INROADS

Kandasamy Muthuvel, Department of Mathematics, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901-8601, USA. email: muthuvel@uwosh.edu

CONTINUITY OF DARBOUX FUNCTIONS WITH NICE FINITE ITERATIONS

Abstract

A function that maps intervals into intervals is called a Darboux function. We prove that if q is a continuous function that is non-constant on every non-empty open interval, and f is a Darboux function such that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer n_x , and the set of all such n_x is bounded, then f is continuous. In the above statement, the hypothesis "the set of all such n_x is bounded" cannot be dropped. We also show that if g is a continuous function that takes a constant value k on some non-empty open interval I and $k \in I$, then there exists a discontinuous Darboux function $f : \mathbb{R} \to \mathbb{R}$ with the property that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq 2$. In the previous statement, if $k \notin I$, then no conclusion can be drawn about the function f.

1 Introduction.

It is shown in [4] that if $f:\mathbb{R}\to\mathbb{R}$ is a surjective Darboux function and $g: \mathbb{R} \to \mathbb{R}$ is a function such that $g \circ f$ is continuous, then g is continuous. It is also shown that "continuous" and "Darboux" can be interchanged in the above statement. A special case of the above result is that if the n^{th} iterate of a surjective Darboux function f is continuous for some positive integer n, then f is continuous. If f is a Darboux function and every real number is a periodic point (that is, $f^{n_x}(x) = x$), then $f^2(x) = x$ for all x, and f is continuous (see [6]). It is natural to ask if $f : \mathbb{R} \to \mathbb{R}$ is a Darboux function and $g : \mathbb{R} \to \mathbb{R}$ is a

Key Words: Darboux functions, n-to-1 functions, continuous functions.

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C30 Received by the editors January 15, 2007 Communicated by: Krzysztof Chris Ciesielski

continuous function such that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer n_x , what can be said about the function f? In [5], we showed that there exist a continuous function $g: \mathbb{R} \to \mathbb{R}$ that is non-constant on every non-empty open interval and a discontinuous Darboux function $f: \mathbb{R} \to \mathbb{R}$ such that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer n_x . In this paper, we prove that if $g: \mathbb{R} \to \mathbb{R}$ is a continuous function that is nonconstant on every non-empty open interval, $f: \mathbb{R} \to \mathbb{R}$ is a Darboux function, and m is a positive integer such that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq m$, then f is continuous. We also show that if "continuous" and "Darboux" are interchanged in the hypotheses of the above statement, then g is continuous. In the above statements, g is non-constant on every non-empty open interval cannot be dropped.

Definition 1. A real-valued function f on the set of all real numbers is called a Darboux function if a and b are real numbers and $f(a) \neq f(b)$, then for any real number y between f(a) and f(b), there exists a real number x between aand b such that y = f(x); that is, the image of every interval is an interval.

It is well-known that every continuous function on \mathbb{R} is Darboux. However, not every Darboux function is continuous [1]. Recall that a function f is an n-to-1 (respectively, finite-to-1) function if $|f^{-1}(y)| = n$ (respectively, $f^{-1}(y)$ is finite) for every real number y in the range of f. It is proved in [2] that a continuous n-to-1 function from \mathbb{R} into \mathbb{R} exists if and only if n is an odd integer. A classical result states that if $f : \mathbb{R} \to \mathbb{R}$ is Darboux and $f^{-1}(y)$ is a closed set for every real number y, then f is continuous. This implies that any n-to-1 Darboux function is continuous.

2 Theorems and Examples.

The following simple proposition is used repeatedly in this paper.

Proposition 1. The following conditions are equivalent for a Darboux function $f : \mathbb{R} \to \mathbb{R}$.

- (i) f is discontinuous at a real number a.
- (ii) There exists a positive real number ϵ such that $a \in \overline{f^{-1}(y)}$ for every $y \in (f(a), f(a) + \epsilon)$ or $a \in \overline{f^{-1}(y)}$ for every $y \in (f(a) \epsilon, f(a))$.

