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ABSOLUTELY CONTINUOUS FUNCTIONS
WITH VALUES IN A METRIC SPACE

Abstract

We present a general theory of absolutely continuous paths with val-
ues in metric spaces using the notion of metric derivatives. Among other
results, we prove analogues of the Banach-Zarecki and Vallée Poussin
theorems.

1 Introduction.

In a nice expository article, Varberg [16] outlined an elegant approach towards
the theory of real-valued absolutely continuous functions. In the present note,
we will be interested in maps f : [a, b] → (M,ρ), where (M,ρ) is a metric
space. We will see that a significant part of the theory carries over to this
(very general) situation. As we have the following:

every metric space (M,ρ) can be embedded
into a suitable Banach space `∞(Γ) for some Γ

(1.1)

(see e.g. [4, Lemma 1.1]), we could without any loss of generality work with
Banach spaces only.

The main obstacle in dealing with metric spaces (or arbitrary Banach
spaces) is the absence of the Radon-Nikodým property and the resulting non-
existence of derivatives. Thus, instead of the “usual” derivative, we have to
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employ the notion of a “metric derivative” (which was introduced by Kirch-
heim in [10]; see also [1, 5, 11]). We will need some results about this notion
from [6]. Recently, there has been a lot of progress in analysis in metric spaces
using these notions of metric derivatives; see e.g. [3] for a survey about rec-
tifiability in this context, [2] for analysis of currents in metric spaces, and
others.

Let (M,ρ) be a metric space, and let f : [a, b]→ (M,ρ). We say that f is
absolutely continuous, provided for each ε > 0, there exists a δ > 0 such that
whenever [a1, b1], . . . , [ak, bk] is a sequence of non-overlapping intervals in [a, b]
with

∑k
i=1(bi − ai) < δ, then

k∑
i=1

ρ
(
f(bi), f(ai)

)
< ε.

It easily follows that absolutely continuous functions are continuous.
This paper is organized in the following way. In the second section, we

present the basic definitions and establish some auxiliary results. In the third
section, we present the theory of absolutely continuous functions with values
in metric spaces. For example, we prove a version of the Banach-Zarecki theo-
rem in this context; see Theorem 3.5 (which was recently proved by L. Zaj́ıček
and the author in [8]). The current proof is different from the one in [8]; it
does not use the theorem of Luzin, but rather a generalization of ideas due to
Varberg [16]. Among other results, we also show a version of Vallée Poussin’s
theorem (see Theorem 3.16) which characterizes the situation when a compo-
sition of two absolutely continuous functions is again absolutely continuous.

2 Preliminary Results.

By m we will denote the Lebesgue measure on R. For each function f : [a, b]→
(M,ρ), and for x ∈ [a, b], we can define the variation

vf (x) =
x∨
a

f = sup
D

n(D)−1∑
i=0

ρ(f(xi), f(xi+1)),

where the supremum is taken over all partitions D of [a, x] (D is a partition of
[a, x] provided D = {a = x0 < x1 < · · · < xn = b}, and n = n(D) = #D − 1).
We say that f has bounded variation, provided

∨b
a f < ∞. It is easy to see

that every absolutely continuous function has bounded variation.
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We will need the notion of the “metric derivative.” Let f : [a, b]→ (M,ρ).
For x ∈ [a, b], we define

md(f, x) := lim
t→0

x+t∈[a,b]

ρ
(
f(x+ t), f(x)

)
|t|

.

Following [10], we say that f is metrically differentiable at x, provided md(f, x)
exists and

ρ(f(y), f(z))−md(f, x)|y − z| = o(|x− y|+ |x− z|), when (y, z)→ (x, x).

The following is an easy consequence of [6, Theorem 2.6]:

Theorem 2.1. Let f : [a, b]→ (M,ρ) be arbitrary. Then the following hold.

(i) If S(f) := {x ∈ [a, b] : lim supt→0 |t|−1ρ(f(x+ t), f(x)) <∞}, then there
is N ⊂ [a, b] with m(N) = 0 such that f is metrically differentiable at
all x ∈ S(f) \N .

