Kandasamy Muthuvel, Department of Mathematics, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin 54901-8601, USA.
email: muthuvel@uwosh.edu

CONTINUITY OF DARBOUX FUNCTIONS WITH NICE FINITE ITERATIONS

Abstract

A function that maps intervals into intervals is called a Darboux function. We prove that if g is a continuous function that is non-constant on every non-empty open interval, and f is a Darboux function such that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer n_{x}, and the set of all such n_{x} is bounded, then f is continuous. In the above statement, the hypothesis "the set of all such n_{x} is bounded" cannot be dropped. We also show that if g is a continuous function that takes a constant value k on some non-empty open interval I and $k \in I$, then there exists a discontinuous Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq 2$. In the previous statement, if $k \notin I$, then no conclusion can be drawn about the function f.

1 Introduction.

It is shown in [4] that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a surjective Darboux function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $g \circ f$ is continuous, then g is continuous. It is also shown that "continuous" and "Darboux" can be interchanged in the above statement. A special case of the above result is that if the $n^{\text {th }}$ iterate of a surjective Darboux function f is continuous for some positive integer n, then f is continuous. If f is a Darboux function and every real number is a periodic point (that is, $f^{n_{x}}(x)=x$), then $f^{2}(x)=x$ for all x, and f is continuous (see [6]). It is natural to ask if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Darboux function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a

[^0]continuous function such that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer n_{x}, what can be said about the function f ? In [5], we showed that there exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is non-constant on every non-empty open interval and a discontinuous Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer n_{x}. In this paper, we prove that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that is nonconstant on every non-empty open interval, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Darboux function, and m is a positive integer such that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq m$, then f is continuous. We also show that if "continuous" and "Darboux" are interchanged in the hypotheses of the above statement, then g is continuous. In the above statements, g is non-constant on every non-empty open interval cannot be dropped.

Definition 1. A real-valued function f on the set of all real numbers is called a Darboux function if a and b are real numbers and $f(a) \neq f(b)$, then for any real number y between $f(a)$ and $f(b)$, there exists a real number x between a and b such that $y=f(x)$; that is, the image of every interval is an interval.

It is well-known that every continuous function on \mathbb{R} is Darboux. However, not every Darboux function is continuous [1]. Recall that a function f is an n-to-1 (respectively, finite-to-1) function if $\left|f^{-1}(y)\right|=n$ (respectively, $f^{-1}(y)$ is finite) for every real number y in the range of f. It is proved in [2] that a continuous n-to- 1 function from \mathbb{R} into \mathbb{R} exists if and only if n is an odd integer. A classical result states that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Darboux and $f^{-1}(y)$ is a closed set for every real number y, then f is continuous. This implies that any n-to- 1 Darboux function is continuous.

2 Theorems and Examples.

The following simple proposition is used repeatedly in this paper.
Proposition 1. The following conditions are equivalent for a Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$.
(i) f is discontinuous at a real number a.
(ii) There exists a positive real number ϵ such that $a \in \overline{f^{-1}(y)}$ for every $y \in(f(a), f(a)+\epsilon)$ or $a \in \overline{f^{-1}(y)}$ for every $y \in(f(a)-\epsilon, f(a))$.

Corollary 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Darboux function. If $f^{-1}(y)$ is a closed set for every y in an everywhere dense subset of \mathbb{R}, then f is continuous. In particular, a finite-to-1 Darboux function is continuous.

Corollary 2. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is a finite-to-1 function, $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Darboux function, and m is a positive integer such that, for every real number x, there exists some positive integer $n_{x} \leq m$ with the property that $f^{n_{x}}(x)=g(x)$, then f is continuous. In particular, if the $n^{\text {th }}$ iterate of a Darboux function is a non-constant polynomial function for some positive integer n, then the Darboux function is continuous.