Corollary 1. Let $f : \mathbb{R} \to \mathbb{R}$ be a Darboux function. If $f^{-1}(y)$ is a closed set for every y in an everywhere dense subset of \mathbb{R} , then f is continuous. In particular, a finite-to-1 Darboux function is continuous.

Corollary 2. If $g : \mathbb{R} \to \mathbb{R}$ is a finite-to-1 function, $f : \mathbb{R} \to \mathbb{R}$ is a Darboux function, and m is a positive integer such that, for every real number x, there exists some positive integer $n_x \leq m$ with the property that $f^{n_x}(x) = g(x)$, then f is continuous. In particular, if the n^{th} iterate of a Darboux function is a non-constant polynomial function for some positive integer n, then the Darboux function is continuous.

PROOF. First, we prove that $\forall y \in \mathbb{R}$, $f^{-1}(y)$ is finite. Assume, to the contrary, that $f^{-1}(y)$ is infinite. For $x \in f^{-1}(y)$, let n_x be a positive integer such that $n_x \leq m$ and $f^{n_x}(x) = g(x)$. Consequently, for infinitely many values of x in $f^{-1}(y)$, n_x is same and g(x) is same. This contradicts that g is finite-to-1. So, $f^{-1}(y)$ is finite, and the result follows from Corollary 1.

Proposition 2 ([4], Theorem 1). Let f and g be real-valued functions on the reals, and let f be surjective.

- (i) If $g \circ f$, the composition of g with f, is continuous and f is Darboux, then g is continuous.
- (ii) If $g \circ f$ is Darboux and f is continuous, then g is Darboux.

Corollary 3. If $f : \mathbb{R} \to \mathbb{R}$ is a surjective Darboux function and f^n is continuous for some positive integer n, then f is continuous.

Note that Corollary 3 is not true if the condition "surjective" is dropped. For, let $f(x) = |\sin(\frac{1}{x})|$ whenever x < 0, and f(x) = 1 otherwise. Then f is Darboux and $f^2(x) = 1$ for all x, but f is discontinuous at 0. However, we prove the following theorem, which directly implies that, in Corollary 3, "surjective Darboux function" can be replaced by "Darboux function that is non-constant on every non-empty open interval."

Theorem 1. Let g be a continuous function that is non-constant on every non-empty open interval. If $f : \mathbb{R} \to \mathbb{R}$ is a Darboux function and m is a positive integer such that, for every real number x, there exists a positive integer $n_x \leq m$ with the property that $f^{n_x}(x) = g(x)$, then

- (i) for every $1 \le n \le m$, the restriction $f^n \upharpoonright D$ of f^n is non-constant on every somewhere dense set D,
- (ii) f is continuous,
- (iii) g has a fixed point if and only if f has a fixed point.

PROOF OF (i). To prove, let us assume the opposite, that is, that p is the smallest positive integer such that $f^p \upharpoonright D$ is constant for some somewhere dense set D. For each $1 \le n \le m$, let $D_n = \{d \in D : f^n(d) = g(d)\}$. First, we prove that D_n is nowhere dense for every integer n with $p \leq n \leq m$. For, since $f^p \upharpoonright D$ is constant and $n \ge p, f^n \upharpoonright D$ is constant. $g \upharpoonright D_n$ is constant because $f^n \upharpoonright D$ is constant, $D_n \subseteq D$, and $g \upharpoonright D_n = f^n \upharpoonright D_n$. Since g is continuous and $g \upharpoonright D_n$ is constant, g is constant on $\overline{D_n}$. If D_n is somewhere dense, then $\overline{D_n}$ contains a non-empty open interval. Then q is constant on some non-empty open interval, which contradicts the definition of g. So, D_n is nowhere dense for every integer n with $p \leq n \leq m$. Note that $D = \bigcup_{1 \leq n \leq m} D_n$, where D is somewhere dense and D_n is nowhere dense for every integer n with $p \leq n \leq m$. Since a finite union of nowhere dense sets is nowhere dense, we have 1 < p, and D_k is somewhere dense for some positive integer k < p. We know that $g \upharpoonright D_k = f^k \upharpoonright D_k$. Hence, $(f^{p-k} \circ g) \upharpoonright D_k = f^p \upharpoonright D_k$ is constant, and D_k is somewhere dense. Since \overline{D}_k contains a non-empty open interval and g is a continuous function that is non-constant on any open interval, $q(D_k)$ contains a non-empty open interval. $g(D_k)$ is somewhere dense because $\overline{g(D_k)} \supseteq g(\overline{D}_k)$. Denote the set $g(D_k)$ by S. Then, by (*), $f^{p-k} \upharpoonright S$ is constant, S is somewhere dense, and p-k is a positive integer smaller than p. This contradicts the choice of p. Thus, the statement (i) is true.