(ii) If f has bounded variation, then f is metrically differentiable at almost
all x ∈ [a, b].

Proof. Part (i) is just a restatement of [6, Theorem 2.6]. To prove part (ii),
note that vf is differentiable almost everywhere in [a, b]. We easily see that at
each such point we have lim supt→0 |t|−1ρ(f(x+ t), f(x)) <∞. Thus, part (i)
implies that f is metrically differentiable at almost each x ∈ [a, b].

We will need the following simple lemma.

Lemma 2.2. Let (M,ρ) be a metric space, f : [c, d] → M , g : [a, b] → [c, d],
x ∈ [a, b] be such that g′(x) 6= 0 and md(f ◦ g, x) exists. Then md(f, g(x))
exists.

Proof. Denote η = g′(x). By the differentiability of g at x, we have

g(x+ h)− g(x)− η h = o(h), when h→ 0.

Thus, we can choose δ > 0 such that g(y) 6= g(x) for |x− y| < δ, and for each
|h| < δ, there exists h′ ∈ R such that g(x+ h′) = g(x) + η h. It is easy to see
that h→ 0 if and only if h′ → 0. We have

g(x+ h′) = g(x) + η h′ + o(h′) = g(x) + η h,
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and thus h/h′ → 1 when h→ 0. Now,

ρ
(
f(g(x) + η h), f(g(x))

)
η h

=
ρ
(
f(g(x+ h′)), f(g(x))

)
η h′

· h
′

h
→ md(f ◦ g, x)

η
,

when h→ 0. Thus, md(f, g(x)) exists.

Let (M,ρ) be a metric space, and A ⊂M . We define the Hausdorff measure
H1(A) as limδ→0H1

δ(A), where

H1
δ(A) := inf

{∑
diam(Ai) : A ⊂

⋃
i

Ai with diam(Ai) < δ ∀i
}
.

for δ > 0. It is well known (see e.g. [9]) that H1 is a Borel measure on M .
The following is a “metric” version of Varberg’s “Fundamental Lemma”

(see [16, p. 832]).

Lemma 2.3. Let f : [a, b]→ (M,ρ) be a function, and let E be the set of all
x ∈ [a, b] where md(f, x) exists and satisfies md(f, x) ≤ K. Then

H1(f(E)) ≤ Km∗(E), (2.1)

where m∗ is the outer Lebesgue measure.

Proof. If E is finite or denumerable, then the condition (2.1) follows trivially.
Suppose that E is not denumerable. Let ε > 0 be given, and let A be an open
subset of [a, b] such that E ⊂ A and m(A) ≤ m∗(E) + ε. Define inductively
E0 := ∅, and

Ei := {x ∈ A \ Ei−1 : B(x, 1/i) ⊂ A and
ρ(f(x+ t), f(x)) ≤ (K + ε)|t| for |t| < 1/i} for i ∈ N.

Then each Ei is Borel (see (1.1) in conjunction with e.g. [6, Lemma 2.3]). Let
Eij be such that diam(Eij) < 1/i, (Eij)j is a pairwise-disjoint collection of
Borel sets for each i, and

⋃
j Eij = Ei. Note that E ⊂

⋃
iEi. We see that

f |Eij
is (K + ε)-Lipschitz. It easily follows (see [9, Theorem 2.10.11]) that

H1(f(Eij)) ≤ (K + ε)m(Eij),

and thus

H1(f(E)) ≤ H1

(
f
(⋃
i,j

Eij

))
≤ (K + ε)

∑
i,j

m(Eij)

≤ (K + ε)m(A) ≤ (K + ε) (m∗(E) + ε).

To obtain (2.1), send ε→ 0.
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We have the following metric analogue of [16, Theorem 1].

