D is constant for some somewhere
dense set D. For each 1 <n <m, let D, ={d € D: f*(d) = g(d)}. First, we
prove that D,, is nowhere dense for every integer n with p < n < m. For, since
fP I D is constant and n > p, f™ [ D is constant. g [ D,, is constant because
f™ 1D is constant, D,, C D, and g [ D,, = f™ | D,,. Since g is continuous and
g | Dy, is constant, g is constant on D,,. If D,, is somewhere dense, then D,,
contains a non-empty open interval. Then g is constant on some non-empty
open interval, which contradicts the definition of g. So, D,, is nowhere dense
for every integer n with p < n < m. Note that D = Ui<pn<m Dy, where D is
somewhere dense and D,, is nowhere dense for every integer n with p < n < m.
Since a finite union of nowhere dense sets is nowhere dense, we have 1 < p,
and Dy is somewhere dense for some positive integer k& < p. We know that
g | Dy = f* | Dy. Hence, (fP"%og) | Dy, = fP | Dy, is constant, and Dy, is
somewhere dense. Since D) contains a non-empty open interval and g is a
continuous function that is non-constant on any open interval, g(Dy) contains
a non-empty open interval. g(Dy,) is somewhere dense because g(Dy,) 2 g(Dy).
Denote the set g(Dy) by S. Then, by (*), f7=% [ S is constant, S is somewhere
dense, and p—k is a positive integer smaller than p. This contradicts the choice
of p. Thus, the statement (i) is true.

PRrOOF OF (ii). Let y € f(R). For each # € f~1(y), there exists a positive
integer n < m such that g(x) = f*(z) = " (f(x)) = f*y) (for n =
1, f"~1(y) is defined to be y). Hence, f~(y) C Ui<n<mg H(f" '(y)) =
g *{f"Yy) : 1 <n < m}). Since g is continuous and {f*"(y): 1 <n <
m} is a closed set, g~ ({f"1(y) : 1 <n < m}) is a closed set. Consequently,

FH) € g /) s 1< n<m}) = Uicnzmg ™ (") (%)

To complete the proof, assume, to the contrary, that f is discontinuous at a real
number a. Then, by Proposition 1, there exists an € > 0 such that a € f~1(y)

for every y € (f(a), f(a) +€) or a € F1(y) for every y € (f(a) — e, ().

Consider the case a € f~1(y) for every y € (f(a), f(a) + €). The other case
is similar. By (**), g(a) = f" (y) for some positive integer n < m. For
each integer n, let Y,, = {y € (f(a), f(a) +¢€) : gla) = f*"'(y)}. Then
(f(a), f(a) + €) = Ui<n<mYs and |Yi| < 1. Hence, Y; is somewhere dense
for some integer j with 2 < j < m, and, by the definition of Y;, fi=1 |'Y; is
constant. This contradicts part (i) of the theorem. Thus, f is continuous on
R.

PRrROOF OF (iii). It is easy to see that every fixed point of f is a fixed point

of g. Conversely, suppose that ¢g has a fixed point. If z < f(z) for all z, then
r < f(z) < f2(z)--- < f*"(z) = g(x), which contradicts that g has a fixed
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point. This shows that a > f(a) for some real number a. Similarly, b < f(b)
for some real number b. Consequently, since f is continuous, f(z) —z = 0 for
some z. Thus, f has a fixed point. O

It is worth mentioning here that, under the hypotheses of the above the-
orem, if g has a point of period 2, then f has a point of period 2. This is a
consequence of famous Sarkovskii’s Theorem. However, if f(z) = —z + 1 and
g(z) = z, then every point except % is a periodic point of f with period 2, but
g has no point of period 2.

It is interesting to compare the following corollary with Corollary 2.

Corollary 4. If f : R — R is a Darbouz function, g : R — R is a countable-
to-1 continuous function, and m is a positive integer such that, for every real
number x, there exists some positive integer n, < m with the property that
f=(z) = g(x), then f is continuous.

Corollary 5. Let f : R — R be a Darboux function. For some positive integer
n, if f is continuous and non-constant on any non-empty interval, then f
is continuous. In particular, if the n' iterate of a Darbouz function is a
polynomial, sine, or cosine function, then the Darboux function is continuous.