PROOF OF (ii). Let $y \in f(\mathbb{R})$. For each $x \in f^{-1}(y)$, there exists a positive integer $n \leq m$ such that $g(x) = f^n(x) = f^{n-1}(f(x)) = f^{n-1}(y)$ (for n = 1, $f^{n-1}(y)$ is defined to be y). Hence, $f^{-1}(y) \subseteq \bigcup_{1 \leq n \leq m} g^{-1}(f^{n-1}(y)) = g^{-1}(\{f^{n-1}(y) : 1 \leq n \leq m\})$. Since g is continuous and $\{f^{n-1}(y) : 1 \leq n \leq m\}$ is a closed set, $g^{-1}(\{f^{n-1}(y) : 1 \leq n \leq m\})$ is a closed set. Consequently,

$$\overline{f^{-1}(y)} \subseteq \overline{g^{-1}(\{f^{n-1}(y): 1 \le n \le m\})} = \bigcup_{1 \le n \le m} g^{-1}(f^{n-1}(y)) \qquad (**)$$

To complete the proof, assume, to the contrary, that f is discontinuous at a real number a. Then, by Proposition 1, there exists an $\epsilon > 0$ such that $a \in \overline{f^{-1}(y)}$ for every $y \in (f(a), f(\underline{a}) + \epsilon)$ or $a \in \overline{f^{-1}(y)}$ for every $y \in (f(a) - \epsilon, f(a))$. Consider the case $a \in \overline{f^{-1}(y)}$ for every $y \in (f(a), f(a) + \epsilon)$. The other case is similar. By (**), $g(a) = f^{n-1}(y)$ for some positive integer $n \leq m$. For each integer n, let $Y_n = \{y \in (f(a), f(a) + \epsilon) : g(a) = f^{n-1}(y)\}$. Then $(f(a), f(a) + \epsilon) = \bigcup_{1 \leq n \leq m} Y_n$ and $|Y_1| \leq 1$. Hence, Y_j is somewhere dense for some integer j with $2 \leq j \leq m$, and, by the definition of $Y_j, f^{j-1} \upharpoonright Y_j$ is constant. This contradicts part (i) of the theorem. Thus, f is continuous on \mathbb{R} .

PROOF OF (iii). It is easy to see that every fixed point of f is a fixed point of g. Conversely, suppose that g has a fixed point. If x < f(x) for all x, then $x < f(x) < f^2(x) \cdots < f^n(x) = g(x)$, which contradicts that g has a fixed

point. This shows that $a \ge f(a)$ for some real number a. Similarly, $b \le f(b)$ for some real number b. Consequently, since f is continuous, f(x) - x = 0 for some x. Thus, f has a fixed point.

It is worth mentioning here that, under the hypotheses of the above theorem, if g has a point of period 2, then f has a point of period 2. This is a consequence of famous Sarkovskii's Theorem. However, if f(x) = -x + 1 and g(x) = x, then every point except $\frac{1}{2}$ is a periodic point of f with period 2, but g has no point of period 2.

It is interesting to compare the following corollary with Corollary 2.

Corollary 4. If $f : \mathbb{R} \to \mathbb{R}$ is a Darboux function, $g : \mathbb{R} \to \mathbb{R}$ is a countableto-1 continuous function, and m is a positive integer such that, for every real number x, there exists some positive integer $n_x \leq m$ with the property that $f^{n_x}(x) = g(x)$, then f is continuous.