Theorem 2.4. Let f : [a, b]→ (M,ρ) be arbitrary, and let E be any measur-
able set on which md(f, ·) is finite. Then

H1(f(E)) ≤
∫
E

md(f, x) dx. (2.2)

Proof. Using Lemma 2.3, the proof is similar to the proof of [16, Theorem 1].
Here are the details. First suppose that md(f, x) < B for some B ∈ N on E.
Let

Enk = {x ∈ E : k − 1 ≤ 2n ·md(f, x) < k}, k = 1, . . . , B2n, n = 1, . . . .

Then, for each n ∈ N, we have

H1(f(E)) = H1

(
f
(⋃

k

Enk

))
= H1

(⋃
k

f(Enk)
)
≤
∑
k

H1(f(Enk))

≤
∑
k

k

2n
m(Enk) =

∑
k

k − 1
2n

m(Enk) +
1
2n
∑
k

m(Enk),

where the second inequality follows from Lemma 2.3. Therefore,

H1(f(E)) ≤ lim
n→∞

[∑
k

k − 1
2n

m(Enk) +
1
2n
∑
k

m(Enk)
]

=
∫
E

md(f, x) dx.

Now, if md(f, x) is not bounded on E, then let

Ak = {x ∈ E : k − 1 ≤ md(f, x) < k}, k = 1, . . . ,

H1(f(E)) = H1

(
f
(⋃

k

Ak

))
= H1

(⋃
k

f(Ak)
)
≤
∑
k

H1(f(Ak))

≤
∑
k

∫
Ak

md(f, x) dx =
∫
E

md(f, x) dx.
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3 Absolutely Continuous Functions.

We say that f : [a, b]→ (M,ρ) has (Luzin’s) property (N) provided

H1(f(B)) = 0 whenever B ⊂ [0, 1] with m(B) = 0. (3.1)

The proof of the following theorem is standard (see e.g. [15] and the proof
of Theorem in [8]).

Theorem 3.1. Let f : [a, b] → (M,ρ) be absolutely continuous. Then f has
the property (N).

The previous theorem has the following corollary.

Corollary 3.2. An absolutely continuous function f : [a, b] → (M,ρ) maps
measurable subsets of [a, b] onto H1-measurable subsets of M .

We will need the following theorem (see [16, Theorem 14] for the real-valued
case).

Theorem 3.3. Let f : [a, b] → (M,ρ) be continuous and has bounded varia-
tion. Then md(f, ·) exists almost everywhere in [a, b], is integrable, and∫ b

a

md(f, x) dx ≤
b∨
a

f. (3.2)

Further, if f has the property (N), then the equality holds.

Proof. Denote A = [a, b]. Theorem 2.1 (ii) implies that md(f, ·) exists for
all x ∈ A \ N with m(N) = 0. The area formula [6, Theorem 2.12] together
with [9, Theorem 2.10.13] implies that

b∨
a

f =
∫
N(f |A, y) dH1y ≥

∫
f(A\N)

N(f |A, y) dH1y =
∫
A\N

md(f, x) dx,

(3.3)
and thus (3.2) holds. Here, N(f |A, y) is the number of x ∈ A such that
f(x) = y.

If f has property (N), then clearly H1(f(N)) = 0, and we get equality
instead of an inequality in (3.2). To see that, we have (again using [6, Theo-
rem 2.12] together with [9, Theorem 2.10.13])

b∨
a

f =
∫
N(f |A, y) dH1y =

∫
f(A)\f(N)

N(f |A, y) dH1y

≤
∫
N(f |A\N , y) dH1y =

∫
A\N

md(f, x) dx ≤
∫
A

md(f, x) dx.
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Remark 3.4. If f from the previous theorem is absolutely continuous, then
we have equality in (3.2) (as f has bounded variation, and it also satisfies
property (N) by Theorem 3.1). It is easy to see that f is absolutely continuous
if and only if vf is. If that is the case, then it follows that∫ d

c

md(f, x) dx = vf (d)− vf (c) =
∫ d

c

v′f (x) dx,

for each interval [c, d] ⊂ [a, b]. It is easy to see that md(f, x) ≤ v′f (x) whenever
v′f (x) and md(f, x) exist. Thus, if f is absolutely continuous, then md(f, x) =
v′f (x) almost everywhere.