Proof. First, we prove that $\forall y \in \mathbb{R}, f^{-1}(y)$ is finite. Assume, to the contrary, that $f^{-1}(y)$ is infinite. For $x \in f^{-1}(y)$, let n_{x} be a positive integer such that $n_{x} \leq m$ and $f^{n_{x}}(x)=g(x)$. Consequently, for infinitely many values of x in $f^{-1}(y), n_{x}$ is same and $g(x)$ is same. This contradicts that g is finite-to- 1 . So, $f^{-1}(y)$ is finite, and the result follows from Corollary 1.

Proposition 2 ([4], Theorem 1). Let f and g be real-valued functions on the reals, and let f be surjective.
(i) If $g \circ f$, the composition of g with f, is continuous and f is Darboux, then g is continuous.
(ii) If $g \circ f$ is Darboux and f is continuous, then g is Darboux.

Corollary 3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a surjective Darboux function and f^{n} is continuous for some positive integer n, then f is continuous.

Note that Corollary 3 is not true if the condition "surjective" is dropped. For, let $f(x)=\left|\sin \left(\frac{1}{x}\right)\right|$ whenever $x<0$, and $f(x)=1$ otherwise. Then f is Darboux and $f^{2}(x)=1$ for all x, but f is discontinuous at 0 . However, we prove the following theorem, which directly implies that, in Corollary 3 , "surjective Darboux function" can be replaced by "Darboux function that is non-constant on every non-empty open interval."

Theorem 1. Let g be a continuous function that is non-constant on every non-empty open interval. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Darboux function and m is a positive integer such that, for every real number x, there exists a positive integer $n_{x} \leq m$ with the property that $f^{n_{x}}(x)=g(x)$, then
(i) for every $1 \leq n \leq m$, the restriction $f^{n} \upharpoonright D$ of f^{n} is non-constant on every somewhere dense set D,
(ii) f is continuous,
(iii) g has a fixed point if and only if f has a fixed point.

Proof of (i). To prove, let us assume the opposite, that is, that p is the smallest positive integer such that $f^{p} \upharpoonright D$ is constant for some somewhere dense set D. For each $1 \leq n \leq m$, let $D_{n}=\left\{d \in D: f^{n}(d)=g(d)\right\}$. First, we prove that D_{n} is nowhere dense for every integer n with $p \leq n \leq m$. For, since $f^{p} \upharpoonright D$ is constant and $n \geq p, f^{n} \upharpoonright D$ is constant. $g \upharpoonright D_{n}$ is constant because $f^{n} \upharpoonright D$ is constant, $D_{n} \subseteq D$, and $g \upharpoonright D_{n}=f^{n} \upharpoonright D_{n}$. Since g is continuous and $g \upharpoonright D_{n}$ is constant, g is constant on $\overline{D_{n}}$. If D_{n} is somewhere dense, then $\overline{D_{n}}$ contains a non-empty open interval. Then g is constant on some non-empty open interval, which contradicts the definition of g. So, D_{n} is nowhere dense for every integer n with $p \leq n \leq m$. Note that $D=\cup_{1 \leq n \leq m} D_{n}$, where D is somewhere dense and D_{n} is nowhere dense for every integer n with $p \leq n \leq m$. Since a finite union of nowhere dense sets is nowhere dense, we have $1<p$, and D_{k} is somewhere dense for some positive integer $k<p$. We know that $g \upharpoonright D_{k}=f^{k} \upharpoonright D_{k}$. Hence, $\left(f^{p-k} \circ g\right) \upharpoonright D_{k}=f^{p} \upharpoonright D_{k}$ is constant, and D_{k} is somewhere dense. Since \bar{D}_{k} contains a non-empty open interval and g is a continuous function that is non-constant on any open interval, $g\left(\bar{D}_{k}\right)$ contains a non-empty open interval. $g\left(D_{k}\right)$ is somewhere dense because $\overline{g\left(D_{k}\right)} \supseteq g\left(\bar{D}_{k}\right)$. Denote the set $g\left(D_{k}\right)$ by S. Then, by $\left(^{*}\right), f^{p-k} \upharpoonright S$ is constant, S is somewhere dense, and $p-k$ is a positive integer smaller than p. This contradicts the choice of p. Thus, the statement (i) is true.
Proof of (ii). Let $y \in f(\mathbb{R})$. For each $x \in f^{-1}(y)$, there exists a positive integer $n \leq m$ such that $g(x)=f^{n}(x)=f^{n-1}(f(x))=f^{n-1}(y)$ (for $n=$ $1, f^{n-1}(y)$ is defined to be $\left.y\right)$. Hence, $f^{-1}(y) \subseteq \cup_{1 \leq n \leq m} g^{-1}\left(f^{n-1}(y)\right)=$ $g^{-1}\left(\left\{f^{n-1}(y): 1 \leq n \leq m\right\}\right)$. Since g is continuous and $\left\{f^{n-1}(y): 1 \leq n \leq\right.$ $m\}$ is a closed set, $g^{-1}\left(\left\{f^{n-1}(y): 1 \leq n \leq m\right\}\right)$ is a closed set. Consequently,