Corollary 5. Let $f : \mathbb{R} \to \mathbb{R}$ be a Darboux function. For some positive integer n, if f^n is continuous and non-constant on any non-empty interval, then f is continuous. In particular, if the n^{th} iterate of a Darboux function is a polynomial, sine, or cosine function, then the Darboux function is continuous.

The following theorem shows that in Theorem 1 if the condition "g is nonconstant on every non-empty open interval" is dropped, then the function fneed not be continuous.

Theorem 2. Let g be a continuous function that takes a constant value k on some non-empty open interval I and $k \in I$. Then there exists a discontinuous Darboux function $f : \mathbb{R} \to \mathbb{R}$ with the property that for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq 2$.

PROOF. Choose a and b in I such that a < k < b. Pick an interval (p,q) containing k such that $(p,q) \subseteq (a,b)$. Let c be a real number in the interval (a,p). Define $f: \mathbb{R} \to \mathbb{R}$ as follows. For $x \in (a,c]$, let $f(x) = k + \epsilon \sin(\frac{1}{x-a})$, where $\epsilon = \frac{1}{2} \min\{k - p, q - k\}$. For $x \in (c, p)$, let the graph of f be the line segment joining the points (c, f(c)) and (p,k); i.e., $f(x) = \frac{k - f(c)}{p - c}(x - c) + f(c)$. For $x \notin (a, p)$, let f(x) = g(x). Clearly, f is continuous at all points except the point a. It is easy to see that f maps intervals into intervals, and hence, f is Darboux. For $x \in (a,c]$, $f(x) \in [k - \epsilon, k + \epsilon] \subseteq (k - 2\epsilon, k + 2\epsilon) \subseteq (p,q)$. Since the graph of f over the interval (c,p) is the line segment joining the points (c, f(c)) and (p,k), and both f(c) and k belong to (p,q), we have $f(x) \in (p,q)$ for $x \in (c,p)$. Consequently, for $x \in (a,p)$, $f(x) \in (p,q)$. Note

that $(p,q)\cap(a,p) = \emptyset$, f = g on $\mathbb{R}\setminus(a,p)$, and $f((p,q)) = g((p,q)) = \{k\}$. This implies that, for $x \in (a,p)$, $f^2(x) = k = g(x)$. Thus, for every x, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq 2$, but f is discontinuous at a.

The following two examples show that in Theorem 2, if $k \notin I$, then no conclusion can be drawn about the function f.

Example 1. There exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ taking a constant value k on some non-empty open interval I with $k \notin I$ and a positive integer m such that if f is a Darboux function with the property that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq m$, then f is continuous.

CONSTRUCTION. Let

$$g(x) = \begin{cases} x+1 & \text{whenever } x \ge 0\\ 1 & \text{otherwise.} \end{cases}$$

First, we prove the following results.

- (1) f(x) > 0 for all $x \le 0$.
- (2) $f \upharpoonright (0, \infty)$ is finite-to-1, and f is continuous at every real number x > 0.
- (3) f(x) > x > 0 for all x > 0.
- (4) For every positive integer $n, f^n \upharpoonright (0, \infty)$ is finite-to-1.

PROOF OF (1). For each $x \leq 0$, there exists a positive integer $n_x \leq m$ such that $f^{n_x}(x) = g(x) = 1$. Let $n = \max\{n_x : x \leq 0\}$. Then $f^n(a) = 1$ for some $a \leq 0$, and $\{f^n(x) : x \leq 0\} \subseteq \{1, f^{n-1}(1), f^{n-2}(1), \ldots, f(1)\}$. Since any Darboux function maps every interval onto an interval, f^n is Darboux, and $f^n(x) = 1$ for some $x \leq 0$; f^n takes the constant value 1 on the interval $(-\infty, 0]$. To prove (1), assume, to the contrary, that $f(c) \leq 0$ for some $c \leq 0$. Denote f(c) by b. Then $f^{n-1}(b) = f^{n-1}(f(c)) = f^n(c) = 1$. Hence, $f^n(b) = f(1)$. Because $b \leq 0$, $f^n(b) = 1$. Consequently, f(1) = 1. So, 1 is a fixed point of both f and g. By the construction, g has no fixed point. Thus, f(x) > 0 for all $x \leq 0$.