The following version of the Banach-Zarecki theorem (see e.g. [13] or [16]
for the real-valued statement) was proved by L. Zaj́ıček and the author in [8]
using a result of Luzin [12] and a theorem about the Banach indicatrix function
from [9]. Here, we present a different proof, which is in the spirit of Varberg’s
approach (see [16, Theorem 3]).

Theorem 3.5. Let f : [a, b] → (M,ρ) be a function. Then f is absolutely
continuous if and only if f is continuous, has bounded variation, and has the
property (N).

Proof. If f is absolutely continuous, then a standard argument shows that
f is continuous, and f has bounded variation. Theorem 3.1 shows that f also
has the property (N).

To prove the converse, let [ai, bi], i = 1, . . . , k, be non-overlapping intervals
in [a, b], and let Ei = {x ∈ [ai, bi] : md(f, x) exists}. Since by Theorem 2.1
(ii), we have that m([ai, bi] \ Ei) = 0, and since f has the property (N), we
obtain H1

(
f(Ei)

)
= H1

(
f([ai, bi])

)
. Therefore,

k∑
i=1

ρ(f(bi), f(ai)) ≤
k∑
i=1

H1(f([ai, bi])) =
k∑
i=1

H1(f(Ei))

≤
k∑
i=1

∫
Ei

md(f, x) dx =
k∑
i=1

∫ bi

ai

md(f, x) dx,

(3.4)

where the first inequality follows from [9, Corollary 2.10.12] and the second
from Theorem 2.4. It is easy to see that the rightmost term in (3.4) goes
to 0, as

∑k
i=1(bi − ai) → 0. This last property follows from the fact that

md(f, ·) is integrable by Theorem 3.3, and from a well-known property of the
integral.
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The proofs of the next two theorems are analogous to the previous one (cf.
[16, Theorems 4, 5]).

Theorem 3.6. If f : [a, b]→ (M,ρ) is continuous, md(f, ·) exists for all but
finite or denumerable set of points, and md(f, ·) is integrable on [a, b], then f
is absolutely continuous on [a, b].

Theorem 3.7. If f : [a, b] → (M,ρ) is continuous, md(f, ·) exists almost
everywhere and is integrable on [a, b], and if f has the property (N), then f is
absolutely continuous on [a, b].

The next theorem is a consequence of Theorem 3.6; see [13, p. 266] or [16,
Theorem 6] for the real-valued version.

Theorem 3.8. If md(f, x) exists for all x ∈ [a, b], and if md(f, x) is inte-
grable, then f is absolutely continuous on [a, b].

The following theorem is an analogue of [17, Theorem 30.12].

Theorem 3.9. Let f : [a, b]→ (M,ρ) be continuous. Assume that

(i) there exists a closed and denumerable E ⊂ [a, b] such that f is absolutely
continuous on each closed interval in [a, b] \ E, and

(ii)
∫ b
a
md(f, x) dx <∞.

Then f is absolutely continuous on [a, b].

Proof. We will prove that f satisfies the assumptions of Theorem 3.7. By
Theorem 2.1 (ii), we have that md(f, x) exists almost everywhere in [a, b], and
the integrability of md(f, ·) follows from (ii). Let (ai, bi), (i ∈ I ⊂ N) be
the intervals contiguous to E in [a, b]. By Theorem 3.1 and condition (i), it
follows that f |[ai,bi] has property (N) for each i ∈ I. As E is denumerable,
we easily obtain that f has property (N). Thus, Theorem 3.7 applies, and f
is absolutely continuous on [a, b].

We have the following (see also [13, p. 246] or [16, Theorem 9]):

Theorem 3.10. Let f : [a, b]→ (M,ρ) be an absolutely continuous function,
and md(f, x) = 0 almost everywhere on [a, b]. Then f is a constant function.

Proof. Theorem 3.3 implies that
∨b
a f = 0. The only functions with zero

variation are the constant ones.
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The following theorem is an analogue of [16, Theorem 13].