$$
\begin{equation*}
\overline{f^{-1}(y)} \subseteq \overline{g^{-1}\left(\left\{f^{n-1}(y): 1 \leq n \leq m\right\}\right)}=\cup_{1 \leq n \leq m} g^{-1}\left(f^{n-1}(y)\right) \tag{**}
\end{equation*}
$$

To complete the proof, assume, to the contrary, that f is discontinuous at a real number a. Then, by Proposition 1, there exists an $\epsilon>0$ such that $a \in \overline{f^{-1}(y)}$ for every $y \in(f(a), f(a)+\epsilon)$ or $a \in \overline{f^{-1}(y)}$ for every $y \in(f(a)-\epsilon, f(a))$. Consider the case $a \in \overline{f^{-1}(y)}$ for every $y \in(f(a), f(a)+\epsilon)$. The other case is similar. By $\left({ }^{* *}\right), g(a)=f^{n-1}(y)$ for some positive integer $n \leq m$. For each integer n, let $Y_{n}=\left\{y \in(f(a), f(a)+\epsilon): g(a)=f^{n-1}(y)\right\}$. Then $(f(a), f(a)+\epsilon)=\cup_{1 \leq n \leq m} Y_{n}$ and $\left|Y_{1}\right| \leq 1$. Hence, Y_{j} is somewhere dense for some integer j with $2 \leq j \leq m$, and, by the definition of $Y_{j}, f^{j-1} \upharpoonright Y_{j}$ is constant. This contradicts part (i) of the theorem. Thus, f is continuous on \mathbb{R}.
Proof of (iii). It is easy to see that every fixed point of f is a fixed point of g. Conversely, suppose that g has a fixed point. If $x<f(x)$ for all x, then $x<f(x)<f^{2}(x) \cdots<f^{n}(x)=g(x)$, which contradicts that g has a fixed
point. This shows that $a \geq f(a)$ for some real number a. Similarly, $b \leq f(b)$ for some real number b. Consequently, since f is continuous, $f(x)-x=0$ for some x. Thus, f has a fixed point.

It is worth mentioning here that, under the hypotheses of the above theorem, if g has a point of period 2 , then f has a point of period 2 . This is a consequence of famous Sarkovskii's Theorem. However, if $f(x)=-x+1$ and $g(x)=x$, then every point except $\frac{1}{2}$ is a periodic point of f with period 2 , but g has no point of period 2 .

It is interesting to compare the following corollary with Corollary 2.
Corollary 4. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Darboux function, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a countable-to-1 continuous function, and m is a positive integer such that, for every real number x, there exists some positive integer $n_{x} \leq m$ with the property that $f^{n_{x}}(x)=g(x)$, then f is continuous.

Corollary 5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Darboux function. For some positive integer n, if f^{n} is continuous and non-constant on any non-empty interval, then f is continuous. In particular, if the $n^{\text {th }}$ iterate of a Darboux function is a polynomial, sine, or cosine function, then the Darboux function is continuous.

The following theorem shows that in Theorem 1 if the condition " g is nonconstant on every non-empty open interval" is dropped, then the function f need not be continuous.