PROOF OF (2). Suppose that $f \upharpoonright (0, \infty)$ is not finite-to-1. Then, for some infinite subset D of $(0, \infty)$, $f \upharpoonright D$ is constant. Hence, there exists a positive integer $n \leq m$ such that $g(d) = f^n(d)$ for all d in some infinite subset D_1 of D.

This implies that $g \upharpoonright D_1$ is constant, which contradicts that $g \upharpoonright (0, \infty)$ is one-to-one. Thus, $f \upharpoonright (0, \infty)$ is finite-to-1, and, by Proposition 1, f is continuous at every real number x > 0.

PROOF OF (3). Note that every fixed point of f is a fixed point of g. Since g has no fixed point and f is continuous on $(0,\infty)$, either f(x) > x for all x > 0 or f(x) < x for all x > 0. By (1), f(0) > 0. If f(x) < x for all x > 0, then $f((0, \frac{f(0)}{2})) \subseteq (-\infty, \frac{f(0)}{2})$ and $f(0) \notin (-\infty, \frac{f(0)}{2})$. Hence, $f([0, \frac{f(0)}{2}))$ is not an interval. This contradicts that f is Darboux. Thus, f(x) > x > 0 for all x > 0.

PROOF OF (4). Suppose not. Let n be the smallest positive integer such that $f^n \upharpoonright (0, \infty)$ is not finite-to-1. Then there exists an infinite subset D of $(0, \infty)$ such that $f^n \upharpoonright D$ is constant. Since D is infinite and $f \upharpoonright (0, \infty)$ is finite-to-1, f(D) is infinite. By (3), we have $f(D) \subseteq (0, \infty)$. By the definition of n, $f^{n-1} \upharpoonright (0, \infty)$ is finite-to-1. Hence, $f^{n-1}(f(D))$ is infinite, which contradicts that $f^n \upharpoonright D$ is constant. This completes the proof of (4).

By (2), f is continuous on $(0, \infty)$. To show that f is continuous on \mathbb{R} , assume, to the contrary, that f is discontinuous at a real number $a \leq 0$. By (1), f(a) > 0. Then, by Proposition 1 and by (**) in the proof of the second part of Theorem 1, there exist $\epsilon > 0$ and a positive integer i such that $f^i(y)$ is same for infinitely many values of y in $(f(a) - \epsilon, f(a) + \epsilon)$. Without loss of generality, we may assume that $\epsilon < f(a)$. Then $(f(a) - \epsilon, f(a) + \epsilon) \subseteq (0, \infty)$, and $f^i(0, \infty)$ is not finite-to-1. This contradicts (4). Thus, f is continuous on \mathbb{R} .

Example 2. There exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ taking a constant value k on some non-empty open interval I with $k \notin I$ and a discontinuous Darboux function f such that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq 3$.

CONSTRUCTION. Let

$$g(x) = \begin{cases} -2x - 1 & \text{for } x \le 0\\ -1 & \text{otherwise.} \end{cases}$$

Let $h: (0,1) \to (-\infty, -1)$ be a function that maps every non-empty open interval onto $(-\infty, -1)$. Such a function can be easily constructed by transfinite induction. Define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} h(x) & \text{whenever } x \in (0,1) \\ g(x) & \text{otherwise.} \end{cases}$$

For $x \in (0,1)$, f(x) < -1, $f^2(x) = f(f(x)) = -2f(x) - 1 > 1$, and $f^3(x) = f(f^2(x)) = -1 = g(x)$. By the construction, f(x) = g(x) whenever $x \notin (0,1)$. So, $f^{n_x}(x) = g(x)$ for some positive integer $n_x \leq 3$. Since f maps every interval of \mathbb{R} onto an interval, f is Darboux. Clearly, g is continuous on \mathbb{R} and f is discontinuous on (0,1).