Theorem 3.11. Let f : [a, b]→ (M,ρ) be one-to-one and have bounded vari-
ation, let A be any measurable set, and let E be the set of all x ∈ A where
md(f, x) exists. Then∫

A

md(f, x) dx = H1(f(E)) ≤ H1(f(A)). (3.5)

The equality holds provided f is absolutely continuous.

Proof. By (1.1), we can assume that M is a Banach space. First, assume
that f is absolutely continuous. Then [6, Theorem 2.12] shows that∫

A

md(f, x) dx =
∫
E

md(f, x) dx =
∫
N(f |E , y) dH1y

= H1(f(E)) = H1(f(A)),

as m(A\E) = 0 by Theorem 2.1 (ii), and f has property (N) by Theorem 3.1.
Now, we will prove the equality from (3.5) for f , which are one-to-one with

bounded variation (note that the inequality in (3.5) holds trivially). Define

A′n := {x ∈ E : ρ(f(x+ t), f(x)) ≤ n|t| for |t| < 1/n},

and An := A′n \j<n A′j . Then each An is measurable (see e.g. [6, Lemma 2.3]
together with (1.1)) and A =

⋃
nAn. Further, write An =

⋃
k Ank so that

(Ank)k is a pairwise-disjoint sequence of measurable sets with diam(Ank) <
1/n for each k. Now extend each f |Ank

(which is n-Lipschitz by the definition
of Ank) to an n-Lipschitz function on [a, b] (first extend f |Ank

to Ank by
continuity, and then linearly and continuously on the intervals contiguous
to Ank; it is easy to see that the resulting function is n-Lipschitz); call the
extensions fnk. Then∫

A

md(f, x) dx =
∑
n,k

∫
Ank

md(fnk, x) dx =
∑
n,k

H1(fnk(Ank))

= H1

(⋃
n,k

f(Ank)
)

= H1(f(E)),

where the first equality follows from the fact that almost all points of Ank are
points of density, and md(f, x) = md(fnk, x) at all such points (see e.g. [6,
Lemma 2.1]). The second equality follows by the previous paragraph. The
third equality follows from the fact that f is one-to-one.
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For the real-valued version of the following theorem, see [16, Theorem 15].

Theorem 3.12. If f : [a, b] → (M,ρ) has bounded variation, and A is a
measurable subset of [a, b], then m∗(vf (A)) ≥

∫
A
md(f, x) dx. The equality

holds if f is absolutely continuous.

Proof. Let E be the subset of A where md(f, x) exists. Thus,

m∗(vf (A)) ≥ m∗(vf (E)) =
∫
E

v′f (x) dx

≥
∫
E

md(f, x) dx =
∫
A

md(f, x) dx,
(3.6)

where the first equality follows from [16, Theorem 13], and the second inequal-
ity from the fact that |vf (y)− vf (x)| ≥ ρ(f(y), f(x)) for all x, y ∈ [a, b]. Note
that we can write equalities instead of inequalities in (3.6) provided f is ab-
solutely continuous (as in that case Remark 3.4 implies that vf is absolutely
continuous, and that md(f, x) = v′f (x) for almost every x ∈ [a, b]).

Note that applying Lemma 2.3 with K = 0 yields the following version of
Sard’s theorem (cf. [7, Lemma 2.2]).

Theorem 3.13. Let f : [a, b] → (M,ρ) and E = {x ∈ [a, b] : md(f, x) = 0}.
Then H1(f(E)) = 0.

The following is an analogue of [16, Theorem 18].

Theorem 3.14. Let f : [a, b] → (M,ρ) be continuous and of bounded varia-
tion. Let N be any set such that H1(f(N)) = 0. Then, m(vf (N)) = 0.