The following theorem shows that in Theorem 1 if the condition “g is non-
constant on every non-empty open interval” is dropped, then the function f
need not be continuous.

Theorem 2. Let g be a continuous function that takes a constant value k on
some non-empty open interval I and k € I. Then there exists a discontinuous
Darboux function f : R — R with the property that for every real number x,
[ (x) = g(x) for some positive integer n, < 2.

PROOF. Choose a and b in I such that a < k < b. Pick an interval (p,q)

containing k such that (p,q) C (a,b). Let ¢ be a real number in the interval
(a,p). Define f : R — R as follows. For = € (a,c], let f(z) = k + esin(=1),

where € = %min{k —p, q—k}. For z € (¢, p), let the graph of f be the line
segment joining the points (¢, f(c)) and (p, k); i.e., f(z) = %(Cc)(x—c) + f(o).

For x ¢ (a, p), let f(x) = g(x). Clearly, f is continuous at all points except
the point a. It is easy to see that f maps intervals into intervals, and hence,
f is Darboux. For z € (a,c], f(z) € [k — ¢,k + €] C (k—2¢,k + 2¢) C (p,q).
Since the graph of f over the interval (c,p) is the line segment joining the
points (c, f(c)) and (p, k), and both f(c) and k belong to (p,q), we have
f(x) € (p,q) for x € (¢,p). Consequently, for x € (a,p), f(z) € (p,q). Note
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that (p,q)N(a,p) = 2, f = gon R\ (a,p), and f((p,q)) = g((p,q)) = {k}. This
implies that, for z € (a,p), f?(z) = k = g(x). Thus, for every z, f"=(z) = g(z)
for some positive integer n, < 2, but f is discontinuous at a. O

The following two examples show that in Theorem 2, if &k ¢ I, then no
conclusion can be drawn about the function f.

Example 1. There exist a continuous function g : R — R taking a constant
value k on some non-empty open interval I with k ¢ I and a positive inte-
ger m such that if f is a Darboux function with the property that, for every
real number x, [ (x) = g(x) for some positive integer n, < m, then f is
continuous.

CONSTRUCTION. Let

z+1 whenever z >0
g(z) = .
1 otherwise.

First, we prove the following results.

(1

() >0 forall z <0.

f
(2) f 1(0,00) is finite-to-1, and f is continuous at every real number z > 0.
f

)
)
(3) f(x) >z >0 for all z > 0.
(4) For every positive integer n, f™ [(0,00) is finite-to-1.

PROOF OF (1). For each z < 0, there exists a positive integer n, < m such
that f"=(x) = g(z) = 1. Let n = max{n, : « < 0}. Then f™(a) = 1 for
some a < 0, and {f"(x) : < 0} C {1, (1), f»~2(1),..., f(1)}. Since
any Darboux function maps every interval onto an interval, f™ is Darboux,
and f"(x) = 1 for some x < 0; f™ takes the constant value 1 on the interval
(—00,0]. To prove (1), assume, to the contrary, that f(c) < 0 for some ¢ < 0.
Denote f(c) by b. Then f*~1(b) = f*1(f(c)) = f*(c) = 1. Hence, f™(b) =
f(1). Because b <0, f*(b) = 1. Consequently, f(1) = 1. So, 1 is a fixed point
of both f and g. By the construction, g has no fixed point. Thus, f(z) > 0
for all z < 0.

PROOF OF (2). Suppose that f | (0,00) is not finite-to-1. Then, for some
infinite subset D of (0,00), f | D is constant. Hence, there exists a positive
integer n < m such that g(d) = f™(d) for all d in some infinite subset Dy of D.
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This implies that g [ D; is constant, which contradicts that g [ (0, 00) is one-
to-one. Thus, f [(0,00) is finite-to-1, and, by Proposition 1, f is continuous
at every real number = > 0.

PROOF OF (3). Note that every fixed point of f is a fixed point of g. Since
g has no fixed point and f is continuous on (0,00), either f(z) > x for all
x>0or f(zr) <z forall z >0. By (1), f(0) > 0. If f(z) < z for all x > 0,
then f£((0, L)) C (~o0, L) and f(0) ¢ (—oo, £). Hence, f([0, L)) is
not an interval. This contradicts that f is Darboux. Thus, f(x) > z > 0 for
all z > 0.