Theorem 2. Let g be a continuous function that takes a constant value k on some non-empty open interval I and $k \in I$. Then there exists a discontinuous Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ with the property that for every real number x, $f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq 2$.

Proof. Choose a and b in I such that $a<k<b$. Pick an interval (p, q) containing k such that $(p, q) \subseteq(a, b)$. Let c be a real number in the interval (a, p). Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows. For $x \in(a, c]$, let $f(x)=k+\epsilon \sin \left(\frac{1}{x-a}\right)$, where $\epsilon=\frac{1}{2} \min \{k-p, q-k\}$. For $x \in(c, p)$, let the graph of f be the line segment joining the points $(c, f(c))$ and (p, k); i.e., $f(x)=\frac{k-f(c)}{p-c}(x-c)+f(c)$. For $x \notin(a, p)$, let $f(x)=g(x)$. Clearly, f is continuous at all points except the point a. It is easy to see that f maps intervals into intervals, and hence, f is Darboux. For $x \in(a, c], f(x) \in[k-\epsilon, k+\epsilon] \subseteq(k-2 \epsilon, k+2 \epsilon) \subseteq(p, q)$. Since the graph of f over the interval (c, p) is the line segment joining the points $(c, f(c))$ and (p, k), and both $f(c)$ and k belong to (p, q), we have $f(x) \in(p, q)$ for $x \in(c, p)$. Consequently, for $x \in(a, p), f(x) \in(p, q)$. Note
that $(p, q) \cap(a, p)=\varnothing, f=g$ on $\mathbb{R} \backslash(a, p)$, and $f((p, q))=g((p, q))=\{k\}$. This implies that, for $x \in(a, p), f^{2}(x)=k=g(x)$. Thus, for every $x, f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq 2$, but f is discontinuous at a.

The following two examples show that in Theorem 2, if $k \notin I$, then no conclusion can be drawn about the function f.

Example 1. There exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ taking a constant value k on some non-empty open interval I with $k \notin I$ and a positive integer m such that if f is a Darboux function with the property that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq m$, then f is continuous.

Construction. Let

$$
g(x)= \begin{cases}x+1 & \text { whenever } x \geq 0 \\ 1 & \text { otherwise }\end{cases}
$$

First, we prove the following results.
(1) $f(x)>0$ for all $x \leq 0$.
(2) $f \upharpoonright(0, \infty)$ is finite-to- 1 , and f is continuous at every real number $x>0$.
(3) $f(x)>x>0$ for all $x>0$.
(4) For every positive integer $n, f^{n} \upharpoonright(0, \infty)$ is finite-to- 1 .

Proof of (1). For each $x \leq 0$, there exists a positive integer $n_{x} \leq m$ such that $f^{n_{x}}(x)=g(x)=1$. Let $n=\max \left\{n_{x}: x \leq 0\right\}$. Then $f^{n}(a)=1$ for some $a \leq 0$, and $\left\{f^{n}(x): x \leq 0\right\} \subseteq\left\{1, f^{n-1}(1), f^{n-2}(1), \ldots, f(1)\right\}$. Since any Darboux function maps every interval onto an interval, f^{n} is Darboux, and $f^{n}(x)=1$ for some $x \leq 0 ; f^{n}$ takes the constant value 1 on the interval $(-\infty, 0]$. To prove (1), assume, to the contrary, that $f(c) \leq 0$ for some $c \leq 0$. Denote $f(c)$ by b. Then $f^{n-1}(b)=f^{n-1}(f(c))=f^{n}(c)=1$. Hence, $f^{n}(b)=$ $f(1)$. Because $b \leq 0, f^{n}(b)=1$. Consequently, $f(1)=1$. So, 1 is a fixed point of both f and g. By the construction, g has no fixed point. Thus, $f(x)>0$ for all $x \leq 0$.
Proof of (2). Suppose that $f \upharpoonright(0, \infty)$ is not finite-to- 1 . Then, for some infinite subset D of $(0, \infty), f \upharpoonright D$ is constant. Hence, there exists a positive integer $n \leq m$ such that $g(d)=f^{n}(d)$ for all d in some infinite subset D_{1} of D.