By interchanging "Darboux" and "continuous" in the hypotheses of Theorem 1, we can now prove the following.

Proposition 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and m be a positive integer. Suppose g is a Darboux function that is non-constant on every non-empty open interval and, for every real number x, there exists a positive integer n_x such that $n_x \leq m$ and $f^{n_x}(x) = g(x)$. Then g is continuous.

PROOF. Assume, to the contrary, that g is discontinuous at a real number a. Then, by Proposition 1, there exists $\epsilon > 0$ such that $a \in \overline{g^{-1}(y)}$ for every $y \in (g(a), \underline{g(a)} + \epsilon)$ or $a \in \overline{g^{-1}(y)}$ for every $y \in (g(a) - \epsilon, g(a))$. Consider the case $a \in \overline{g^{-1}(y)}$ for every $y \in (g(a), g(a) + \epsilon)$. The other case is similar. It is easy to see that $g^{-1}(y) \subseteq \bigcup_{1 \le n \le m} (f^n)^{-1}(y)$. Since

$$a \in \overline{g^{-1}(y)} \subseteq \overline{\bigcup_{1 \le n \le m} (f^n)^{-1}(y)} = \bigcup_{1 \le n \le m} \overline{(f^n)^{-1}(y)} = \bigcup_{1 \le n \le m} (f^n)^{-1}(y)$$

for each $y \in (g(a), g(a) + \epsilon)$, we have $f^n(a) = y$ for some $n \leq m$. This is impossible because the set $\{f^n(a) : 1 \leq n \leq m\}$ is finite. \Box

The following example shows that the hypothesis " $n_x \leq m$ " is necessary in the statement of the above theorem.

Example 3. There exist a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a discontinuous Darboux function $g : \mathbb{R} \to \mathbb{R}$ that is non-constant on every non-empty open interval such that, for every real number x, $f^{n_x}(x) = g(x)$ for some positive integer n_x .

CONSTRUCTION. Let $f(x) = |\frac{\sin(\frac{1}{x})}{2}|^{2^n}$ for $x \in [-\frac{1}{n\pi}, -\frac{1}{(n+1)\pi})$, where $n \in \mathbb{N}$,

$$f(x) = \begin{cases} \sqrt{x} & \text{for } x \ge 0\\ x + \frac{1}{\pi} & \text{otherwise.} \end{cases} \qquad g(x) = \begin{cases} \frac{\sin^2(\frac{1}{x})}{4} & \text{for } x \in [-\frac{1}{\pi}, 0)\\ f(x) & \text{otherwise.} \end{cases}$$

Then it is easy to see that $f^n(x) = g(x)$ for $x \in \left[-\frac{1}{n\pi}, -\frac{1}{(n+1)\pi}\right)$ and $n \in \mathbb{N}$. Clearly, f is continuous on \mathbb{R} , g is Darboux, and for every real number x, there exists a positive integer n_x such that $f^{n_x}(x) = g(x)$, but g is discontinuous at 0.

References

- [1] K. Ciesielski, Set Theory for the Working Mathematician, Cambridge Univ. Press, Cambridge, 1997.
- [2] K. Ciesielski, R. G. Gibson, T. Natkaniec, κ-to-1 Darboux-like function, Real Anal. Exchange, 23(2) (1997/98), 671–687.
- [3] R. Kellum, Compositions of Darboux-like functions, Real Anal. Exchange, 23(1) (1997/98), 211–216.
- [4] K. Muthuvel, Composition of functions, Int. J. Math. Math. Sci., 24(3) (2000), 213–216.
- [5] K. Muthuvel, A note on iterations of Darboux functions, Int. J. Pure Appl. Math., 32(1) (2006), 61–63.
- [6] T. Natkaniec, On iterations of Darboux functions, Real Anal. Exchange, 20(1) (1994/95), 350–355.

Kandasamy Muthuvel

596