PROOF OF (4). Suppose not. Let n be the smallest positive integer such that
f™ 1(0,00) is not finite-to-1. Then there exists an infinite subset D of (0, c0)
such that f™ [ D is constant. Since D is infinite and f [ (0, 00) is finite-to-1,
f(D) is infinite. By (3), we have f(D) C (0,00). By the definition of n,
771 1(0,00) is finite-to-1. Hence, f"~*(f(D)) is infinite, which contradicts
that f™ [ D is constant. This completes the proof of (4). O

By (2), f is continuous on (0,00). To show that f is continuous on R,
assume, to the contrary, that f is discontinuous at a real number a < 0. By
(1), f(a) > 0. Then, by Proposition 1 and by (**) in the proof of the second
part of Theorem 1, there exist ¢ > 0 and a positive integer i such that f¢(y)
is same for infinitely many values of y in (f(a) — ¢, f(a) + €). Without loss of
generality, we may assume that ¢ < f(a). Then (f(a) —¢, f(a) +¢€) C (0,00),
and f%(0,00) is not finite-to-1. This contradicts (4). Thus, f is continuous on
R.

Example 2. There exist a continuous function g : R — R taking a constant
value k on some non-empty open interval I with k ¢ I and a discontinuous
Darbouzx function f such that, for every real number x, f"=(x) = g(x) for
some positive integer n, < 3.

CONSTRUCTION. Let

(2) —2r—1 forxz <0
xTr) =
g -1 otherwise.

Let h: (0,1) — (—o0, —1) be a function that maps every non-empty open in-
terval onto (—oo, —1). Such a function can be easily constructed by transfinite
induction. Define a function f: R — R by

) h(z) whenever z € (0,1)
J(@) = {g(m) otherwise.



594 KANDASAMY MUTHUVEL

For z € (0,1), f(z) < =1, f2(z) = f(f(z)) = —2f(z) =1 > 1, and f3(z) =
f(f*(z)) = —1 = g(x). By the construction, f(z) = g(x) whenever z ¢ (0,1).
So, f"=(x) = g(z) for some positive integer n, < 3. Since f maps every
interval of R onto an interval, f is Darboux. Clearly, g is continuous on R and
f is discontinuous on (0, 1). O

By interchanging “Darboux” and “continuous” in the hypotheses of The-
orem 1, we can now prove the following.

Proposition 3. Let f: R — R be a continuous function and m be a positive
integer. Suppose g is a Darbouzx function that is non-constant on every non-
empty open interval and, for every real number x, there exists a positive integer
ng such that ny < m and f=(x) = g(x). Then g is continuous.

PRrROOF. Assume, to the contrary, that g is discontinuous at a real number
a. Then, by Proposition 1, there exists ¢ > 0 such that a € g~ !(y) for every
y € (g9(a),g(a) +€) or a € g~1(y) for every y € (g9(a) — €, g(a)). Consider the
case a € g~ !(y) for every y € (g(a),g(a) + €). The other case is similar. It is
easy to see that g7 (y) C Ur<n<m(f™) " (y). Since

a € g1 (y) € Ui<nzm(F") 1Y) = Urcncm (/") 71 () = Uicngm (F") 71 (%)

for each y € (g(a),g(a) + €), we have f"(a) = y for some n < m. This is
impossible because the set {f™(a) : 1 <n < m} is finite. O

The following example shows that the hypothesis “n, < m” is necessary
in the statement of the above theorem.

Example 3. There exist a continuous function f : R — R and a discontinuous
Darboux function g : R — R that is non-constant on every non-empty open
interval such that, for every real number x, f™=(x) = g(x) for some positive
mnteger ng.

CONSTRUCTION. Let f(z) = |%|Q" for z € [~ — s

f(:c){ﬁ for 2 > 0 {““1@) for z € [~1,0)

. . g(z) = .
xr + = otherwise. flx) otherwise.

, where n € N,

Then it is easy to see that f"(z) = g(z) for z € [— X, —ﬁ) and n € N.
Clearly, f is continuous on R, g is Darboux, and for every real number z, there
exists a positive integer n, such that f™=(x) = g(zx), but g is discontinuous at

0. O
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