This implies that $g \upharpoonright D_{1}$ is constant, which contradicts that $g \upharpoonright(0, \infty)$ is one-to-one. Thus, $f \upharpoonright(0, \infty)$ is finite-to- 1 , and, by Proposition 1, f is continuous at every real number $x>0$.
Proof of (3). Note that every fixed point of f is a fixed point of g. Since g has no fixed point and f is continuous on $(0, \infty)$, either $f(x)>x$ for all $x>0$ or $f(x)<x$ for all $x>0$. By (1), $f(0)>0$. If $f(x)<x$ for all $x>0$, then $f\left(\left(0, \frac{f(0)}{2}\right)\right) \subseteq\left(-\infty, \frac{f(0)}{2}\right)$ and $f(0) \notin\left(-\infty, \frac{f(0)}{2}\right]$. Hence, $f\left(\left[0, \frac{f(0)}{2}\right)\right)$ is not an interval. This contradicts that f is Darboux. Thus, $f(x)>x>0$ for all $x>0$.
Proof of (4). Suppose not. Let n be the smallest positive integer such that $f^{n} \upharpoonright(0, \infty)$ is not finite-to-1. Then there exists an infinite subset D of $(0, \infty)$ such that $f^{n} \upharpoonright D$ is constant. Since D is infinite and $f \upharpoonright(0, \infty)$ is finite-to- 1 , $f(D)$ is infinite. By (3), we have $f(D) \subseteq(0, \infty)$. By the definition of n, $f^{n-1} \upharpoonright(0, \infty)$ is finite-to-1. Hence, $f^{n-1}(f(D))$ is infinite, which contradicts that $f^{n} \upharpoonright D$ is constant. This completes the proof of (4).

By (2), f is continuous on $(0, \infty)$. To show that f is continuous on \mathbb{R}, assume, to the contrary, that f is discontinuous at a real number $a \leq 0$. By $(1), f(a)>0$. Then, by Proposition 1 and by $\left({ }^{* *}\right)$ in the proof of the second part of Theorem 1, there exist $\epsilon>0$ and a positive integer i such that $f^{i}(y)$ is same for infinitely many values of y in $(f(a)-\epsilon, f(a)+\epsilon)$. Without loss of generality, we may assume that $\epsilon<f(a)$. Then $(f(a)-\epsilon, f(a)+\epsilon) \subseteq(0, \infty)$, and $f^{i}(0, \infty)$ is not finite-to- 1 . This contradicts (4). Thus, f is continuous on \mathbb{R}.

Example 2. There exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ taking a constant value k on some non-empty open interval I with $k \notin I$ and a discontinuous Darboux function f such that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq 3$.

Construction. Let

$$
g(x)= \begin{cases}-2 x-1 & \text { for } x \leq 0 \\ -1 & \text { otherwise }\end{cases}
$$

Let $h:(0,1) \rightarrow(-\infty,-1)$ be a function that maps every non-empty open interval onto $(-\infty,-1)$. Such a function can be easily constructed by transfinite induction. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}h(x) & \text { whenever } x \in(0,1) \\ g(x) & \text { otherwise }\end{cases}
$$

For $x \in(0,1), f(x)<-1, f^{2}(x)=f(f(x))=-2 f(x)-1>1$, and $f^{3}(x)=$ $f\left(f^{2}(x)\right)=-1=g(x)$. By the construction, $f(x)=g(x)$ whenever $x \notin(0,1)$. So, $f^{n_{x}}(x)=g(x)$ for some positive integer $n_{x} \leq 3$. Since f maps every interval of \mathbb{R} onto an interval, f is Darboux. Clearly, g is continuous on \mathbb{R} and f is discontinuous on $(0,1)$.

By interchanging "Darboux" and "continuous" in the hypotheses of Theorem 1, we can now prove the following.