Proof. Denote A = [a, b], and let ε > 0. Let K be a compact subset of f(A)
such that K ∩ f(N) = ∅ and∫

K

N(f |A, y) dH1y ≥
∫
N(f |A, y) dH1y − ε;

existence of such a set K follows from the regularity of H1 (see e.g. [9,
§2.10.48]). Then H = f−1(K) satisfies H ∩ N = ∅, and vf (H) ∩ vf (N) is
at most denumerable. Now by [9, Theorem 2.10.13], we have

b∨
a

f =
∫
N(f |A, y) dH1y,
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and thus

m∗(vf (H)) ≥
∫
H

md(f, x) dx =
∫
N(f |H , y) dH1y

=
∫
K

N(f |A, y) dH1y ≥
∫
N(f |A, y) dH1y − ε

=
b∨
a

f − ε,

where the first inequality follows from Theorem 3.12, and the first equality
from [6, Theorem 2.12]. It follows that m∗(vf (N)) ≤ ε, and as ε > 0 was
arbitrary, we have that m(vf (N)) = 0.

The following is an analogue of [16, Theorem 19].

Theorem 3.15. Let f : [a, b]→ (M,ρ) be continuous, have bounded variation,
and let E be a measurable set for which H1(f(E)) = 0. Then, md(f, x) = 0
for almost all x ∈ E.

Proof. We have ∫
E

md(f, x) ≤ m(vf (E)) ≤ 0,

where the first inequality follows from Theorem 3.12, and the second from
Theorem 3.14.

The following theorem was established by Vallée Poussin [14] for real valued
functions.

Theorem 3.16. Let (M,ρ) be a metric space and f : [c, d]→M , g : [a, b]→
[c, d] be absolutely continuous functions. Then, f ◦ g is absolutely continuous
if and only if md(f, g(x)) · g′(x) is integrable.

Remark 3.17. The expression h(x) = md(f, g(x)) ·g′(x) is interpreted in the
following sense (usual in the measure-theory): h(x) = 0 provided g′(x) = 0
(even when md(f, g(x)) does not exist).

Proof. Suppose that f◦g is absolutely continuous. Then Theorem 3.3 implies
that md(f ◦ g, x) is integrable. Let A be the set of all points x of [a, b] where
g(x) 6= 0 and md(f ◦ g, x) exists. Lemma 2.2 shows that for every x ∈ A,
the metric derivative md(f, g(x)) exists. Thus, if x ∈ A, then we have that
md(f ◦ g, x) = md(f, g(x)) · g′(x) by a chain rule for metric derivatives (see
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e.g. [7, Lemma 2.4 (ii)]). Let N := {x ∈ [a, b] : g′(x) = 0}. Then m([a, b] \
(A ∪N)) = 0 (by Theorem 2.1 (ii)), and thus md(f, g(x)) · g′(x) is integrable
on [a, b].

Suppose that md(f, g(x)) ·g′(x) is integrable. It is easily seen that f ◦g has
property (N) (as it is stable under compositions), and thus by Theorem 3.5,
it is enough to show that f ◦ g has bounded variation. Let

A := {x ∈ [a, b] : md(f, g(x)) exists and g′(x) 6= 0},

B1 := {x ∈ [a, b] : g′(x) = 0}, and B2 := [a, b] \ (A∪B1). Note that for almost
every x ∈ [a, b], we have that either g′(x) = 0 or g′(x) 6= 0 and md(f, g(x))
exists (in the second case, we also have that md(f ◦ g, x) exists and is equal to
md(f, g(x)) ·g′(x) by the chain rule for metric derivatives [7, Lemma 2.4 (ii)]).
Thus, it follows that m(B2) = 0. Let B := B1 ∪ B2. By Theorem 3.13, and
because f ◦ g has property (N), we have that H1((f ◦ g)(B)) = 0. We obtain

b∨
a

(f ◦ g) =
∫
M

N(f ◦ g, y) dH1y =
∫
M\(f◦g)(B)

N(f ◦ g, y) dH1y

=
∫
{x∈[a,b]:f◦g(x)6∈B}

md(f ◦ g, x) dx

≤
∫
A

md(f, g(x)) · g′(x) dx <∞,

where the first equality follows from [9, Theorem 2.10.13], and the third by [6,
Theorem 2.12]. We have that f ◦ g has finite variation, and thus we can apply
Theorem 3.5.
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