Proposition 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and m be a positive integer. Suppose g is a Darboux function that is non-constant on every nonempty open interval and, for every real number x, there exists a positive integer n_{x} such that $n_{x} \leq m$ and $f^{n_{x}}(x)=g(x)$. Then g is continuous.

Proof. Assume, to the contrary, that g is discontinuous at a real number a. Then, by Proposition 1, there exists $\epsilon>0$ such that $a \in \overline{g^{-1}(y)}$ for every $y \in(g(a), g(a)+\epsilon)$ or $a \in \overline{g^{-1}(y)}$ for every $y \in(g(a)-\epsilon, g(a))$. Consider the case $a \in \overline{g^{-1}(y)}$ for every $y \in(g(a), g(a)+\epsilon)$. The other case is similar. It is easy to see that $g^{-1}(y) \subseteq \cup_{1 \leq n \leq m}\left(f^{n}\right)^{-1}(y)$. Since

$$
a \in \overline{g^{-1}(y)} \subseteq \overline{\cup_{1 \leq n \leq m}\left(f^{n}\right)^{-1}(y)}=\cup_{1 \leq n \leq m} \overline{\left(f^{n}\right)^{-1}(y)}=\cup_{1 \leq n \leq m}\left(f^{n}\right)^{-1}(y)
$$

for each $y \in(g(a), g(a)+\epsilon)$, we have $f^{n}(a)=y$ for some $n \leq m$. This is impossible because the set $\left\{f^{n}(a): 1 \leq n \leq m\right\}$ is finite.

The following example shows that the hypothesis " $n_{x} \leq m$ " is necessary in the statement of the above theorem.

Example 3. There exist a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a discontinuous Darboux function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is non-constant on every non-empty open interval such that, for every real number $x, f^{n_{x}}(x)=g(x)$ for some positive integer n_{x}.

Construction. Let $f(x)=\left|\frac{\sin \left(\frac{1}{x}\right)}{2}\right|^{2^{n}}$ for $x \in\left[-\frac{1}{n \pi},-\frac{1}{(n+1) \pi}\right)$, where $n \in \mathbb{N}$,

$$
f(x)=\left\{\begin{array}{ll}
\sqrt{x} & \text { for } x \geq 0 \\
x+\frac{1}{\pi} & \text { otherwise } .
\end{array} \quad g(x)= \begin{cases}\frac{\sin ^{2}\left(\frac{1}{x}\right)}{4} & \text { for } x \in\left[-\frac{1}{\pi}, 0\right) \\
f(x) & \text { otherwise }\end{cases}\right.
$$

Then it is easy to see that $f^{n}(x)=g(x)$ for $x \in\left[-\frac{1}{n \pi},-\frac{1}{(n+1) \pi}\right)$ and $n \in \mathbb{N}$. Clearly, f is continuous on \mathbb{R}, g is Darboux, and for every real number x, there exists a positive integer n_{x} such that $f^{n_{x}}(x)=g(x)$, but g is discontinuous at 0.

References

[1] K. Ciesielski, Set Theory for the Working Mathematician, Cambridge Univ. Press, Cambridge, 1997.
[2] K. Ciesielski, R. G. Gibson, T. Natkaniec, κ-to-1 Darboux-like function, Real Anal. Exchange, 23(2) (1997/98), 671-687.
[3] R. Kellum, Compositions of Darboux-like functions, Real Anal. Exchange, 23(1) (1997/98), 211-216.
[4] K. Muthuvel, Composition of functions, Int. J. Math. Math. Sci., 24(3) (2000), 213-216.
[5] K. Muthuvel, A note on iterations of Darboux functions, Int. J. Pure Appl. Math., 32(1) (2006), 61-63.
[6] T. Natkaniec, On iterations of Darboux functions, Real Anal. Exchange, 20(1) (1994/95), 350-355.

Kandasamy Muthuvel

[^0]: Key Words: Darboux functions, n-to-1 functions, continuous functions.
 Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54C30
 Received by the editors January 15, 2007
 Communicated by: Krzysztof Chris Ciesielski

